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Abstract

Equatorial symmetric stability in the Earth’s middle atmosphere, modelled by the inviscid

adiabatic compressible Euler equations on a β-plane, is investigated, taking into account

the previously neglected Coriolis force terms due to the component of the planetary

rotation vector tangent to the surface. Using an energy-Casimir method based on the

underlying Hamiltonian structure of the governing equations, two conditions that, taken

together, are sufficient for linear stability are derived: the well known condition that

potential vorticity be positive in the northern hemisphere and negative in the southern;

and the condition that entropy must increase (decrease) in the direction of the local

planetary rotation vector in the northern (southern) hemisphere. Far from the equator,

the latter reduces to the familiar condition for static stability. Explicit steady solutions

are found that are stable when the horizontal Coriolis force terms are neglected but

unstable when they are included.

The same problem is considered using an anelastic equations model, and conditions for

stability under finite amplitude perturbations are derived. It is argued that only steady

solutions that are even functions of latitude can be stable in the sense of Lyapunov. States

that are demonstrably Lyapunov stable are used to estimate the growth of disturbances

to unstable equilibria. The short time evolution of the system away from an unstable

state with linear meridional shear in the zonal velocity is explicitly calculated, and the

normal mode solution exhibits features commonly associated with symmetric instability.

Finally, the Rayleigh criterion for linear stability of inviscid Taylor-Couette flow be-

tween rotating cylinders, that the magnitude of angular momentum increase with distance

from the axis of rotation, is shown to be valid for finite amplitude disturbances provided

the radial gradient of angular momentum is not too high.
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Chapter 1

Introduction

1.1 Symmetric stability

This study concerns the stability of a steadily rotating stratified three-dimensional fluid

flow that is symmetric about the axis of rotation to disturbances that preserve the symme-

try. The problem is known as “symmetric stability”. Our main result is the demonstra-

tion of sufficient conditions on the velocity and thermodynamic fields for the symmetric

stability of steady zonal flows in the Earth’s equatorial atmosphere.

There is a good analogy between symmetric instability in an axially symmetric rotat-

ing unstratified fluid and adiabatic convection in a nonrotating fluid in terms of materially

conserved variables and forces on displaced fluid parcels.

Fluid parcels undergoing adiabatic motion conserve entropy. An infinitesimal parcel

of fluid displaced upwards in such a way that it conserves its entropy and does not disturb

the local pressure field feels a downward buoyancy force proportional to its density, which

is a function of its entropy and the ambient pressure, and an upward force due to the

vertical pressure gradient, which balances the buoyancy force on the fluid surrounding

it. The displaced parcel will therefore feel a net force towards its equilibrium position

if its density at its new position is greater than the density of the surrounding fluid

1



2 Chapter 1. Introduction

or, since density varies inversely with entropy, if its entropy is less than that of the

surrounding fluid at its new position. Hence, a fluid at rest is convectively stable if its

entropy increases with height.

Angular momentum plays the role in symmetric instability that entropy does in con-

vection. Parcels of fluid in an axially symmetric flow, which due to the symmetry actually

represent circular rings of fluid, conserve the component of angular momentum in the

direction parallel to the axis of symmetry. A parcel displaced radially outward such that

it conserves its angular momentum (to do which it slows down) and does not disturb the

local pressure field feels an inward force due to the radial pressure gradient at its new

position, which is such that the surrounding fluid is maintained in circular motion. If

the angular momentum of the displaced parcel is greater than that of the surrounding

fluid, then it will have a greater tangential velocity, the pressure gradient force will be

too weak to keep it in circular motion, and it will drift further away from its equilibrium

position. Alternatively, if its angular momentum is less than that of the surrounding

fluid, the pressure gradient force will be greater than that needed to keep it in circular

motion, and it will be pushed back towards its undisturbed position, leading to “inertial”

oscillation about the equilibrium. The condition for symmetric stability is therefore that

the angular momentum in the unperturbed flow increases with distance from the axis of

rotation. This result is due to Lord Rayleigh (1916).

For an unstratified fluid, symmetric instability is more commonly referred to as cen-

trifugal or inertial instability. For a stratified and rotating fluid, the term symmetric

stability usually refers to the more general stability problem, considering both vertical

and radial displacements and both buoyancy and inertial forces.

The two types of parcel instabilities have been studied extensively in the famous

Rayleigh-Bénard convection and Taylor-Couette experiments. The former involves a

layer of fluid confined between two horizontal plates being made unstable by heating

the lower plate. When the temperature gradient exceeds a critical value, depending
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on the thermal diffusivity coefficient, the viscosity, and the thickness of the fluid layer,

instability sets in, and cells of overturning motion develop. There is a rich literature

on the scale, organization, and patterns of convection. The Taylor-Couette experiment

involves an annular column of fluid confined between two rotating cylinders being made

unstable by increasing the rotation rate of the inner cylinder. Instability initially takes the

form of vertical rolls superposed on the initial azimuthal flow, known as Taylor vortices.

The experiment is well known for the controllable bifurcations of the vortex pattern

with progressive increase of the rotation rate of the inner cylinder, eventually leading to

chaos. For discussions of the two experiments, see, for example, Chandrasekhar (1961)

and Koschmieder (1993). Chapter 5 of this thesis deals with the stability of flow in the

Taylor-Couette experiment.

1.2 Geophysical setting

In the case of a stratified and rotating fluid, stability depends on the gradients of both

entropy and angular momentum. Chapters 3 and 4 concern the stability of steady rotating

stratified flows in the equatorial middle atmosphere of the Earth (the region 15 – 100 km

above the surface). It will be shown that there are two conditions that, taken together,

are sufficient for stability: the entropy must increase in the direction of the local planetary

rotation vector in the northern hemisphere and decrease in the southern; and the angular

momentum must increase towards the equator on surfaces of constant entropy. The

second condition is usually phrased in terms of potential vorticity (PV), a quantity that

is related to the gradients of both angular momentum and entropy. For stability, PV

must have the sign of latitude: positive in the northern hemisphere, negative in the

southern. The equator features in the stability conditions because the orientation of the

gravitational force relative to the centrifugal force changes at the equator.
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1.2.1 Observational evidence of inertial instability

The importance of convection to atmospheric dynamics is well known. Heating of the

surface by the sun warms the lowest layer of air in the troposphere. The resulting

convection carries water vapour upwards, leading to the formation of clouds and the

phenomena of thunderstorms and precipitation. Convection also plays a less obvious role

as a mechanism for forcing waves in the upper troposphere and lower stratosphere. Such

waves affect the large scale circulation in the middle atmosphere, driving it away from

what would be expected on the grounds of radiative and dynamical balance.

The importance of inertial instability in atmospheric dynamics is much less well under-

stood. One reason for this is that real atmospheric circulations are never exactly axially

symmetric, so conditions are never such that the predictions of symmetric stability can

be directly observed. However, the fact that the instability mechanism is inherently local

suggests that (globally) axially symmetric results should be approximately accurate and

at least qualitatively relevant when there is partial axial symmetry over an interval of

longitude. Another reason for the difficulty of identifying inertial instability is that its

effect on the velocity and temperature fields in the atmosphere is obscured by waves,

which are always propagating through the atmosphere in all directions.

It is generally accepted now that inertial instability is directly observed occasionally

by satellites measuring the temperature distribution in the middle atmosphere. The pat-

terns that are identified as due to inertial instability are based on the important study

by Dunkerton (1981), in which he addressed the simplest interesting case of symmetric

instability, that of uniform stratification and constant meridional shear in the relative

zonal (east-west) velocity. It is easily seen that this configuration is symmetrically un-

stable in an interval between the equator and a latitude proportional to the value of

the velocity shear. Dunkerton solved the linearized primitive equations on an equatorial
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β-plane1, and found that the fastest growing mode exhibits a Taylor vortex-like column

of vertically (radially) stacked cells of overturning motion centred over the unstable re-

gion. The corresponding signature in the zonal velocity is a column of oppositely signed

anomalies on the equatorward side of the unstable region, and in the temperature field a

checkerboard pattern of warm and cold anomalies on either side of the unstable region.

See Figure 1.1 for a schematic picture of the features of Dunkerton’s solution.

Hitchman et al. (1987) identified the characteristic inertial instability pattern in north-

ern hemisphere winter temperature data from satellite observations of the lower meso-

sphere (approximately 50 km altitude or the level at which the pressure is about 1 hPa).

Oppositely signed columns of temperature anomalies with amplitudes of about 5 K and

vertical wavelengths of about 15 km were observed over the equator, persisting for pe-

riods of one to two weeks. These so-called pancake structures are distinguished from

Rossby and Kelvin waves which are also observed in the same data by their large am-

plitude, stationarity, and confinement to low latitudes. Similar features were identified

by Hayashi et al. (1998), with further evidence that they represent inertial instability

provided by corresponding out of phase patterns in winter midlatitude, consistent with

the Dunkerton solution (see Figure 1.2). Also, a similar signal was identified in southern

hemisphere winter data. In both studies, the pancake structure events were seen to be

preceded by breaking Rossby waves at midlatitudes which pull negative (positive) PV air

into the northern (southern) hemisphere over a wide interval of longitude (about 60◦),

thus violating the symmetric stability condition.

Numerical simulations of the middle atmosphere show inertial instability activity. See

Hunt (1981) (Figure 1.3), O’Sullivan and Hitchman (1992), and Semeniuk and Shepherd

(2001).

1The (hydrostatic) primitive equations and the equatorial β-plane are defined precisely in Chapter 2.
It will suffice here to say that they are widely used approximations that simplify the mathematics without
losing most of the essential physics of the problem. We will not make the hydrostatic approximation for
reasons that are discussed in Chapter 2.
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Figure 1.1: Schematic diagram showing features of the Dunkerton (1981) solution to

the primitive equations linearized about state with linear meridional shear in the zonal

velocity and stable stratification. The basic state is inertially unstable in the shaded

interval. The fastest growing mode features a single column of Taylor vortices over the

unstable region. Solid (dashed) contours are vortices with anticlockwise (clockwise) cir-

culation. The shaded circles with + and – represent eastward and westward anomalies in

the zonal wind on the equatorward side of the unstable region, associated with, respec-

tively, equatorward and poleward transport of angular momentum (horizontal arrows).

The cold and warm cells represent the “pancake structures” in the temperature field,

associated with, respectively, upward and downward motion (vertical arrows).

The actual vertical scale of inertial instability cells in the middle atmosphere is an open

question because both satellite data and numerical simulations are restricted to coarse

vertical resolution, and the cells are always observed near the smallest resolvable vertical

scale, causing numerical simulations to exhibit probably exaggerated vertical mixing.

Indeed, Dunkerton’s solution predicts that the fastest growing modes have vanishing
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Figure 1.2: Latitude-height section of temperature anomaly (in K) from Cryogenic Limb

Array Etalon Spectrometer (CLAES) data. Values are averaged over 7 days (December

14-20, 1992) and 60◦ longitudinal width centred on 225◦E and filtered to reduce the signal

of midlatitude planetary waves. The checkerboard pattern in the temperature anomaly

is characteristic of inertial instability. From Hayashi et al. (1998).

vertical scale. Theories for the true preferred vertical scale are many and are based on,

for example, effects of diffusion (Dunkerton, 1981), zonal asymmetry in the background

state (Clark and Haynes, 1996), and secondary shear instability and nonlinear effects

smoothing out small scale cells (Griffiths, 2003).

Role in solstice dynamics

Aside from direct observational evidence for inertial instability, there are features of the

observed temperature and momentum fields in the middle atmosphere that suggest that

inertial adjustment is an important part of the general circulation. In other words, the

system is constantly being forced towards an inertially unstable state and adjusting itself

towards a stable or neutrally stable state.

During solstice seasons, the estimated radiative equilibrium temperature profile (i.e.



8 Chapter 1. Introduction

Figure 1.3: Time-averaged mean meridional wind (in ms−1) distribution for January

computed by a general circulation model. The column of cells of alternating sign on the

winter side of the equator is believed to be due to inertial instability. From Hunt (1981).

the temperature profile that represents a balance between solar forcing, outgoing radia-

tion and radiatively active chemical processes) has a maximum in the summer hemisphere

(see, for example, Andrews et al., 1987). If the radiative equilibrium were realized, there

would be a pressure gradient from the summer hemisphere to the winter hemisphere

across the equator. However, a pressure gradient at the equator cannot be balanced by

a purely zonal flow and there would therefore be a cross-equatorial meridional flow from

summer to winter. If the angular momentum maximum is over the equator, as required

by the Rayleigh criterion for stability, then a cross-equatorial flow tries to advect the

angular momentum maximum into the winter hemisphere, leading to inertial instability.

The solstice season temperature profiles from satellite data, and the angular momentum
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Figure 1.4: January mean absolute angular momentum contours (units m2s−1) from

the Canadian Middle Atmosphere Model (CMAM). The smoothing of the horizontal

absolute angular momentum gradient over the equator, especially near the stratopause

(≈ 50 km) is due to cross equatorial advection and inertial adjustment. Figure courtesy

of K. Semeniuk (from Semeniuk and Shepherd, 2001).

profiles seen in numerical simulations (we do not have reliable measurements of horizon-

tal winds in the tropical middle atmosphere) actually show approximately zero gradient

across the equatorial region, and this is conjectured to be due to constant inertial ad-

justment mixing the air and smoothing the gradients (see Semeniuk and Shepherd, 2001,

and Figure 1.4).

Inertial adjustment is thus part of the dynamics underlying the semi-annual oscillation

in the zonal wind direction, eastward at equinox, westward at solstice (see, e.g., Shepherd,

2000). The summer-to-winter advection at solstice, maintained by inertial adjustment,

carries relatively westward angular momentum from the summer hemisphere over the

equator. (The eastward phase is caused by breaking equatorial Kelvin waves propagating

upward from the troposphere.)
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Inertial instability events also contribute to the excitation of the so-called two-day

wave in the equatorial summer stratosphere by transporting relatively eastward momen-

tum from the winter hemisphere towards the equator (see Figure 1.1), thereby increas-

ing the curvature of the eastward jet in the summer hemisphere causing it to become

barotropically unstable (Limpasuvan et al., 2000).

Inertial instability in the equatorial ocean

There is also evidence of inertial instability in the equatorial ocean. Inertial instability

has been nominated by Hua et al. (1997) as an explanation for the pattern of alternately

signed vertically stacked zonal jets below the equatorial thermocline (between 200 and

2000 m depth; see Firing, 1987). This feature is consistent with the Dunkerton solution

(adapted for ocean fluid dynamics).

The same data shows a zonal velocity distribution corresponding to almost uniform

angular momentum in the equatorial region (Hua et al., 1997). It is worth noting that

the observed vertical gradient of zonal velocity approximately cancels out the vertical

variation of planetary angular momentum, an effect which is neglected more often than

not.

1.3 Structure of thesis

The thesis is organized as follows. In Chapter 2, some preliminary mathematical issues

are covered. The equations governing inviscid, adiabatic flow in a rotating spherical shell

are described, the validity of the widely used “traditional” hydrostatic approximation is

discussed, the equatorial β-plane approximation used in the following chapters is defined

and applied, and some useful ideas related to Hamiltonian fluid mechanics are introduced.

In Chapter 3, sufficient conditions for linear symmetric stability under the Euler

equations are derived using a version of the energy-Casimir stability analysis method.
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The result is novel in that it accounts for the effects of both components of the Earth’s

rotation vector. The same conditions are derived using a method based on fluid parcel

displacements. Several examples of steady solutions to the symmetric Euler equations

(velocity, pressure and temperature) are worked out and their stability assessed.

In Chapter 4, a Hamiltonian formulation of the symmetric anelastic equations on an

equatorial β-plane is presented. Results of Chapter 3 are reproduced for the anelastic

system and are extended to nonlinear stability (finite amplitude perturbations). The

nonlinear stability result is used to calculate bounds on the available potential energy that

can be released in adjustment from an unstable steady state (“saturation bounds”). The

linearized equations for the anelastic version of the “Dunkerton problem” with constant

meridional shear in the zonal velocity are solved and the solution compared with the

hydrostatic case.

Finally, in Chapter 5, the stability of inviscid flow between coaxial rotating cylinders

is considered. The Rayleigh condition for stability, that the magnitude of angular mo-

mentum increase with distance from the axis of rotation, is shown to be valid for finite

amplitude disturbances provided the ratio of cylinder rotation rates is not too high. The

finite amplitude result is used to show that the energy available to be released from

an unstable flow into growing Taylor vortices approaches zero as the stability threshold

is approached, demonstrating that the bifurcation from laminar Couette flow to Taylor

vortex flow is supercritical. When the ratio of cylinder rotation rates is high, the finite

amplitude stability result does not apply, allowing for the possibility of a subcritical

instability suggested by experiments.

1.3.1 Some remarks on notation

The chapters in this thesis are for the most part self contained units. As such, some

symbols and variables are redefined more than once. With a few exceptions, the meaning

of a given symbol is the same in each chapter. We note the exceptions here, and again
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when they come up in the body of the thesis.

In Chapter 2, capital letters are used for “characteristic scales” of length, velocity,

etc., with the time scale denoted by the lower case Greek τ to avoid confusion with

temperature T . In Chapters 3, 4, and 5, capital letters represent steady state values of

the variables denoted by the corresponding lower case letters. Hence, for example, U in

Chapter 2 is a representative value of horizontal velocity, but in Chapter 3, U ≡ U(y, z)

is a steady state zonal velocity distribution.

In Chapter 3, rather than introduce a non-standard arbitrary symbol for temperature,

and in order to adhere to the rule of lower case letters for time varying dependent variables

and upper case for their steady state counterparts, τ ≡ τ(ρ, η) ≡ τ(y, z, t) is used for

time varying temperature so that T ≡ T (y, z) can represent the steady state temperature.

Also, since upper case counterparts to ρ (density) and p (pressure) look the same, the

steady state density is symbolized by D. The steady state entropy is symbolized by N

rather than H (upper case η) for aesthetic reasons.

As a further confusion (hopefully not), in the nondimensionalization of the equations

as part of the derivation of the anelastic equations in Chapter 4, Θ is first used as the

characteristic temperature and potential temperature scale, and then later as Θ(y, z),

the steady state value of the nondimensional potential temperature θ.

In Chapter 5, cylindrical polar coordinates are the natural choice for the geometry

of the Taylor-Couette experiment. Velocity components in cylindrical coordinates are

conventionally u, v, and w for, respectively, the radial, azimuthal and vertical compo-

nents. In spherical polar coordinates (and on the β-plane), u is the azimuthal (zonal; x)

component, v is the meridional (y) component and w the radial (vertical; z). These are

standard, so confusion is unlikely, but because the component of absolute angular mo-

mentum parallel to the rotation axis, the most important quantity in this thesis, involves

u in Chapters 2, 3, and 4, and v in Chapter 5, it bears mentioning.

Occasionally, similar looking symbols are used in close proximity and may lead to
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confusion. The symbol x represents position in space, but the similar looking x is the

generalized independent variable (e.g. x ≡ (u, v, w, ρ, η)) for the functional calculus of

Hamiltonian mechanics. The small parameter in the derivation of the anelastic equations

in Chapter 4 is ε (epsilon), and so we use ε (“varepsilon”) whenever an arbitrary small

real number is required in a definition or operation.
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Chapter 2

The governing equations and

approximate dynamical models

2.1 The unapproximated equations

For the purposes of this work, we will consider the inviscid, adiabatic Euler equations for

a compressible fluid to exactly describe flow in a planetary atmosphere. We are thereby

neglecting dissipative (frictional) forces and the radiation and irreversible diffusion of

heat.

The first element in the statement of the Euler equations is that a fluid, which consists

of haphazardly moving discrete particles, is considered to be a continuum, and that

bulk descriptions such as temperature, pressure, and density can be applied equally well

to volumes of fluid of any size. Infinitesimal volumes of fluid will be called parcels.

The properties of the fluid within a parcel, including density, temperature, position and

velocity, may be considered to be uniform.

The Euler equations are then simply the statements of conservation of mass, Newton’s

second law of motion applied to a fluid, the first law of thermodynamics, and an equation

of state. Let ρ(x, t) be the density of the fluid parcel at position x at time t, and let

15



16 Chapter 2. Governing Equations

v(x, t) be its instantaneous velocity vector. Conservation of mass means that the rate of

change of mass inside any closed volume V (fixed with time) equals the inward flux of

mass through the boundary of V . In the limit as V becomes infinitesimally small, this

implies the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.1.1)

Newton’s second law of motion for a fluid states that the rate of change of the linear

momentum of the fluid parcels inside an arbitrary volume is equal to the inward flux of

linear momentum through the boundary of the volume plus the sum of all external forces

acting on the fluid parcels. In the absence of frictional forces, and viewed from an inertial

reference frame, the only external forces we will consider are gravity ρg, where g(x) is

the (constant in time) acceleration due to gravity vector, and the net pressure exerted

by the fluid surrounding the volume. In differential form, the momentum equation is

∂v

∂t
+ (v · ∇)v − g +

1

ρ
∇p = 0, (2.1.2)

where p(x, t) is the fluid pressure.

We introduce the notation

D

Dt
≡ ∂

∂t
+ (v · ∇), (2.1.3)

where D/Dt is called the material or Lagrangian time derivative. Df/Dt represents

the time rate of change of the property f of a fluid parcel moving with velocity v. The

momentum equation (2.1.2) can then be written

Dv

Dt
= g − 1

ρ
∇p, (2.1.4)

showing that the acceleration of fluid parcels is due to the influence of gravity and the

pressure gradient force.

The final prognostic equation required is for the evolution of the thermodynamic

fields. Since we are concerned with adiabatic motion, the thermodynamic variable that
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is most convenient is entropy η, which satisfies

Dη

Dt
= 0. (2.1.5)

A property f satisfying Df/Dt = 0 is said to be materially conserved, or conserved

following the flow.

The system is closed by an equation of state relating pressure, density and entropy:

F (p, ρ, η) = 0. (2.1.6)

We will leave the equation of state unspecified as much as possible in this work so that

the results may be applied to a broad class of fluids. An example of an equation of state

is the ideal gas equation, which will be used in the examples in Chapter 3 and throughout

Chapter 4. See Appendix 3.A for some useful thermodynamic identities.

2.1.1 Dynamics in a rotating reference frame

For obvious reasons, we prefer to describe the dynamics of planetary atmospheres in terms

of a reference frame fixed with respect to the surface of the planet. Since the planet is

rotating about an approximately fixed axis1, the preferred reference frame is noninertial,

and motion described with respect to it will appear to be influenced by inertial forces.

Let the rotation of the noninertial frame be described by the constant vector Ω, and

consider an arbitrary time dependent vector q(t). It is readily shown (e.g., Batchelor,

1967) that the time derivatives of q in the two reference frames are related by

drq

dt
=

dfq

dt
− Ω × q, (2.1.7)

where the reference frames are denoted by the subscripts r (rotating) and f (fixed).

Notice that a vector fixed in the rotating frame precesses about Ω at constant angular

1The axis of rotation is precessing slowly with time, and the planet is always accelerating in its motion
about the sun, but these are relatively small effects.
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speed |Ω|. Applying (2.1.7) twice, to the positions and then to the velocities of fluid

parcels, we obtain the momentum equation in a rotating frame,

Dv

Dt
= − 2Ω × v + Ω × Ω × x + g − 1

ρ
∇p, (2.1.8)

where v and x are measured relative to the rotating frame. The two inertial terms on

the right hand side of (2.1.4) are referred to, respectively, as the Coriolis and centrifugal

forces.

2.1.2 Spherical coordinates

For describing motion in the atmosphere around a planet, it is natural to work in spherical

polar coordinates. In fact, since planets are rotating, they are not truly spherical but

bulge at the equator. The bulging is such that the gravitational field is altered from

that of a sphere in such a way that the net force on objects at rest on the surface of the

planet is normal to the surface (i.e. the surface is an equipotential). Let g ′ denote the

net force in the rotating frame on objects at rest (in the rotating frame). In the case

of the Earth, the equatorial bulge is a small effect (approximately 21 km), and we may

consider the surface to be a sphere to a reasonable level of approximation. To the same

level of approximation, we may also assume that g′ is in the radial direction and neglect

the component of the centrifugal force in the meridional direction. This will be made

explicit below. See Stommel and Moore (1989), Chapters 6-9, and Phillips (1973) for

detailed discussions of this issue.

We proceed, then, by making the simplifying approximation that the Earth is a sphere

with radius a (we also neglect topography on the surface of the earth). Let r measure

distance from the centre of the Earth. We then define z = r − a to be altitude above

the Earth’s surface. Let λ be longitude measured from an arbitrary angle, and let φ be

latitude measured from the equatorial plane. Let êλ, êφ and êz be the unit basis vectors
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in spherical coordinates, and let the components of velocity be

u ≡ r cosφ
dλ(p)

dt
, v ≡ r

dφ(p)

dt
, w ≡ dz(p)

dt
, (2.1.9)

where the superscript (p) indicates position of a fluid parcel,1 so that

v = u êλ + v êφ + w êz, (2.1.10)

and the material derivative operator (2.1.3) becomes

D

Dt
=

∂

∂t
+

u

r cosφ

∂

∂λ
+
v

r

∂

∂φ
+ w

∂

∂z
. (2.1.11)

The components of the momentum equation (2.1.8) in spherical coordinates are

Du

Dt
=

uv

r
tanφ− uw

r
+ 2Ωv sinφ− 2Ωw cosφ− 1

ρr cosφ

∂p

∂λ
, (2.1.12a)

Dv

Dt
= − u2

r
tanφ− vw

r
− 2Ωu sinφ− 1

ρr

∂p

∂φ
, (2.1.12b)

Dw

Dt
=

u2

r
+
v2

r
+ 2Ωu cosφ− 1

ρ

∂p

∂z
− g, (2.1.12c)

where

g ≡ −|g| − Ω2r cos2 φ, (2.1.13)

is the radial component of the net gravitational and centrifugal force, and we have ne-

glected the meridional component of the centrifugal force. The magnitude of the gravi-

tational force |g| varies like the inverse square of the distance to the centre of the Earth,

but for most atmospheric and oceanic purposes, it may be taken to be constant. The

centrifugal force term, which depends on position, is commonly neglected altogether.

Actually, the centrifugal force term in (2.1.13) substantially cancels out the reduction in

gravity due to the bulging of the Earth (about 0.3% at the equator), making the constant

g approximation even more accurate.

1This prevents a circular definition of velocity and the material derivative D/Dt. Alternatively, we
could have introduced a field of parcel labels a(x, t), and velocity is then the partial time derivative of
x(a, t) with a held fixed. The Jacobian of the transformation from x coordinates to a coordinates is
usually chosen to be the density. This formalism is convenient for the canonical Hamiltonian formulation
of fluid mechanics in which the independent variable is a (Salmon, 1998).
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The continuity equation can be expanded using

∇ · (ρv) =
1

r2 cosφ

[

∂

∂λ
(ρur) +

∂

∂φ
(ρvr cosφ) +

∂

∂r
(ρwr2 cosφ)

]

. (2.1.14)

2.1.3 Energy and angular momentum conservation

Assuming suitable boundary conditions, the system of equations (2.1.8), (2.1.1) and

(2.1.5) conserves total energy and the component of absolute angular momentum parallel

to Ω.

The total energy E is the sum of kinetic energy 1
2
ρv · v, potential energy ρΦ(z)

(Φ = gz when g is assumed to be constant1), and internal energy E(ρ, η), integrated over

the entire domain D (or, equivalently, over all fluid parcels), i.e.

E(v, ρ, η) =

∫

D

ρ
[

1
2
v · v + Φ(z) + E(ρ, η)

]

dx. (2.1.15)

E(ρ, η) satisfies the first law of thermodynamics for adiabatic processes,

DE
Dt

=
p

ρ2

Dρ

Dt
. (2.1.16)

Using (2.1.8), (2.1.1), (2.1.5) and (2.1.16), and neglecting the centrifugal force and

the radial dependence of gravity, it can be shown that

dE

dt
=

∫

∂D

−ρ2

[

1

2
v · v + gz + E(ρ, η) +

p

ρ2

]

v · ν̂ dS(x), (2.1.17)

where ν̂(x) is the outward pointing unit normal vector to the domain D, and dS(x) is

an element of area on the surface ∂D. For the case of a spherical shell, typical boundary

conditions that imply conservation of energy are that the velocity is perpendicular to

the inner and outer spherical boundaries, or if the outer boundary is infinite, that the

density and pressure vanish sufficiently rapidly as z tends to infinity.

1If the centrifugal force and the radial dependence of gravity are retained but the bulging of the planet
is still neglected, then Φ(x) ≡ GM/r − 1

2Ω2r2 cos2 φ, where G is the universal gravitational constant
and M is the mass of the planet.



2.2. Traditional hydrostatic approximation 21

In spherical coordinates, the integral in (2.1.15) may be written as a triple integral

over (λ, φ, r)

E(u, v, w, ρ, η) =

2π
∫

0

π
2
∫

−
π
2

∞
∫

0

ρ
[

1
2
(u2 + v2 + w2) + gz + E(ρ, η)

]

r2 cosφ dr dφ dλ, (2.1.18)

and (2.1.12) may be used to verify that E is conserved. Note that all of the dependent

variables are periodic in λ with period 2π.

The component of absolute angular momentum parallel to Ω, due to motion in the

zonal (east-west) direction, is given by

M ≡ (u+ Ωr cosφ)r cosφ. (2.1.19)

From (2.1.11) and (2.1.12a),

DM

Dt
= −1

ρ

∂p

∂λ
(2.1.20)

and, since the lower boundary is independent of λ and pressure is periodic in λ,

d

dt

∫

D

ρMdx = −
∫

∂D

ρMv · ν̂dS(x). (2.1.21)

Hence, with energy conserving boundary conditions, the total absolute zonal angular

momentum is also conserved.

2.2 Traditional hydrostatic approximation

The equations (2.1.12) are valid for flow in a general spherical shell rotating at a constant

rate, with the only approximation being the neglect of the centrifugal force. It has long

been recognized that planetary atmospheres do not exhibit all of the possible motions

allowed by the exact equations. The most striking property of observed atmospheric

behaviour is that horizontal accelerations are much greater than vertical accelerations.

The forces on air parcels in the vertical (radial) direction are very nearly balanced. The
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balance between the largest terms in (2.1.12c),

∂p

∂z
= −ρg, (2.2.1)

is commonly referred to as hydrostatic balance. It is the condition for equilibrium in

a system at rest (v = 0). The accuracy of (2.2.1) for a system in motion depends on

the length, time, and velocity scales of the particular problem. It is appropriate for

modelling extratropical cyclones which evolve slowly and over horizontal length scales of

thousands of kilometres, but not, for example, for modelling thunderstorms, which have

short horizontal length scales, evolve over periods of hours, and involve relatively strong

vertical motion.

As we will see, the condition of near hydrostatic balance is related to the shallow

atmosphere approximation, which we have already invoked in assuming that the accel-

eration due to gravity is approximately constant. Together with the (not just aesthetic)

requirement of retaining principles of conservation of energy and angular momentum, ei-

ther approximation — hydrostatic balance or the shallow atmosphere — may be used as

the basis for simplifying the momentum equations. The two approaches end with similar

but not identical systems of equations.

First, consider the legitimacy of assuming hydrostatic balance. Equation (2.2.1)

agrees very well with observation — vertical accelerations are typically not more than

10−2 ms−2, even in an intense thunderstorm, compared to g ≈ 10 ms−2. But the criterion

for invoking the hydrostatic approximation should rather be that the vertical accelera-

tion Dw/Dt be small compared to the departure of the terms in (2.2.1) from equilibrium.

White (2002) argues for the case of an ideal gas as follows. Suppose the pressure and

density vary slightly from a reference state according to

p = p0(z) + p′(λ, φ, z, t) (2.2.2a)

ρ = ρ0(z) + ρ′(λ, φ, z, t), (2.2.2b)
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where p0(z) and ρ0(z) satisfy (2.2.1). Then, to first order in ρ′ and p′,

Dw

Dt
≈ u2

r
+
v2

r
+ 2Ωu cosφ− 1

ρ0

∂p′

∂z
− ρ′

ρ0

g. (2.2.3)

The potential temperature, defined by

θ(p, ρ) ≡
(

p00

p

)κ

T =
pκ00
R

p1−κ

ρ
, (2.2.4)

where T is temperature, and R and κ ≡ R/cp = 2/7 are constants1, is materially con-

served by an adiabatic flow. It therefore satisfies

Dθ′

Dt
+ w

dθ0

dz
= 0, (2.2.5)

where θ0(z) = θ(p0, ρ0) and θ′ = θ − θ0. If the time scale of changes in θ is τ and is

comparable to the time scale of changes in w, then we have, from (2.2.5),

∣

∣

∣

∣

Dw

Dt

∣

∣

∣

∣

∼ θ0

τ 2(dθ0/dz)

∣

∣

∣

∣

θ′

θ0

∣

∣

∣

∣

. (2.2.6)

From (2.2.4),

θ′

θ0

≈ (1 − κ)
p′

p0

− ρ′

ρ
, (2.2.7)

and if temperature T = p/Rρ is approximately constant, then |p′/p0| ≈ |ρ′/ρ0| ∼ |θ′/θ0|.

Therefore,
∣

∣

∣

∣

Dw

Dt

∣

∣

∣

∣

∼ 1

N2τ 2

∣

∣

∣

∣

g
ρ′

ρ

∣

∣

∣

∣

, (2.2.8)

whereN 2 ≡ (g/θ0)dθ0/dz is the square of the buoyancy or Brunt-Väisälä frequency. N 2 is

a measure of the stratification of the background hydrostatic state of the atmosphere.2 If

N2 is positive, then it is the square of the frequency of oscillation of a vertically displaced

fluid parcel. The criterion for discarding Dw/Dt is therefore that the dominant timescale

in the problem τ must be much greater than N−1.

1R ≈ 287 JK−1kg−1 is the ideal gas constant for air, and cp is the heat capacity at constant pressure.
For a diatomic gas, cp = 7

2R.
2p0 and ρ0 were arbitrary, but in practice, they might be chosen based on, say, the time mean pressure

and density.
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Alternatively, one could compare Dw/Dt to the pressure gradient term in (2.2.3),

(1/ρ0)∂p
′/∂z. The two approaches must be equivalent since if Dw/Dt is small compared

to each of the two large terms1, they must be of the same order of magnitude. We present

the argument from Phillips (1973).

From the thermodynamic equation (2.1.5) and the continuity equation (2.1.1),

Dp

Dt
=
Dp′

Dt
+ w

dp0

dz
= c2sρ∇ · v, (2.2.9)

where c2s ≡ (∂p/∂ρ)|η is the speed of sound. Therefore, if W and U are characteristic

scales for vertical and horizontal velocity, and H and L for vertical and horizontal length,

then
∣

∣

∣

∣

Dw

Dt

∣

∣

∣

∣

∼ W

τ
=

(

1

H
+
g

c2s

)−1(
U

τL
+

1

c2sτ
2

∣

∣

∣

∣

p′

ρ

∣

∣

∣

∣

)

. (2.2.10)

If the pressure perturbation term on the right hand side of (2.2.10) is larger than

U/τL, then the condition for the neglect of Dw/Dt, the condition that |Dw/Dt| ¿

(1/ρ0)|∂p′/∂z|, is that τ À
√
HH ′/cs, where H ′ is the smaller of H and c2s/g. For typical

Earth atmosphere values, cs ≈ 320 ms−1, so H ∼ H ′ ∼ 104 m, and the condition is

satisfied if the timescale of motion is much greater than 30 seconds. This condition is

satisfied for all processes of interest.

If, on the other hand, the pressure perturbation term in (2.2.10) is smaller than U/τL,

then the continuity equation implies W .UH/L (the inequality allows for partial cancel-

lation between r cosφ ∂u/∂λ and r ∂v/∂φ). From (2.1.12a) and (2.1.12b), the pressure

perturbation satisfies

|p′|
ρ

∼











fUL, fτ > 1

UL

τ
, fτ < 1

, (2.2.11)

where f ≡ 2Ω sinφ and the metric terms due to the curvature of the coordinate system

1We are ignoring the other terms in (2.2.3): the metric terms are much smaller than g — (u2+v2)/r .

10−4 ms−2 for Earth values; the Coriolis term 2Ωu cos φ will be discussed in the next subsection.
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have again been ignored. Therefore,

∣

∣

∣

∣

Dw

Dt

∣

∣

∣

∣

∼ W

τ
.















H ′H

fτL2

|p′|
ρH

, fτ > 1

H ′H

L2

|p′|
ρH

, fτ < 1

. (2.2.12)

Hence, the other condition for neglecting Dw/Dt is that

L2 À H ′H. (2.2.13)

This is a condition on the aspect ratio of the problem. If the vertical scale H is on the

order of the depth of the atmospheric layer, then, since the horizontal scale L cannot be

more than 2πa, (2.2.13) implies H ¿ a, a shallow atmosphere.

We have already mentioned that for most atmospheric applications, the acceleration

due to gravity g may be taken to be a constant. This is dependent on the thinness of the

atmospheric layer compared to the radius of the planet. The exact value of g outside a

spherical planet of mass M and radius a is

g(r) =
GM

r2
≈ GM

a2

(

1 − 2
z

a

)

, (2.2.14)

where G is the universal gravitational constant. Therefore, the constant g approximation

depends on z/a being small. For the case of Earth, the atmosphere is approximately 102

km thick (depending on what is meant by atmosphere), compared to a mean radius of

6 × 103 km.

The shallow atmosphere approximation can be used to simplify the equations further

(in addition to setting g = constant) by replacing r−1 by a−1 wherever it appears in

(2.1.1), (2.1.5) and (2.1.12), including in the material derivative (2.1.11) and divergence

(2.1.14) operators. However, naively making the replacements and leaving the equations

otherwise unchanged upsets the principle of angular momentum conservation.

Phillips (1966) (see also Müller, 1989) explains that the conservation principle is upset

because replacing r−1 by a−1 in the component equations creates a system of equations
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that are not the components of a vector equation. Instead, he writes (2.1.8) in the form

∂v

∂t
= −∇(1

2
v · v) + v × [∇× (v + vΩ)] + g′ − 1

ρ
∇p, (2.2.15)

where vΩ ≡ Ωr cosφ êλ is the zonal component of the velocity of the rotating reference

frame. The Coriolis force comes from the term

v × (∇× vΩ) = (2Ω sinφv − 2Ω cosφw) êλ

− 2Ω sinφu êφ + 2Ω cosφu êr. (2.2.16)

The shallow atmosphere approximation is then made in the definition of the curvilin-

ear coordinates (r, φ, λ) by defining the scale factors

hλ ≡ a cosφ, hφ ≡ a, hr ≡ 1 (2.2.17)

(see, e.g. Arfken, 1985, Chapter 2, for discussion of scale factors in curvilinear coordinates)

and by setting vΩ ≡ Ωa cosφ êλ
1. Then the velocity components become (c.f. (2.1.9))

u ≡ a cosφ
dλ(p)

dt
, v ≡ a

dφ(p)

dt
, w ≡ dr(p)

dt
=

dz(p)

dt
, (2.2.18)

and the gradient and divergence operators have r−1 replaced by a−1. The Coriolis term

is then simply

v × (∇× vΩ) = 2Ω sinφv êλ − 2Ω sinφu êφ. (2.2.19)

Evidently, the shallow atmosphere approximation has forced the exclusion of the Coriolis

force terms proportional to cosφ, terms due to the component of Ω parallel to the surface

of the planet. Also, most of the metric terms disappear since the r dependence is gone

from the curl operator. The approximated momentum equations are

Dau

Dt
=

uv

a
tanφ+ 2Ωv sinφ− 1

ρa cosφ

∂p

∂λ
, (2.2.20a)

Dav

Dt
= − u2

a
tanφ− 2Ωu sinφ− 1

ρa

∂p

∂φ
, (2.2.20b)

Daw

Dt
= −1

ρ

∂p

∂z
− g, (2.2.20c)

1The shallow atmosphere system is effectively a family of spheres, all of radius a, all rotating with
the same angular speed, with the family parameterized by the coordinate z.
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where Da/Dt is the material derivative with r replaced by a in the coefficients, and the

approximate angular momentum

Ma ≡ (u+ Ωa cosφ)a cosφ (2.2.21)

satisfies DaMa/Dt = −ρ−1∂p/∂λ. The shallow atmosphere angular momentum is the

angular momentum a parcel would have if it were at the surface of the planet. Note

that the shallow atmosphere approximation does not force us to assume hydrostatic bal-

ance. However, when the shallow atmosphere approximation is appropriate, the vertical

acceleration Dw/Dt is, as we have seen, much smaller than the other terms, and is often

neglected. In that case, the angular momentum principle is not affected, but to retain

conservation of energy, 1
2
w2 is dropped from the kinetic energy.

Had we decided to assume hydrostatic balance without making the shallow atmo-

sphere approximation, and simply replaced (2.1.12c) with (2.2.1), then the energy prin-

ciple would have been upset. Dropping 1
2
w2 from the kinetic energy and the terms

proportional to w from the right hand sides of (2.1.12a,b) restores the energy principle,

but in turn upsets the angular momentum principle, which is restored finally by making

the shallow atmosphere approximation.

The resulting equations (2.2.20a,b) and (2.2.1) are known as the hydrostatic primitive

equations (or simply the primitive equations). Note that in the new system, there is no

longer a prognostic equation for the vertical velocity. It is obtained by requiring that

hydrostatic balance is maintained, i.e. that

∂

∂t

(

∂p

∂z
+ ρg

)

= 0. (2.2.22)

An advantage of the primitive equations is that if pressure is used as the vertical coordi-

nate, the continuity equation (2.1.1) becomes simply a statement that the divergence of

velocity vanishes. Note that pressure is necessarily decreasing with height by virture of

(2.2.1), so this change of coordinates is always well defined. A drawback of using pressure

coordinates is that the lower boundary becomes a function of time. See Lorenz (1967) for
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a clear discussion of the hydrostatic approximation, the primitive equations and pressure

coordinates.

2.2.1 Neglect of cosφ Coriolis force terms

In deducing the primitive equations from the hydrostatic approximation or Phillips’ sys-

tem from the shallow atmosphere approximation, we were forced to drop the Coriolis

force terms due to the component of Ω parallel to the surface of the planet, terms pro-

portional to cosφ, in order to retain the conservation of angular momentum principle.

Unlike the neglect of the spherical “metric” terms proportional to 1/r, the neglect of the

cosφ Coriolis terms is not obviously justified on scaling grounds.

Eckart (1960) calls attention to the precariousness of the approximation by referring

to the neglect of the cosφ Coriolis force terms in the zonal and vertical momentum

equations as the “traditional” approximation. According to Eckart, the approximation is

made in order to remove “mathematical difficulties” from his field equations (essentially

the Euler equations linearized about a rest state). The field equations may be solved for

motion bounded by spherical level surfaces by the method of separation of variables only

if the traditional approximation is made.

Certainly at midlatitudes, where sinφ ∼ cosφ, and under circumstances in which

the predominant vertical velocity scale W is much less than the horizontal velocity scale

U , the neglected term in the zonal momentum equation 2Ωw cosφ is relatively small

compared to 2Ωv sinφ. However, near the equator, where the other (sinφ) term becomes

small, and the cosφ term is the largest inertial force term (indeed, at the equator, Ω is

tangent to the surface), it is not clear that the approximation is justified.

Veronis (1963) considers the expression for potential vorticity,

q ≡ (2Ω + ∇× v) · ∇η
ρ

, (2.2.23)

in spherical coordinates, and argues that the contribution from the horizontal component
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of Ω can be neglected wherever

1

r

∂η

∂φ
∂η

∂r

∼ H

L
¿ tanφ, (2.2.24)

where H and L are the vertical and meridional length scales of motion. For large scale

motion in the Earth’s atmosphere, H/L ∼ 10−3, in which case (2.2.24) recommends the

traditional approximation outside of a band of about 1o latitude about the equator.

Colin de Verdière and Schopp (1994) find a similar criterion by looking at the vorticity

version of the Euler equations. For motion near the equator, tanφ.L/a, so the condition

(2.2.24) may be written
√
Ha ¿ L. For the Earth’s atmosphere,

√
Ha ≈ 240 km, and

for the ocean,
√
Ha ≈ 80 km, a scale on which “considerable energy is found at low

latitudes in the form of zonal jets” (Colin de Verdière and Schopp, 1994, p244).

In a comment on Phillips (1966), Veronis (1968) objects to the claim that conservation

of angular momentum is justification for the traditional approximation when assuming a

shallow atmosphere because (2.1.20) is valid to the same degree of approximation as the

approximate equations themselves. The implication is that the need to have an exact

conservation principle corresponding to angular momentum is an aesthetic consideration.

In his response, Phillips (1968) concedes that the approximation is not justified on the

basis of retaining the angular momentum principle, but argues that it is (perhaps) jus-

tified based on the following physical grounds (see also Gill, 1982). In the dispersion

relation for plane-wave solutions to the shallow Euler equations (i.e. with r replaced by a

but without the traditional approximation, the system suggested by Veronis) linearized

about a stratified atmosphere at rest, the cosφ terms are insignificant if 4Ω2 ¿ N2,

where N is again the buoyancy frequency (a measure of stratification). Therefore, the

traditional approximation is justified when the stratification is such that N 2 À 10−8 s−2.

Typical in the middle atmosphere is N 2 ≈ 10−4 s−2.

The above argument is based on the effects of the Coriolis terms on oscillations about

a state of rest, but the cosφ terms can have a significant effect on the mean flow that



30 Chapter 2. Governing Equations

obtains in the atmosphere. Assuming motion on a time scale L/U and the approximate

nondivergence condition W .HU/L, White and Bromley (1995) estimate that the term

2Ωw cosφ in the zonal momentum equation is much smaller than |Du/Dt| and (equiva-

lently) the term 2Ωu cosφ in the vertical equation is much smaller than |ρ′/ρ0g| when

2ΩH cosφ

U
¿ 1. (2.2.25)

For H ≈ 10 km and U ≈ 10 ms−1, 2ΩH cosφ/U ≈ 0.14 cosφ. Close to the equator,

they argue that this is certainly too large to ignore in simulations of atmospheric mo-

tion. They offer the quasihydrostatic equations, which are the Euler equations without

Dw/Dt in the vertical momentum equation, and claim that they are not much more

computationally expensive than the primitive equations. A pressure-coordinate based

form of the quasihydrostatic equations are used in the United Kingdom Meteorological

Office forecast model (White, 1999).

Advocates of neglecting the cosφ Coriolis terms appeal to particular situations in

which the terms are insignificant as reasons to neglect them in general. The prudent

course would seem to be to retain all of the terms unless they cause insurmountable

“mathematical difficulties”. In the following chapters, in which we will consider the

stability of steady zonal solutions around the equator, we retain a representation of

both components of the rotation vector Ω. We will find that stability depends on the

orientation of gradients of angular momentum and entropy relative to Ω and surfaces of

constant pressure. In Figure 2.1a, approximate pressure contours (spheres) and contours

of centrifugal force (cylinders parallel to Ω) are shown. Without the cosφ terms, constant

pressure surfaces would be everywhere perpendicular to Ω. Notice that at the equator,

the two sets of surfaces are actually tangent. This has consequences both for which

equilibrium states are possible and for which of them are stable.
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Figure 2.1: (a) Approximate contours of centrifugal force (cylinders) and pressure

(spheres). (b) Contours of planetary angular momentum a(Ωa − 1
2
βy2 + γz) with γz

term (solid lines) and without (dashed). Contours are in 109 m2s−1. Contours which

meet at the surface have the same value.
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2.3 The equatorial β-plane

In analysing fluid motion in the equatorial region, particularly in studying equatorial

wave phenomena, it is very common to consider the problem on an equatorial β-plane

instead of, or as a precursor to, the corresponding problem in a spherical shell.

Recall that in spherical coordinates, the components of the planetary rotation vector

Ω are functions of position:

Ω = Ω(cosφ êφ + sinφ êr). (2.3.1)

The β-plane approximation replaces the spherical coordinates used in a spherical shell

geometry with rectangular Cartesian coordinates but retains a linear approximation to

the variation of the rotation vector with position. The applicability of the approximation

depends on the smallness of the meridional length scale compared to the radius of the

planet. The following derivation is based on Grimshaw (1975).

The first step is to write the equations (2.1.12) in terms of (r, λ, µ), where µ(φ) is the

Mercator latitude (Eckart, 1960), defined by

dφ = cosφdµ, µ(0) = 0. (2.3.2)

Integrating (2.3.2) gives the relations

coshµ = secφ, sinhµ = tanφ. (2.3.3)

Equal (infinitesimal) intervals of longitude λ and Mercator latitude µ represent equal

arclengths on the surface of a sphere. The material derivative can be written

D

Dt
=

∂

∂t
+

1

r cosφ

(

u
∂

∂λ
+ v

∂

∂φ

)

+ w
∂

∂z
. (2.3.4)

Next, we introduce the dimensionless coordinates which will be shown to behave like

rectangular coordinates in the β-plane limit

x∗ ≡
( a

L

)

λ, y∗ ≡
( a

L

)

µ, z∗ ≡
( a

H

)

ln
(r

a

)

, (2.3.5)
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where a is the radius of the planet, and L and H are appropriate horizontal and vertical

length scales for the particular problem being studied. Note that the vertical coordinate

z∗ is, to first order in (H/a), equal to (r−a)/H. Also, let U be a characteristic horizontal

velocity scale, and let

t∗ ≡
(

U

L

)

t,
D

Dt∗
≡
(

L

U

)

D

Dt
, Ω∗ ≡

(

L

U

)

Ω. (2.3.6)

The components of velocity are defined by

u∗ ≡ Dx∗

Dt∗
, v∗ ≡ Dy∗

Dt∗
, w∗ ≡ Dz∗

Dt∗
, (2.3.7)

so that

u =
[

U
(r

a

)

cosφ
]

u∗, v =
[

U
(r

a

)

cosφ
]

v∗, w =

[

U
(r

a

)

(

H

L

)]

w∗, (2.3.8)

and the material derivative is

D

Dt∗
≡
(

L

U

)

D

Dt
=

∂

∂t∗
+ u∗

∂

∂x∗
+ v∗

∂

∂y∗
+ w∗

∂

∂z∗
. (2.3.9)

The continuity equation becomes

Dρ

Dt∗
= −ρ

{

∂u∗

∂x∗
+
∂v∗

∂y∗
+
∂w∗

∂z∗

(

L

a

)[

−2v∗ sinφ+

(

H

L

)

(3r3w∗)

]}

. (2.3.10)

The zonal momentum equation (2.1.12a) becomes

Du∗

Dt∗
+

(

L

a

)[(

H

L

)

u∗w∗ − u∗v∗ sinφ

]

= 2Ω∗

[

v∗ sinφ−
(

H

L

)

w∗

]

−
(

a2

U2

)(

1

ρr2 cos2 φ

)

∂p

∂x∗

+

(

L

a

)[

u∗v∗ tanφ−
(

H

L

)

u∗w∗

]

, (2.3.11)

with similar equations for the meridional and vertical momentum equations.
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Expanding sinφ, cosφ, and r/a about L/a = 0,

sinφ =

(

L

a

)

y∗ + O
[

(

L

a

)3
]

, (2.3.12a)

cosφ = 1 − 1

2

(

L

a

)2

y∗2 + O
[

(

L

a

)4
]

, (2.3.12b)

r

a
= 1 +

(

H

L

)(

L

a

)

z∗ +
1

2

(

H

L

)2(
L

a

)2

z∗2 + O
[

(

L

a

)3
]

, (2.3.12c)

so that to O[(L/a)2],

r

a
cosφ = 1 +

(

L

a

)(

H

L

)

z∗ +

(

L

a

)2
[

1

2

(

H

L

)2

z∗2 − 1

2
y∗2

]

, (2.3.13a)

(r

a
cosφ

)2

= 1 +

(

L

a

)[

2

(

H

L

)

z∗
]

+

(

L

a

)2
[

2

(

H

L

)2

z∗2 − y∗2

]

. (2.3.13b)

Substituting (2.3.12) and (2.3.13) into (2.3.11) gives

Du∗

Dt∗
+

(

L

a

)(

H

L

)

u∗w∗

= 2Ω∗

[(

L

a

)

y∗v∗ −
(

H

L

)

w∗

]

−
(

1

U2

)

1

ρ

∂p

∂x∗

2Ω∗ sinφ+

(

L

a

)[

−
(

H

L

)

u∗w∗ − 2

(

H

L

)

z∗
(

1

U2

)

1

ρ

∂p

∂x∗

]

+ O
[

(

L

a

)2
]

. (2.3.14)

The β-plane equations are obtained by taking the limit as L/a approaches zero, while

Ω∗L/a = ΩU/a remains finite. In that limit,

Dρ

Dt∗
= −ρ

(

∂u∗

∂x∗
+
∂v∗

∂y∗
+
∂w∗

∂z∗

)

, (2.3.15)

and

Du∗

Dt∗
=

(

2Ω∗L

a

)

y∗v∗ −
(

2Ω∗H

L

)

w∗ −
(

1

U2

)

1

ρ

∂p

∂x∗
. (2.3.16)

Dimensions can be restored to the equations by defining

(x, y) ≡ L(x∗, y∗), z ≡ Hz∗, (2.3.17a)

(ũ, ṽ) ≡ U(u∗, v∗), w̃ ≡ U

(

H

L

)

w∗, (2.3.17b)

β ≡ 2Ω

a
, γ ≡ 2Ω. (2.3.17c)
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Assuming the scalings introduced earlier, (ũ, ṽ, w̃) is the leading order β-plane approx-

imation to the exact dimensional velocity v = (u, v, w). The full set of approximate

equations is

Dũ

Dt
= βyṽ − γw̃ − 1

ρ

∂p

∂x
, (2.3.18a)

Dṽ

Dt
= −βyũ− 1

ρ

∂p

∂y
, (2.3.18b)

Dw̃

Dt
= γũ− g − 1

ρ

∂p

∂z
, (2.3.18c)

Dρ

Dt
= −ρ

(

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z

)

. (2.3.18d)

Notice that the Coriolis force terms associated with the horizontal component of Ω is

retained in these equations. Based on (2.3.16), it should be kept or may be dropped

depending on the largeness of the aspect ratio L/H. The effect of neglecting these terms

on the stability problems considered in the following chapters may be observed by setting

γ equal to zero.

2.3.1 Hamiltonian representation

The analysis in the following chapters is based on the fact that the adiabatic, inviscid

equations are a Hamiltonian system. In this subsection, we present the β-plane equations

derived above in Hamiltonian form without belaboring the details of the mathematics

of Hamiltonian fluid mechanics. Elements of the theory will be introduced as needed

throughout the thesis. For detailed discussions of Hamiltonian systems of equations,

see, e.g., Arnold (1989), and for fluid systems, see Morrison (1998), Salmon (1998), and

Shepherd (1990).

We now show that the β-plane equations (2.3.18) can be written in the Hamiltonian

form

∂x

∂t
= J δH

δx
, (2.3.19)
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where x ≡ (u, v, w, ρ, η)T is the independent variable, J is the Poisson tensor, and H

is the Hamiltonian. The Hamiltonian for the β-plane equations is just the total energy

(dropping tildes from the velocity components)

H(u, v, w, ρ, η) =

∫ ∫ ∫

ρ
[

1
2
(u2 + v2 + w2) + gz + E(ρ, η)

]

dx dy dz. (2.3.20)

δH/δx is the functional gradient of H and has components

δH
δv

= ρv, (2.3.21a)

δH
δρ

=
1

2
v · v + gz + E + ρ

∂E
∂ρ
, (2.3.21b)

δH
δη

= ρ
∂E
∂η
. (2.3.21c)

It may be verified that (2.3.18) have the form (2.3.19) if the Poisson tensor is (see Shep-

herd, 1990, ,§4.5)

J =



























0 ρ−1ω3 −ρ−1ω2 −∂x ρ−1ηx

−ρ−1ω3 0 ρ−1ω1 −∂y ρ−1ηy

ρ−1ω2 −ρ−1ω1 0 −∂z ρ−1ηz

−∂x −∂y −∂z 0 0

−ρ−1ηx −ρ−1ηy −ρ−1ηz 0 0



























, (2.3.22)

where

(ω1, ω2, ω3) = (wy − vz, uz − wx + γ, vx − uy + βy). (2.3.23)

2.3.2 Angular momentum conservation

Recall that in the exact Euler equations, the absolute angular momentum (2.1.19) obeyed

a conservation principle. The conservation of the (integrated) angular momentum is

connected to the fact that the equations are Hamiltonian, and do not explicitly depend

on λ.1 The equations are thus invariant under a continuous point transformation of the

1The conservation of angular momentum also requires that the boundary conditions are independent
of λ.
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dependent variables, namely [v, ρ, η](λ, φ, r, t) → [v, ρ, η](λ + δλ, φ, r, t). According to

Noether’s Theorem (see, e.g., Arnold, 1989), such symmetries may be associated with

conserved functionals. More precisely, if the equations are Hamiltonian and are invariant

under a point transformation x → x + δx, and the functional F(x) satisfies

−εJ δF
δx

= δx, (2.3.24)

for some ε, then F(x) is conserved in time.

Consider the transformation corresponding to a translation in the x direction, i.e.

[ṽ, ρ, η](x, y, z, t) → [ṽ, ρ, η](x+ ε, y, z, t). The corresponding conserved functional M(x)

satisfies

−εJ δM
δx

= ε
∂x

∂x
. (2.3.25)

An M(x) satisfying (2.3.25) has functional gradient

δM
δx

= [ρ, 0, 0, ũ− 1
2
βy2 + γz, 0]. (2.3.26)

Inverting the functional gradient operation gives the conserved functional

M =

∫ ∫ ∫

ρ(u− 1
2
βy2 + γz) dx dy dz. (2.3.27)

By analogy with (2.1.21), the angular momentum associated with the β-plane equa-

tions may therefore be defined to be1

m ≡ u− 1
2
βy2 + γz. (2.3.28)

We might ask how m is related to the β-plane limit of the exact angular momentum

M given by (2.1.19). It may be verified that

M =
U

L
a2Ω∗ + Ua

{

u∗ +

(

H

L

)

(2Ω∗z∗) +

(

Ω∗L

a

)

[

2

(

H

L

)2

z∗2 − y∗2

]

+ O
[(

L

a

)]

}

,

(2.3.29)

1Alternative choices, differing from (2.3.28) by the addition of a Casimir invariant, are possible but
exactly equivalent for the purpose of the present discussion.
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which would suggest the dimensional version

m′ = u+ γz + β(z2 − 1
2
y2), (2.3.30)

where the additive and multiplicative constants have been dropped. Evidently, the β-

plane approximation is missing the βz2 term, associated with variation of Ω with r.

Assuming H/L ¿ 1 (shallow atmosphere), this term is small compared to γz, so the

difference between the conserved quantity m and the approximate angular momentum

m′ is small.

Except near the equator, the term γz is small compared to 1
2
βy2, but we feel that

it should be retained for the problem of equatorial inertial stability for which the state

of the atmosphere in the vicinity of the equator is critical. As we will show in Chapter

3, the criterion for stability will depend on the orientation of the gradients of entropy

and angular momentum relative to contours of constant pressure and “planetary angular

momentum” M (p) ≡ γz− 1
2
βy2. The significance of retaining the γz term may be felt by

referring to Figure 2.1b. The parabolae are contours of constant M (p), and the vertical

lines are the same contours with γ ≡ 0 (curves that meet at the surface have the same

value of M (p)). Notice also that Figure 2.1b resembles Figure 2.1a: the lines of constant

height (pressure) are now (approximately) flat, and the lines of constant M (p) (centrifugal

force) curve upward away from the equator.

The inclusion of the γz term also places restrictions on what velocity, density and

entropy fields satisfy conditions for equilibrium, and a stability criterion is only a mean-

ingful test if equilibrium solutions exist to which it can be applied.



Chapter 3

Symmetric stability of steady zonal

solutions to the compressible Euler

equations

In this chapter, we derive sufficient conditions for the linear stability of axisymmetric

steady state solutions to the fully compressible Euler equations on an equatorial β-plane

with otherwise arbitrary velocity and temperature fields to disturbances that preserve

the axial symmetry. What is novel in the calculation is that the Coriolis force terms

due to the horizontal component of the planetary rotation vector, the terms proportional

to cosφ, which are neglected in most applications, are included here. The well-known

condition for symmetric stability, that the potential vorticity Q have the same sign as

latitude (Stevens, 1983), is shown to apply to this more general case, and together with

a generalized static stability condition, is sufficient for linear stability.

The main effects of retaining the cosφ terms are that the structure of the steady

solutions in the vicinity of the equator is significantly more restricted, and the widths of

regions of anomalous Q depend (weakly) on the reintroduced terms.

The approach used in this chapter, known as the energy-Casimir method, due orig-

39
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inally to Arnold (see Shepherd, 1990), exploits the Hamiltonian nature of the Euler

equations as well as the material conservation of absolute zonal angular momentum and

entropy associated with, respectively, the zonal symmetry and the adiabatic nature of the

flow. For a given steady solution X of the governing equations, we construct a functional

A of the dynamical fields (velocity, density, and entropy) which has a critical point, i.e.

either a local extremum or a saddle point, at X. The required functional is a combina-

tion of the Hamiltonian (total energy) and a Casimir invariant. The condition that X

be a critical point corresponds to conditions on the gradient of the Casimir evaluated

at X. The further condition that X be a global minimum of A (more precisely, that

A(x) −A(X) be bounded from above and below by the square of a norm ||x − X||2 for

all x 6= X) corresponds to sufficient conditions on X for stability.

Normally, the method is used to derive conditions on X for stability to finite amplitude

perturbations (“nonlinear stability”), with the small amplitude result (“linear stability”)

emerging as a by-product. However, due to technical issues which we will outline, the

finite amplitude problem is not easily tractable in this case. However, we apply a version

of the energy-Casimir method directly to the problem linearized about X and derive

rigorous conditions for small amplitude stability.

Further details of the method may be found in Shepherd (1990) and Holm et al. (1985).

It has been successfully applied to the symmetric stability problem in the Boussinesq

equations on the f -plane (Cho et al., 1993; Mu et al., 1996) and, with restrictions, in the

hydrostatic equations in a shallow spherical shell (Bowman and Shepherd, 1995).

The structure of the chapter is as follows. In Section 3.1, the conditions for linear

stability are calculated using both the energy-Casimir method and a heuristic approach

based on forces on displaced fluid parcels, and a sequence of instructive examples are

presented. In Section 3.2, aspects of the problem of nonlinear stability are discussed.
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3.1 Linear stability of zonal equilibrium

3.1.1 Symmetric equations

We seek conditions for the stability of zonally symmetric steady solutions to the β-plane

equations (derived in the previous chapter) under zonally symmetric perturbations. The

governing equations are (2.3.18) but with ∂x ≡ 0. Consider then the following equations

governing adiabatic, compressible x-symmetric flow in a domain with rectangular cross-

section D = {(y, z)| − L ≤ y ≤ L, 0 ≤ z ≤ H}:

ut = −vuy − wuz + βyv − γw, (3.1.1a)

vt = −vvy − wvz − βyu− 1

ρ
py, (3.1.1b)

wt = −vwy − wwz + γu− g − 1

ρ
pz, (3.1.1c)

ρt = −(ρv)y − (ρw)z, (3.1.1d)

ηt = −vηy − wηz, (3.1.1e)

where u, v and w are the components of velocity in the x, y and z directions; ρ, p and

η are density, pressure and entropy; and subscripts indicate partial differentiation. The

flow is subject to the no-normal-flow boundary condition v = 0 on y = ±L and w = 0

on z = 0, H. The system is closed by an equation of state

F (ρ, p, η) = 0 (3.1.2)

such as the ideal gas law. Temperature τ may be obtained from any two of ρ, p and η

using the laws of thermodynamics (see Appendix 3.A).

The equations conserve energy

H(x) =

∫ ∫

D

ρ
[

1
2
(u2 + v2 + w2) + gz + E(ρ, η)

]

dy dz, (3.1.3)

where x ≡ (u, v, w, ρ, η), and E(ρ, η) is internal energy, satisfying the thermodynamic

identity

dE =
p

ρ2
dρ+ τdη, (3.1.4)
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and functionals of the form

C(x) =

∫ ∫

D

ρC(m, η) dy dz, (3.1.5)

where C(m, η) is any function, and m is defined by

m ≡ u− 1
2
βy2 + γz. (3.1.6)

Note that m is proportional to the β-plane approximation to the component of absolute

angular momentum parallel to the Earth’s rotation axis (2.3.30), and will be referred to

simply as angular momentum henceforth.

Functionals of the form (3.1.5) are related to the Casimir invariants of the noncanon-

ical Hamiltonian representation of the system (the same as in Section 2.3.1, but with

∂x ≡ 0), and their conservation is a consequence of the conservation of m and η by fluid

parcels. We note also that fluid parcels conserve potential vorticity

q =
1

ρ
∂(η,m). (3.1.7)

Here ∂(·, ·) is the Jacobian operator, defined by

∂(f, g) = fygz − fzgy = (∇f ×∇g) · ı̂, (3.1.8)

where ı̂ is the unit vector in the x direction. The sign of ∂(f, g) is given by the “right-

hand-rule” applied to ∇f and ∇g: positive if ∇f points in the semicircle clockwise of

∇g.

3.1.2 Steady solution and linearized equations

We seek to decide the stability of an equilibrium solution X of (3.1.1) with u = U(y, z),

v = w = 0, η = N(y, z) and ρ = D(y, z), with associated m = M(U ; y, z) and τ =

T (D,N). The pressure field P (D,N) balances the velocity and mass fields: from (3.1.1b)
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and (3.1.1c),

− βyU − 1

D
Py = 0, (3.1.9a)

γU − g − 1

D
Pz = 0, (3.1.9b)

which may be combined by “cross-differentiation” to get the thermal wind balance rela-

tion,

∂(M,M (p)) =
1

D2
∂(P,D), (3.1.10)

which relates the baroclinic vector ∇P ×∇D to the basic state velocity field.

In this section, we derive conditions on X such that the zero solution to the equations

(3.1.1) linearized about X is stable with respect to arbitrary disturbances. These may

be interpreted as conditions under which X is stable to infinitesimal disturbances. The

linearized equations are

u′t = −Uyv′ − Uzw
′ + βyv′ − γw′, (3.1.11a)

v′t = −βyu′ − 1

D
p′y +

1

D2
Pyρ

′, (3.1.11b)

w′

t = γu′ − 1

D
p′z +

1

D2
Pzρ

′, (3.1.11c)

ρ′t = −(Dv′)y − (Dw′)z, (3.1.11d)

η′t = −Nyv
′ −Nzw

′, (3.1.11e)

where primed quantities represent departure from the basic state X. Note that the

perturbation pressure p′ is related to the perturbation density ρ′ and entropy η′ by1

p′ =

(

∂P

∂D

)

N

ρ′ +

(

∂P

∂N

)

D

η′. (3.1.12)

Assume that the mapping from (y, z) to (N,M) has nonzero Jacobian everywhere

in D except perhaps on a finite number of curves. Partition D into a finite number of

subregions D(i), i = 1, . . . , n, such that

Q ≡ 1

D
∂(N,M) 6= 0 (3.1.13)

1We employ the notation of using capital letters in derivatives such as (∂P/∂N)D when the expression
is to be evaluated at the basic state, rather than writing, say, (∂p/∂η)ρ|(D,N).
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Figure 3.1: Sample partition of D into regions with nonzero Q.

inside each of the D(i) (see Figure 3.1). Q(y, z) is the potential vorticity associated with

the basic state. By construction, the mapping from (y, z) to (N,M) has a unique inverse

inside each D(i), which we denote by [Y (i)(N,M), Z(i)(N,M)].

3.1.3 A conservation law for the linearized dynamics

We employ the energy-Casimir approach to derive linear stability conditions. Usually

(Holm et al., 1985; Cho et al., 1993), this involves constructing a functional which is

exactly conserved by the nonlinear equations and finding conditions under which the

functional is convex at the basic state, implying linear stability of the basic state. In our

case, finding such a functional is problematic (see Section 3.2 below), but we can still

apply the “nonlinear method” to the linear problem using a functional which is conserved

by the linearized equations. Consider

CL =
n
∑

i=1

∫ ∫

D(i)

ρC(i)(m, η) dy dz (3.1.14)

where each of the C(i) are arbitrary twice-differentiable functions of m and η. We observe

that CL is not conserved by the nonlinear system (3.1.1). Differentiating CL with respect
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to time and substituting from (3.1.1) gives

d

dt
CL =

n
∑

i=1

∫ ∫

D(i)

[

ρ
(

C(i)
m mt + C(i)

η ηt
)

+ C(i)ρt
]

dy dz

= −
n
∑

i=1

∫ ∫

D(i)

[

C(i)
m ρv · ∇m+ C(i)

η ρv · ∇η + C(i)∇ · (ρv)
]

dy dz (3.1.15)

where v ≡ (v, w) and ∇ ≡ (∂y, ∂z). Applying the divergence theorem to the last term in

(3.1.15) gives

d

dt
CL =

1

2

n
∑

i,j=1

∫

∂D(i)∩∂D(j)

ρ
(

C(j) − C(i)
)

v · ν̂(i)dl(i)(y, z), (3.1.16)

where ∂D(i) is the boundary of the region D(i), ν̂(i) is the outward pointing unit vector

normal to ∂D(i), and dl(i) is the element of arclength along ∂D(i). The outer boundary

terms vanish because velocity v is orthogonal to the boundary of D by assumption.

dCL/dt vanishes if the functions C (i) in neighbouring regions always match along the

boundaries. Since the C(i) are in general different, this is not generally the case. We can,

however, choose the C(i) so that they match along the boundaries when evaluated at the

basic state. It is reasonable to expect that a functional CL so constructed will be relevant

for small amplitude perturbations to the basic state.

We choose the functions C(i) so that CL is tangent to H (in the sense of functionals)

at the basic state. This ensures that the combined functional H+ CL has a critical point

at the basic state.1 That is

δ(H + CL)|
X

= 0, (3.1.17)

where δ(H + CL) is the first variation of (H + CL). For arbitrary x = (u, v, w, ρ, η),

δ(H + CL) =
n
∑

i=1

∫ ∫

D(i)

{

δρ
[

1
2
(u2 + v2 + w2) + gz + E + ρEρ + C(i)

]

+ ρ
[

(u+ C(i)
m )δu+ vδv + wδw + (Eη + C(i)

η )δη
]}

dy dz, (3.1.18)

1The rationale for this choice of CL will made more clear in Chapter 4, where the Hamiltonian
structure underlying the energy-Casimir method will be discussed in more detail.
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so at X,

δ(H + CL)|
X

=
n
∑

i=1

∫ ∫

D(i)

{

δρ
[

1
2
(U 2 + gZ(i)(N,M) + E(D,N) +DEρ(D,N) + C(i)(M,N)

]

+ D
[

(U + C(i)
m (M,N))δu+ (Eη(D,N) + C(i)

η (M,N))δη
]}

dy dz. (3.1.19)

Hence δ(H + CL) vanishes at X if

C(i)(M,N) = −
[

1
2
U2 + gZ(i)(N,M) + E(D,N) +DEρ(D,N)

]

, (3.1.20a)

C(i)
m (M,N) = −U, (3.1.20b)

C(i)
η (M,N) = −Eη(D,N) (3.1.20c)

for each i. Note that U(y, z) and D(y, z) are implicit functions of (N,M) in each D(i)

through the inverse mappings [y, z] = [Y (i)(N,M), Z(i)(N,M)].

Before proceeding, we should check that the three conditions (3.1.20) are mutually

consistent. Differentiating (3.1.20a) with respect to M keeping N fixed gives

C(i)
m (M,N) = − ∂

∂M

(

1
2
U2 + gZ(i) + E +DEρ

)

∣

∣

∣

∣

N

= −U

[

1 + βY (i)

(

∂Y (i)

∂M

)

N

− γ

(

∂Z(i)

∂M

)

N

]

− g

(

∂Z(i)

∂M

)

N

− (2Eρ +DEρρ)
[

Dy

(

∂Y (i)

∂M

)

N

+Dz

(

∂Z(i)

∂M

)

N

]

= −U +
1

D

[

Py

(

∂Y (i)

∂M

)

N

+ Pz

(

∂Z(i)

∂M

)

N

]

− 1

D

(

∂P

∂D

)

N

[

Dy

(

∂Y (i)

∂M

)

N

+Dz

(

∂Z(i)

∂M

)

N

]

(3.1.21)

where all functions are evaluated at X. In the last step we have used (3.1.9) and (3.A.5).

Writing P derivatives in terms of D and N derivatives,

C(i)
m (M,N) = −U +

1

D

(

∂P

∂N

)

D

[

Ny

(

∂Y (i)

∂M

)

N

+Nz

(

∂Z(i)

∂M

)

N

]

. (3.1.22)
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Finally, using (3.B.4b),

C(i)
m (M,N) = −U +

1

D2Q

(

∂P

∂N

)

D

(−NyNz +NzNy)

= −U, (3.1.23)

which agrees with (3.1.20b). Similarly, differentiating (3.1.20a) with respect to N keeping

M fixed gives

C(i)
η (M,N) = − ∂

∂N

(

1
2
U2 + gZ(i) + E +DEρ

)

∣

∣

∣

∣

M

= −U
[

βY (i)

(

∂Y (i)

∂N

)

M

− γ

(

∂Z(i)

∂N

)

M

]

− g

(

∂Z(i)

∂N

)

M

− (2Eρ +DEρρ)
[

Dy

(

∂Y (i)

∂N

)

M

+Dz

(

∂Z(i)

∂N

)

M

]

− (Eη +DEρη)

= −Eη +
1

D

[

Py

(

∂Y (i)

∂N

)

M

+ Pz

(

∂Z(i)

∂N

)

M

]

− 1

D

(

∂P

∂D

)

N

[

Dy

(

∂Y (i)

∂N

)

M

+Dz

(

∂Z(i)

∂N

)

M

]

− 1

D

(

∂P

∂N

)

D

= −Eη −
1

D

(

∂P

∂N

)

D

+
1

D

(

∂P

∂N

)

D

[

Ny

(

∂Y (i)

∂N

)

M

+Nz

(

∂Z(i)

∂N

)

M

]

= −Eη −
1

D

(

∂P

∂N

)

D

[

1 − 1

DQ
(NyMz −NzMy)

]

= −Eη, (3.1.24)

by virtue of (3.1.13). Therefore, conditions (3.1.20) are mutually consistent.

We now construct a quadratic invariant for the linearized equations based on the

second variation of H + CL. The second variation evaluated at arbitrary x is

δ2(H + CL) =
n
∑

i=1

∫ ∫

D(i)

{

ρ(1 + C(i)
mm)(δu)2 + ρ(δv)2 + ρ(δw)2

+ (2Eρ + ρEρρ)(δρ)2 + ρ(Eηη + C(i)
ηη )(δη)2

+ 2(u+ C(i)
m )δuδρ+ 2vδvδρ+ 2wδwδρ

+ 2(Eη + ρEρη + C(i)
η )δρδη + 2ρC(i)

mηδuδη
}

dy dz, (3.1.25)
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which we evaluate at X, finding

δ2(H + CL)
∣

∣

X
=

n
∑

i=1

∫ ∫

D(i)

{

D(1 + C(i)
mm(M,N))(δu)2 +D(δv)2 +D(δw)2

+ (2Eρ(D,N) +DEρρ(D,N))(δρ)2

+ D(Eηη(D,N) + C(i)
ηη (M,N))(δη)2

+ 2DEρη(D,N)δρδη + 2DC(i)
mη(M,N)δuδη

}

dy dz. (3.1.26)

Identifying the primed variables in the linear system (3.1.11) with the variations in

(3.1.26), we define

HL(x′;X) ≡
n
∑

i=1

∫ ∫

D(i)

{

D(1 + C(i)
mm(M,N))u′2 +Dv′2 +Dw′2

+ (2Eρ(D,N) +DEρρ(D,N))ρ′2

+ D(Eηη(D,N) + C(i)
ηη (M,N))η′2

+ 2DEρη(D,N)ρ′η′ + 2DC(i)
mη(M,N)u′η′

}

dy dz, (3.1.27)

where x′ ≡ (u′, v′, w′, ρ′, η′). In Appendix 3.C, we show that HL is conserved by the linear

equations. In service of that proof and much of what follows, we compute the second

partial derivatives of the functions C (i)(m, η):

C(i)
mm(M,N) = −

[

∂

∂M

(

M + 1
2
βY (i)2 − γZ(i)

)

]

N

= −1 − βY (i)

(

∂Y (i)

∂M

)

N

+ γ

(

∂Z(i)

∂M

)

N

. (3.1.28)

Using (3.B.4b), we can write the last expression in terms of derivatives of N(y, z):

C(i)
mm(M,N) = −1 +

1

DQ
(βyNz + γNy) . (3.1.29)

Similarly, using (3.B.4),
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C(i)
mη(M,N) = −

[

∂

∂N

(

M + 1
2
βY (i)2 − γZ(i)

)

]

M

= −βY (i)

(

∂Y (i)

∂N

)

M

+ γ

(

∂Z(i)

∂N

)

M

(3.1.30)

=
1

DQ
(−βyMz − γMy) , (3.1.31)

C(i)
ηm(M,N) = −

[

∂

∂M
Eη(D,N)

]

N

= −Eηρ(D,N)

[

Dy

(

∂Y (i)

∂M

)

N

+Dz

(

∂Z(i)

∂M

)

N

]

(3.1.32)

=
1

DQ
Eηρ(D,N) (DyNz −DzNy) , (3.1.33)

C(i)
ηη (M,N) = −

[

∂

∂N
Eη(D,N)

]

M

= −Eηη(D,N)

− Eηρ(D,N)

[

Dy

(

∂Y (i)

∂N

)

M

+Dz

(

∂Z(i)

∂N

)

M

]

(3.1.34)

= −Eηη(D,N) − Eηρ(D,N)
1

DQ
(DyMz −DzMy) . (3.1.35)

3.1.4 Conditions for linear stability

Notice that the integrands of the terms in HL are quadratic with respect to the compo-

nents of x′. Rearranging HL, we write

HL(x′) =
n
∑

i=1

∫ ∫

D(i)

{

DU2
0

[

1 + C(i)
mm(M,N)

]

(

u′

U0

)2

+Dv′2 +Dw′2

+ D2
0 [2Eρ(D,N) +DEρρ(D,N)]

(

ρ′

D0

)2

+ DN2
0

[

Eηη(D,N) + C(i)
ηη (M,N)

]

(

η′

N0

)2

+ 2DD0N0Eρη(D,N)
ρ′η′

D0N0

+ 2DU0N0C
(i)
mη(M,N)

u′η′

U0N0

}

dy dz, (3.1.36)
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where U0, D0 and N0 are arbitrary positive constants with the dimensions of velocity,

density and entropy respectively. HL itself will be strictly positive if the integrands are

strictly positive, or equivalently, if (U0, D0, N0) can be found such that the matrices

Λ(i)(D,N,M)

=















D2
0

D2
c2s(D,N) D0N0Eρη(D,N) 0

D0N0Eρη(D,N) N 2
0 (Eηη(D,N) + C

(i)
ηη (M,N)) U0N0C

(i)
mη(M,N)

0 U0N0C
(i)
mη(M,N) U 2

0 (1 + C
(i)
mm(M,N))















(3.1.37)

are positive definite for all triples (D,N,M) which occur in the corresponding region

D(i).

The condition for all of the matrices to be positive definite is equivalent to the con-

dition that all subdeterminants which include the top-left (or bottom-right) element be

positive (see, e.g., Perlis, 1952, p. 103). Hence,

D2
0

D2
c2s(D,N) > 0, (3.1.38a)

det







D2
0

D2
c2s(D,N) D0N0Eρη(D,N)

D0N0Eρη(D,N) N 2
0 [Eηη(D,N) + C

(i)
ηη (M,N)]






> 0, (3.1.38b)

det















D2
0

D2
c2s(D,N) D0N0Eρη(D,N) 0

D0N0Eρη(D,N) N 2
0 [Eηη(D,N) + C

(i)
ηη (M,N)] U0N0C

(i)
mη(M,N)

0 U0N0C
(i)
mη(M,N) U 2

0 [1 + C
(i)
mm(M,N)]















> 0. (3.1.38c)

Before interpreting these conditions, we show that positive definiteness and bound-

edness of HL implies the stability of x′ = 0 with respect to a suitably defined norm.

Under the hypothesis that the Λ(i) are symmetric, positive definite matrices, their

eigenvalues λ(i) are all positive, and there exists a complete set of mutually orthogonal
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eigenvectors ξj [j = 1, 2, 3], for each Λ(i). Any vector x′

1 ≡ (ρ′/D0, η
′/N0, u

′/U0) can be

written as a linear combination of the ξj (for any particular i). Thus

x′

1 =
3
∑

j=1

αjξj, (3.1.39)

and

x′

1
T
Λ(i)x′

1 =
3
∑

j=1

λ
(i)
j αj

2|ξj|2 (3.1.40)

because the ξj are mutually orthogonal, and

λ
(i)
min|x′

1|2 ≤ x′

1
T
Λ(i)x′

1 ≤ λ(i)
max|x′

1|2, (3.1.41)

where λ
(i)
min and λ

(i)
max are the smallest and largest of the eigenvalues of Λ(i). Note that

the matrices vary with D, N , and M , and so do the eigenvalues. Let λ− and λ+ be the

smallest and largest eigenvalues of the Λ(i) considering all triples (D,N,M) and all i.

Define the norm ||x′||λ by

||x′||2λ =

∫ ∫

D

D

{

λ

[

(

ρ′

D0

)2

+

(

η′

N0

)2

+

(

u′

U0

)2
]

+ v′2 + w′2

}

dy dz, (3.1.42)

and we have that

||x′||2λ− ≤ HL(x′) ≤ ||x′||2λ+
. (3.1.43)

But this is true for all time, and since HL is conserved in time, we have

||x′(t)||2λ− ≤ HL[x′(t)] = HL[x′(0)] ≤ ||x′(0)||2λ+
≤ λ+

λ−
||x′(0)||2λ− , (3.1.44)

so that for any ε, if ||x′(0)||λ− <
√

λ−
λ+
ε, then ||x′(t)||λ− < ε for all times t.

Therefore, if the conditions (3.1.38) are satisfied, and all coefficients are bounded,

then x′ = 0 is stable, and we say that the solution to the full equations X is linearly

stable.

We now turn to the physical interpretation of the stability conditions. (3.1.38a) is

satisfied by any gas. For example, for an ideal gas with equation of state

p = Rρτ, (3.1.45)



52 Chapter 3. Compressible Euler equations

where R is a constant, it can be readily shown that c2s = (cp/cv)Rτ > 0, where cp and cv

are the specific heat capacities of the gas at constant pressure and volume respectively

(see Appendix 3.A).

Using (3.A.3), (3.1.35) and (3.1.9), condition (3.1.38b) can be written

1

D3Q

(

∂P

∂N

)

D

∂(M,P ) > 0, (3.1.46)

and condition (3.1.38c) can be written

gβ

D

(

∂P

∂N

)

D

y

Q
> 0. (3.1.47)

To interpret these conditions, we need to know the sign of (∂P/∂N)D. Using (3.A.4),

(3.A.7b), and (3.A.10),

(

∂P

∂N

)

D

=

(

∂T

∂N

)

D

(

∂P

∂T

)

D

=
T

cv

(

∂P

∂T

)

D

. (3.1.48)

where the heat capacity cv need not be constant, but is surely positive. The derivative

(∂P/∂T )D is obviously positive — pressure increases with increasing temperature for

fixed density. Hence, (∂P/∂N)D > 0.

(3.1.47) is therefore the well known symmetric stability condition that potential vor-

ticity be positive in the northern hemisphere and negative in the southern (Stevens,

1983). Assuming that Q is continuous across the equator, this implies that Q = 0 on the

equator. Equation (3.1.46) may then be interpreted as a generalization of the Rayleigh

criterion for inertial stability : the angular momentum gradient must be clockwise of the

pressure gradient in the northern hemisphere, and anticlockwise of the pressure gradient

in the southern, when viewed with the northern hemisphere on the right (Figure 3.2).

For example, if the pressure gradient is directly downwards, then ∇M must be towards

the equator for stability. The shape of the pressure contours depends on the velocity

field U . From (3.1.9),

Pz
Py

=
g − γU

βyU
, (3.1.49)
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Figure 3.2: The dotted curves are contours of constant pressure, with the curvature

exaggerated by a factor of 10 compared to a typical atmospheric state. The pressure

contours are concave down, implying U > 0. The thick black arrow is the gradient of

pressure. ∇M must be in the shaded semicircles for stability.

so the pressure contours are concave down for eastward flow (U > 0) and concave up for

westward flow (U < 0). The effect of γ is to steepen the pressure contours for eastward

flow and flatten them for westward flow (we have assumed that g > γ|U |). See Figure 3.2.

Note, however, that the effect of the curved pressure contours on the stability conditions

is small for scales relevant to the equatorial stratosphere. Choosing constant U = 40

ms−1, and y = 2000 km, Py/Pz ≈ 10−4, and pressure contours rise or sink by only about

0.1 km over the whole equatorial region. For extreme values of U , the pressure contours

become severely curved, and as we will see in an example below, when γ is included in

the equations, this affects the sizes of regions of instability.

(3.1.46) and (3.1.47) are formally the same stability conditions as in Bowman and

Shepherd (1995) (where the hydrostatic approximation is used), namely yQ > 0 and

y(∂M/∂y)|p < 0, but of course, the definitions of M and Q are different because of the

difference in the underlying physics.
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If the Λ(i) are positive definite, then it also follows that

1 + C(i)
mm(M,N) > 0, (3.1.50)

which is equivalent to

1

DQ
(βyNz + γNy) =

1

DQ
∂(N,M (p)) > 0, (3.1.51)

which may be interpreted as follows: the component of the entropy gradient in the

direction of the local planetary rotation vector Ω = 1
2
(γêy + βyêz) must be positive

in the northern hemisphere, and negative in the southern. Equivalently, the entropy

gradient must be clockwise of the planetary angular momentum gradient in the northern

hemisphere, and anticlockwise in the southern; see Figure 3.3. The difference between the

hemispheres is due to the coordinate system (exactly the same result would obtain if the

rotation of the planet were reversed). This is a generalization of static stability since the

“static” state in the rotating frame is determined by the planetary rotation parameters

β and γ. For example, if the γ term is neglected (as in the traditional hydrostatic

primitive equations), then ∇M (p) is towards the equator, and (3.1.51) reduces to Nz > 0.

The effect of γ is to create the slope in the planetary angular momentum contours (see

Figure 2.1). This effect of including the cosφ terms was discussed by Sun (1994), who

explained that the vertical gradient of entropy competes with the centrifugal effect of

vertical shear in velocity which is linked with Ny through thermal wind balance. Note

that the potential vorticity condition (3.1.47) and either of (3.1.46) and (3.1.51) implies

the remaining condition. However, it is possible for a state to be inertially and statically

stable but to violate the potential vorticity condition. Such a situation is depicted in

Figure 3.4. See also Emanuel (1983) for further dicussion.

Recall that the coefficients in HL have to be bounded to ensure that the matrices Λ(i)

have a maximum eigenvalue. This restricts the functional form of M(y, z) and N(y, z)

in the limit as y → 0. This is discussed briefly in Example 4 in Section 3.1.6 below.
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Figure 3.3: The dashed curves are contours of constant planetary angular momentum.

The thick black arrow is the gradient of planetary angular momentum. ∇N must be in

the shaded regions for stability.
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Figure 3.4: An example of a basic state which satisfies the inertial and static stability

conditions but fails the “symmetric” stability condition. The shaded regions are as in

Figures 3.2 and 3.3. If they fall in the hatched region, it is possible to have both ∇N and

∇M satisfy their respective stability criteria, but be such that Q has the wrong sign.
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Figure 3.5: A parcel of fluid (a ring of fluid on the sphere, a tube on the β-plane)

is displaced from its equilibrium position. It is assumed that the disturbance does not

affect the background pressure field. The density and zonal velocity of the ring change

in such a way that entropy and angular momentum are conserved.

3.1.5 A parcel displacement derivation of symmetric

stability conditions

Condition (3.1.47) may also be derived by calculating the acceleration of a thin ring

of fluid which is displaced from its equilibrium position. Let us call an equilibrium

stable if the component of acceleration in the direction of the displacement is in the

opposite direction to the displacement for all possible infinitesimal displacements. This

is a generalization of the arguments applied separately to inertial and static stability in

Section 1.1.

Consider again an equilibrium with u = U (m = M), ρ = D, and η = N (p = P ).

Suppose a ring of fluid at (y1, z1) is displaced to position (y2, z2), conserving its angular

momentum and entropy, and that the ring is thin enough so that the pressure field is not

disturbed by the displacement (Figure 3.5).
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The acceleration of the parcel at its new position is

Dv

Dt

∣

∣

∣

∣

2

= −βy2u2 −
1

ρ2

∂P

∂y

∣

∣

∣

∣

2

, (3.1.52a)

Dw

Dt

∣

∣

∣

∣

2

= γu2 − g − 1

ρ2

∂P

∂z

∣

∣

∣

∣

2

, (3.1.52b)

where the subscripts indicate at which point the function is evaluated. From (3.1.9),

−∂P
∂y

∣

∣

∣

∣

2

= βy2D2U2, (3.1.53a)

−∂P
∂z

∣

∣

∣

∣

2

= −D2(γU2 − g). (3.1.53b)

Therefore,

ρ2
Dv

Dt

∣

∣

∣

∣

2

= −βy2(ρ2u2 −D2U2), (3.1.54a)

ρ2
Dw

Dt

∣

∣

∣

∣

2

= ρ2(γu2 − g) −D2(γU2 − g). (3.1.54b)

Since the parcel conserves its entropy, its density at (y2, z2) is, to first order

ρ2 ≈ D1 +

(

∂ρ

∂p

)

η

∣

∣

∣

∣

∣

(P2,η2)

(P2 − P1) +

(

∂ρ

∂η

)

p

∣

∣

∣

∣

∣

(P2,η2)

(η2 −N1)

≈ D1 +





(

∂ρ

∂p

)

η

∣

∣

∣

∣

∣

(P2,N2)

+
∂2ρ

∂p∂η

∣

∣

∣

∣

(P2,N2)

(N1 −N2)



 (P2 − P1)

≈ D1 +

(

∂ρ

∂p

)

η

∣

∣

∣

∣

∣

(P2,N2)





(

∂p

∂ρ

)

η

∣

∣

∣

∣

∣

(P2,N2)

(D2 −D1) +

(

∂p

∂η

)

ρ

∣

∣

∣

∣

∣

(P2,N2)

(N2 −N1)





= D2 −
(

∂ρ

∂η

)

p

∣

∣

∣

∣

∣

(P2,N2)

(N2 −N1). (3.1.55)

In going from the first line to the second, we have used that η2 = N1. To conform to the

notation of the earlier sections, we define

(

∂ρ

∂η

)

p

∣

∣

∣

∣

∣

(P2,N2)

≡
(

∂D

∂N

)

P

. (3.1.56)
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Similarly, since it conserves angular momentum,

u2 = U2 − (M2 −M1). (3.1.57)

Therefore, to first order in displacement quantities,

ρ2
Dv

Dt

∣

∣

∣

∣

2

= βy2

[

U2

(

∂D

∂N

)

P

∇N |2 +D2 ∇M |2
]

· ∆x (3.1.58a)

ρ2
Dw

Dt

∣

∣

∣

∣

2

=

[

(g − γU2)

(

∂D

∂N

)

P

∇N |2 − γD2 ∇M |2
]

· ∆x, (3.1.58b)

where ∆x ≡ (y2 − y1, z2 − z1). We may write (3.1.58) more suggestively as

ρ2









Dv

Dt

∣

∣

∣

∣

2

Dw

Dt

∣

∣

∣

∣

2









= S∆x ≡









βy2U2

(

∂D

∂N

)

P

∇N |2 + βy2D2 ∇M |2

(g − γU2)

(

∂D

∂N

)

P

∇N |2 − γD2 ∇M |2









∆x, (3.1.59)

where the rows of the matrix S have been written as vectors. The projection of the

acceleration onto the displacement is then

ρ2∆xT









Dv

Dt

∣

∣

∣

∣

2

Dw

Dt

∣

∣

∣

∣

2









= ∆xTS∆x. (3.1.60)

For the component of the acceleration in the direction of the displacement to be negative

(i.e. for the parcel to feel a restoring force) for all possible displacements, the matrix S

must be negative definite. This is equivalent to the conditions

detS > 0, (3.1.61a)

traceS < 0. (3.1.61b)

Now,

detS = −gβy2D2

(

∂D

∂N

)

P

∂(N,M)|2 , (3.1.62)

and

traceS = − 1

D2

(

∂D

∂N

)

P

∇P |2 · ∇N |2 −D2 ∇M (p)
∣

∣

2
· ∇M |2 (3.1.63)
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We now show that the conditions (3.1.62) and (3.1.63) are in fact identical to the

conditions derived using the energy-Casimir method.

Firstly, since

(

∂D

∂N

)

P

= −
(

∂D

∂P

)

N

(

∂P

∂N

)

D

= − 1

c2s

(

∂P

∂N

)

D

< 0 (3.1.64)

(see (3.1.48)), detS > 0 is equivalent to (3.1.47). Next, we rewrite the conditions in

terms of the angles that the various gradient vectors make with each other. Let θM be

the angle from ∇M (p) to ∇M and let θN be the angle from ∇P to ∇N . The thermal

wind balance condition (3.1.10) can then be written

|∇M (p)||∇M | sin θM = − 1

D2

(

∂D

∂N

)

P

|∇P ||∇N | sin θN . (3.1.65)

This implies that θM and θN have the same sign at equilibrium. (3.1.63) can be rewritten

(dropping the “2” subscripts):

traceS = − 1

D

(

∂D

∂N

)

P

|∇P ||∇N | cos θN −D|∇M (p)||∇M | cos θM < 0. (3.1.66)

Combining (3.1.65) and (3.1.66) gives

traceS = D|∇M (p)||∇M |sin(θM − θN)

sin(θN)
< 0. (3.1.67)

We now determine the possible pairs of angles for which (3.1.62), (3.1.65), and (3.1.67)

are satisfied. The three conditions can be summarized:

sin θM sin θN > 0, (3.1.68a)

(θN + θ0) − θM > 180◦, (3.1.68b)

|θM | < |θN |, (3.1.68c)

where θ0 is the angle from ∇M (p) to ∇P , and θN , θM and θ0 are taken to be in

[−180◦, 180◦]. Assuming y > 0 (the corresponding result for y < 0 is obvious from

symmetry), (3.1.68b) is the statement that ∇N must be “clockwise” of ∇M (equivalent

to detS > 0).
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Figure 3.6: Division of circle [−180o, 180o] into four intervals determined by ∇P and

∇M (p). θM measures from ∇M (p) to ∇M , and θN from ∇P to ∇N . It is shown that for

stability, θN must be in interval 2 or 3, with θM in 4 or 3, respectively.

In Figure 3.6, the circle [−180◦, 180◦] has been divided into four intervals divided by

∇P and ∇M (p).

If θN is in interval 1, (3.1.68a) and (3.1.68b) cannot both be satisfied.

If ∇N is parallel to −∇M (p), then the only direction of (marginal) stability for ∇M

is parallel to ∇M (p). As θN increases into interval 2, θM can be in interval 4, provided

(3.1.68b) is satisfied.

If θN is in interval 3, then θM must also be in interval 3, provided it satisfies (3.1.68b).

If θN is in interval 4, then no value of θM can satisfy all three of the conditions — as

θN decreases from 0, the maximum θM satisfying (3.1.68b) decreases from θ0 − 180◦, but

then |θM | > |θN |, violating (3.1.68c).

Therefore, the conditions derived by the parcel method are identical with the condi-

tions derived above with the energy-Casimir method. The two derivations are comple-

mentary in that the energy-Casimir method is based on a rigorous definition of stability,
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while the parcel method implies a physical mechanism for stability (and instability when

the conditions are violated).

3.1.6 Examples

In each of the following examples, we assume that the atmosphere is an ideal gas. A

useful identity that will be used frequently in calculating Jacobians is

∇N = −R
P
∇P +

cp
T
∇T. (3.1.69)

The identity may be derived using (3.A.3b), (3.A.12), (3.A.5) and (3.A.13).

Example 1: Isothermal atmosphere in solid-body rotation

First, we show that an isothermal atmosphere in solid body rotation is linearly stable.

The nonlinear stability of the solid-body rotation state in the (viscous) Couette-Taylor

problem is a well known result (see Joseph, 1976). Consider an atmosphere with tem-

perature T = T00 = constant, in solid-body rotation. In the equatorial β-plane system,

we mean by this that the relative velocity is uniform, i.e. U = U00.

By the ideal gas equation of state (3.A.8) and the conditions for balance (3.1.9), we

have

∂

∂y
lnP = −

(

βU00

RT00

)

y, (3.1.70a)

∂

∂z
lnP = −

(

g − γU00

RT00

)

, (3.1.70b)

from which we can solve for the basic state pressure field:

P (y, z) = P00 exp

[

−1

2

(

βU00

RT00

)

y2 −
(

g − γU00

RT00

)

z

]

, (3.1.71)

where P00 is the pressure at the origin. Since ∇T = 0, we have from (3.1.69) that

∇N = − 1

T00D
∇P. (3.1.72)
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The potential vorticity satsifies

DQ = ∂(N,M) = − 1

T00D
∂(P,M (p)) =

(

βg

T00

)

y. (3.1.73)

To compute the coefficient matrix Λ (note that the basic state is an even function of

y, so there is only one function C(m, η) required), we need (3.A.13), (3.A.12), and, from

(3.1.29)-(3.1.35),

Eηη(D,N) + Cηη(M,N) = − 1

DQ
Eρη∂(D,M (p)) =

T00

cv
, (3.1.74a)

Cmη(M,N) =
1

DQ
Eρη∂(D,N) = 0, (3.1.74b)

1 + Cmm(M,N) =
1

DQ
∂(N,M (p)) = 1. (3.1.74c)

Hence,

Λ =



















D2
0

cp
cv

RT00

D2
D0N0

1

cv

RT00

D
0

D0N0
1

cv

RT00

D
N2

0

T00

cv
0

0 0 U 2
0



















. (3.1.75)

Choosing1

N0 =
√

Rcv, U0 =
√

RT00, D0 =

√

cv
R
D00, (3.1.76)

where D00 = P00/RT00, we get

Λ = RT00



















cp
R

(

D00

D

)2
D00

D
0

D00

D
1 0

0 0 1



















. (3.1.77)

The eigenvalues of Λ are λ3 = RT00 and

λ 1
2

= RT00 ×
1

2

[

(ax2 + 1) ±
√

(ax2 − 1)2 + 4x2
]

, (3.1.78)

1Recall that the constants D0, N0 and U0 are arbitrary. They are there to make the dimensions of
the elements in Λ uniform.
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where a = cp/R = 7/2 and x = D00/D. By the triangle inequality,

λ1 ≤ RT00(ax
2 + x), (3.1.79a)

λ2 ≥ RT00(1 + x). (3.1.79b)

The minimum value of x in the domain occurs at the origin and it is unity. A smaller

upper bound on λ1 is the trace of the upper-left principal subdeterminant of Λ,

λ1 < RT00 trace







ax2 x

x 1






= RT00(1 + ax2). (3.1.80)

We therefore have that the minimum and maximum eigenvalues are bounded by

λ− = RT00, (3.1.81a)

λ+ = RT00

{

1 +
cp
R

exp

[(

βU00

RT00

)

L2 + 2

(

g − γU00

RT00

)

H

]}

. (3.1.81b)

We have shown that this basic state is linearly stable by explicitly calculating upper and

lower positive bounds on the conserved functional HL. Depending on the height of the do-

main, the potential linear amplification factor
√

λ+/λ− may be very large. For example,

if the domain height H is one density scale-height, i.e. H = RT00/g, then
√

λ+/λ− ≈ 5,

but if the basic state is colder, such that, say H = 5RT00/g, then
√

λ+/λ− ≈ 300. The

other terms in (3.1.81b) are much smaller for realistic values of L, U00 and T00. In par-

ticular, the γ correction is significant only if U00 ∼ g/γ ≈ 105 ms−1 (for Earth), which is

orders of magnitude larger than realistic values.

Example 2: Linear velocity shear at equator: U = λy with T (y, 0) = T00

In the next example we show that constant meridional velocity shear at the equator is

inertially unstable. This is the case considered by Dunkerton (1981).

Consider an equilibrium with velocity U(y, z) = λy, where λ < g/γL is a constant

(λ > g/γL would imply negative temperatures in the domain; for Earth values of g and

γ, and L ≈ 103 km, g/γL ∼ 100 (ms−1)km−1).
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To proceed, we must specify pressure and density fields that are in balance with U ,

i.e. which satisfy (3.1.9). Eliminating density D between (3.1.9a) and (3.1.9b), we find

(

1 − γλ

g
y

)

Py +

(

−βλ
g
y2

)

Pz = 0. (3.1.82)

We solve for P (y, z) using the method of characteristics (see, e.g., Zauderer, 1989). Fam-

ilies of curves of constant P have parametric equations

y(s) =
g

γλ

[

1 − cy exp

(

−γλ
g
s

)]

, (3.1.83a)

z(s) = cz −
(

βλ

g

)(

g

γλ

)2 [

s+ 2
g

γλ
cy exp

(

−γλ
g
s

)

− 1

2

g

γλ
c2y exp

(

−2
γλ

g
s

)]

,

(3.1.83b)

where s is a parameter, and cy and cz are integration constants. We fix the constants by

specifying an initial curve (i.e. a curve in (y, z, P ) through which all of the isobars pass

at s = 0). We choose (somewhat arbitrarily) the pressure over the equator from Example

1 as the initial curve. It has parametric equations

y(0, r) = 0, (3.1.84a)

z(0, r) = r, (3.1.84b)

P (0, r) = P00 exp

(

− g

RT00

r

)

, (3.1.84c)

where r parameterizes the initial curve. Substituting s = 0 into (3.1.83) and using

(3.1.84), we find

cy = 1, cz = r +
3

2

βg2

γ3λ2
. (3.1.85)

Solving for r in terms of y and z, and substituting into (3.1.84c) gives

P (y, z) = P00

(

1 − γλ

g
y

)

(

g

RT00

)(

β

γ

)(

g

γλ

)2

× exp

{

− g

RT00

[

z − β

γ

(

g

γλ
y +

1

2
y2

)]}

. (3.1.86)
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The corresponding density and pressure fields are

D(y, z) =
P

RT00

1
(

1 − γλ

g
y

) , (3.1.87a)

T (y, z) = T00

(

1 − γλ

g
y

)

. (3.1.87b)

Notice that there is a very slight meridional temperature gradient to balance the velocity

shear (a physically reasonable value of λ would be . 10−4 s−1, making γλ/g . 10−9, a

temperature gradient of 0.001T00 per 1000 km). This simplest of solutions could also

have been derived by requiring that T (y, z) = T (y), and rearranging (3.1.10) to get

d

dy
[lnT (y)] = − dU/dy

g/γ − U(y)
, (3.1.88)

but the method of characteristics is necessary if Tz 6= 0 or Uz 6= 0 (see Examples 5 and

6).

We confirm that P (y, z) and D(y, z) are in thermal wind balance by computing

∂(M,M (p)) =
1

D2
∂(P,D) = γλ, (3.1.89)

which agrees with (3.1.10). In Dunkerton (1981), it is shown that this basic state velocity

field is linearly unstable (in a hydrostatic model), with perturbations leading to the

formation of Taylor vortices in the latitude interval 0 < y < λ/β and the associated

changes to the m and η fields. The potential vorticity is

Q =
βg

DT

[(

1 +
γλ2

βg

)

y − λ

β

(

1 +
γ2

g2
cpT00

)]

, (3.1.90)

where (3.1.9) and several relations from Appendix 3.A have been used. For the γ cor-

rection to the interval of anomalous potential vorticity to be significant, we would need

λ ∼
√

g/a. For Earth, this is approximately 1 (ms−1)km−1, which is possible, although

not over a wide latitude interval (it would imply unrealistically large velocities). The
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Figure 3.7: Interval of instability y0 as a function of meridional velocity shear λ for

the Dunkerton inertial instability problem. The dashed line is the prediction of the

hydrostatic calculation. The inclusion of the γ term causes the interval of instability to

grow more slowly with increased shear, eventually tending to zero as λ→ ∞.

latitude y0 at which Q = 0 (the width of the unstable latitude interval) is

y0 =
λ

β









1 +
γ2

g2
cpT00

1 +
γλ2

βg









, (3.1.91)

which has its maximum value (≈ λ/2β) for λ =
√

g/a ≈ λ/2β (see Figure 3.7). For

λ¿
√

g/a, y0 ≈ λ/β, and for λÀ
√

g/a, y0 → 0 like λ−1.

This effect is due to the increasing curvature of the pressure contours with increasing

velocity. At the equator, ∇P points vertically down, so the clockwise edge of the “semi-

circle of stability” (see Figure 3.2) is vertically up. ∇M points clockwise of vertically up

at the equator (for λ > 0), and turns towards the vertical linearly with y. Meanwhile, the

semicircle of stability rotates clockwise (towards ∇M) quadratically with y. ∇M enters

the semicircle of stability at y0. Note that the effect of the curved pressure surfaces is not

due to the shear in the basic state. An effect of comparable order is achieved by adding
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a constant U00 to the basic state velocity, where U00 ∼ λL.

Taking a realizable Earth value of λ ≈ 10−2 (ms−1)km−1, we find that DQ < 0 in

0 < y .λ/β, with a very small correction due to γ.

Example 3: Velocity profile U = 1
2
β′y2 with T (y, z) = T (y)

Now consider an equilibrium with U(y, z) = 1
2
β′y2, where β ′ < 1

2
(g/γL2) is a constant,

and temperature depending only on y. Without the effect of the γ terms, this state would

be stable if β ′ < β. Using (3.1.88), we calculate fields of temperature,

T (y) = T00

(

1 − β′γ

2g
y2

)

, (3.1.92)

and pressure,

P (y, z) = P00

(

1 − β′γ

2g
y2

)

(

g

RT00

)(

βg

β′γ2

)

exp

[

− g

RT00

(

z − β

2γ
y2

)]

, (3.1.93)

which balance the velocity. The potential vorticity is

Q =
βg

DT

{[

1 − β′

β

(

1 − γ2

g2
cpT00

)]

y +
1

2

(

β′

β

)(

γ

g

)

β′y3

}

. (3.1.94)

The coefficients of y and y3 are both positive provided β ′ ≤ (1 + γ2cpT00/g
2)−1β. If not,

thenQ will have the wrong sign near the equator in both hemispheres, and the equilibrium

is not linearly stable. The γ correction γ2cpT00/g
2 is very small for typical Earth values

of the parameters. For example, for cp ≈ 103 JK−1, T00 ≈ 300 K, γ ≈ 1.4× 10−4 s−1 and

g ≈ 10 ms−2, the correction is 6 × 10−5 ¿ 1. A notable consequence of the inclusion of

γ is that a flat Q profile (β ′ ≡ 0) is unstable at the equator.

Now consider the other two subdeterminants of the coefficient matrix. The inertial

stability discriminant (3.1.46) is

1

D3Q

(

∂P

∂N

)

D

∂(M,P ) =
PT

cvD

{

1 +
(β′γ2/g)cpT00y

[g(β − β ′) − (β ′γ2/g)cpT00] y + 1
2
γβ′2y3

}

,

(3.1.95)
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and the static stability discriminant (3.1.51) is

1

DQ
∂(N,M (p)) = 1 +

gβ′y − 1
2
γβ′2y3

[g(β − β ′) − (β ′γ2/g)cpT00] y + 1
2
γβ′2y3

, (3.1.96)

which are both positive if β ′ < (1 + γ2cpT00/g
2)−1β, and finite as y approaches zero.1

Example 4: Velocity profile U = 1
2
βy2 − α|y|k with T (y, z) = T (y)

The following example has an angular momentum profile with a power law dependency

on y different from y2. This might arise if an adjustment process has flattened the angular

momentum across the equator such that, for example, U = 1
2
βy2, and then the angular

momentum is further perturbed towards stability, so that M decreases away from the

equator but not in a quadratic way.

We now show (albeit only in the case of temperature being independent of z) that if

M ∝ −|y|k, where k > 2, the potential vorticity stability condition (3.1.47) is violated

in the neighbourhood of the equator, while the other two conditions are not violated

anywhere. This is an example of the situation described in Figure 3.4. If 1 < k < 2, the

stability conditions are all satisfied.

Consider

U(y, z) = 1
2
βy2 − α|y|k, (3.1.97)

where α > 0 and k > 0 are constants. We again assume that temperature is a function

of y only. From (3.1.88), we calculate

T (y) = T00

[

1 − γ

g
U(y)

]

(3.1.98)

and pressure

P (y, z) = P00 exp



− g

RT00



z +
1

2

β

γ
y2 − β

γ

y
∫

0

y′

1 − 1
2
βγ
g
y′2 + αγ

g
|y′|k

dy′







 . (3.1.99)

1The concern is that as det Λ tends to 0 at the equator, one of the other two subdeterminants may
tend to infinity, but that is not so in this case, nor in any of the other examples.
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The potential vorticity is

Q =
1

DT

{

−βγ2

(

cpT00

g

)

y +
1

2
β2γy3 + kα

[

g + γ2

(

cpT00

g

)] |y|k
y

− βγα

(

1 +
k

2

)

y|y|k + γkα2 |y|2k
y

}

. (3.1.100)

Substituting α = 1
2
(β − β ′) and k = 2 recovers (3.1.94) from Example 3.

Case k > 2

It appears from (3.1.100) that if k > 2, the leading behaviour of Q near the equator

is like −y as y approaches zero, and sufficiently close to the equator, the symmetric

stability condition is violated. Is this instability of the “inertial” type or the “static”

type? Checking the other criteria, we find that

y∂(M,P ) = D
[

kαg|y|k + 1
2
β2γy4 − αβγ(1 + k

2
)|y|k+2 + kα2γ|y|2k

]

(3.1.101)

is positive for all y if L2 < [2k/(k + 2)](g/βγ), which is true for all k if L < 105 km.

Similarly,

y∂(N,M (p)) =
1

T

{

kαγ2

(

cpT00

g

)

|y|k + βg

[

1 − γ2

g

(

cpT00

g

)

y2

]}

(3.1.102)

is positive for all y if T00 < g2/γ2cp ≈ 2 × 107 K.

Therefore, both the static stability and Rayleigh criteria are satisfied. The case must

be as in Figure 3.4. The gradients of M and N satisfy their individual conditions for

stability, but for small y, they must be unstably oriented relative to each other. The

gradients, normalized to have a z component of unity, to leading order in y are

∇nM ∼ −
(

k
α

γ

|y|k
y

)

êy + êz, (3.1.103a)

∇nN ∼ −
(

βγ

g2
cpT00y

)

êy + êz, (3.1.103b)

where ∇n is the normalized gradient. ∇N tips towards the equator increasingly like |y|,

while ∇M tips like |y|k−1, which is slower for small y. The interval over which this is
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a factor is small for Earth values. For k = 4, the leading order gradients are colinear

at y =
√

βγ2cpT00/4αg2. A value of α that would produce a difference in velocity of

10 ms−1 between the equator and y = 1000 km is 10−23 m−3s−1, making the interval of

anomalous Q only about 100 m in width.

Case 1 < k < 2

If 1 < k < 2, then the leading behaviour of the potential vorticity is Q ∼ sgn(y) |y|k−1,

and the symmetric stability condition is satisfied in the neighbourhood of the equator.

We next evaluate the subdeterminants of the coefficient matrix to check that they are

also positive. First, we reorder the terms in Q in ascending order of powers of y for this

case,

Q =
1

DT

{

kα

[

g + γ2

(

cpT00

g

)] |y|k
y

− βγ2

(

cpT00

g

)

y

− βγα

(

1 +
k

2

)

y|y|k + γkα2 |y|2k
y

+
1

2
β2γy3

}

. (3.1.104)

Then (3.1.46) is

1

D3Q

(

∂P

∂N

)

D

∂(M,P ) =
PT

cvD















1 −
γ2

(

cpT00

g

)(

kα
|y|k
y

− βy

)

kα

[

g + γ2

(

cpT00

g

)] |y|k
y

− βγ2

(

cpT00

g

)

y + . . .















,

(3.1.105)

where the . . . represents the higher order terms in TDQ. The right hand side of (3.1.105)

is positive for all geophysically relevant values of the parameters. It is positive for all α

if L <
√

g/2βγ ≈ 105 km. Taking the limit as y → 0, we find

lim
y→0

1

D3Q

(

∂P

∂N

)

D

∂(M,P ) =
PT

cvD









1 − 1

1 +
g

γ2

(

g

cpT00

)









, (3.1.106)

which is positive (in particular, it is not 0). (3.1.51) is
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1

DQ
∂(N,M (p)) = 1 −

−gβy + kαg
|y|k
y

+ . . .

kα

[

g + γ2

(

cpT00

g

)] |y|k
y

− βγ2

(

cpT00

g

)

y + . . .

, (3.1.107)

which is certainly positive provided T00 < g2/γ2cp ≈ 2×107 K. Taking the limit as y → 0,

we find

lim
y→0

1

DQ
∂(N,M (p)) = 1 − 1

1 +
γ2

g

(

RT00

g

) , (3.1.108)

which is non-zero. Hence, the stability criteria are satisfied by this basic state over the

whole domain.

Example 5: An example with temperature increasing with z

Next, consider an equilibrium with temperature increasing linearly with height. This

is perhaps more representative of the stratosphere than the previous examples. For

purposes of comparison, we use the same velocity as in Example 3, U(y) = 1
2
β′y2. We

use the method of characteristics to solve

(

1 − β′γ

2g
y2

)

Py +

(

−ββ
′

g
y3

)

Pz = 0 (3.1.109)

and find that curves of constant P have parametric equations

y(s) =

√

2g

β′γ

[

cy exp
(√

2β′γg s
)

− 1

cy exp
(√

2β′γg s
)

+ 1

]

, (3.1.110a)

z(s) = cz +
βg

β′γ2

{

√

2β′γgs− 2 ln
[

exp
(

√

2β′γg s
)

+ 1
]

− 4 exp
(√

2β′γg s
)

[

exp
(√

2β′γg s
)

+ 1
]2

}

, (3.1.110b)

where cy and cz are constants. This time, we choose as the initial curve the pressure at

the equator corresponding to U(0, z) = 0 and T (0, z) = T00(1 + σz), which is

P (0, z) = P00 (1 + σz)
− g

RT00σ . (3.1.111)
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Hence, the initial curve is

y(0, r) = 0, (3.1.112a)

z(0, r) = r, (3.1.112b)

P (0, r) = P00 (1 + σr)
− g

RT00σ , (3.1.112c)

from which

cy = 1, cz = r +
βg

β′γ2
(1 + 2 ln 2). (3.1.113)

Solving for r in terms of y and z, and substituting into (3.1.111) gives

P (y, z) = P00

{

1 + σ

[

z − βg

β′γ2

(

ln
(

1 − β′γ

2g
y2
)

+
β′γ

2g
y2

)]}− g

RT00σ . (3.1.114)

The corresponding density and pressure fields are

D(y, z) =
P

RT00

(

1

1 − β′γ
2g
y2

)







1

1 + σ
[

z − βg
β′γ2

(

ln
(

1 − β′γ
2g
y2
)

+ β′γ
2g
y2
)]







, (3.1.115a)

T (y, z) = T00

(

1 − β′γ

2g
y2

){

1 + σ

[

z − βg

β′γ2

(

ln
(

1 − β′γ

2g
y2
)

+
β′γ

2g
y2

)]}

. (3.1.115b)

The potential vorticity is

Q =
1

DT

{[

(g + σcpT00)(β − β ′) − β ′γ2

(

cpT00

g

)

(1 + σz)

]

y

+
1

2

[

γβ′2 + σγβ ′

(

cpT00

g

)

(β + β ′)

]

y3

+ (σβcpT00) y ln

(

1 − β′γ

2g
y2

)}

. (3.1.116)

Now, yQ is positive if

β′ <















g + σcpT00

g + cpT00

[

σ +
γ2

g
(1 + σH)

]















β. (3.1.117)

A reasonable value of σ might be 10−5 (temperature changing by 10% over 10 km). This

condition is not significantly different from the σ = 0 case in Example 3. We now check
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the other two conditions. The quantity

y∂(M,P ) = D
[

g(β − β ′)y2 + 1
2
γβ′2y4

]

(3.1.118)

is positive for all y if β ′ < β, while

y∂(N,M (p)) =
1

T

{[

gβ + cpT00

(

βσ − β′γ2

g
(1 + σz)

)]

y2

+

[

σcpT00

(

β′γ

2g

)]

y4 + [βσcpT00] y
2 ln

(

1 − β′γ

2g
y2

)}

(3.1.119)

is positive if

β′ <









g + σcpT00

g + cpT00
γ2

g
(1 + σH)









β. (3.1.120)

Both conditions are satisfied if β ′ satisfies (3.1.117), and again there is an interval of β ′

values for which only the potential vorticity condition is violated.

Example 6: An example with velocity changing with z

The final example is one in which the basic state velocity is a linear function of z,

U(z) = U00 + γ′z, where γ ′ > −|U00|/H. Using the method of characteristics with the

surface pressure from Example 1 as initial curve, we calculate

P (y, z) = P00(1 + γ′z)
−
(

g

RT00

)(

U00

γ′

)

× exp

[

−1

2

(

βU00

RT00

)

y2 +

(

γU00

RT00

)

z

]

, (3.1.121a)

D(y, z) =

(

1

RT00

)

P

1 +
γ′

U00

z

, (3.1.121b)

T (y, z) = T00

(

1 +
γ′

U00

z

)

. (3.1.121c)

The potential vorticity is

Q =
βy

DT

[

g + γ′(U00 + γ′z) +
γ′

U00

cpT00

]

. (3.1.122)
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yQ > 0 for all y and z if γ ′ and U00 satisfy

γ′U00 > − g

1 +
cpT00

U2
00

, (3.1.123)

which can fail only if γ ′ and U00 are of opposite signs (i.e. if the magnitude of U is

decreasing with z). Note that it is possible to violate (3.1.123) while respecting γ ′ >

−|U00|/H, since

− g

1 +
cpT00

U2
00

= −U
2
00

H

(

gH

U2
00 + cpT00

)

, (3.1.124)

which is greater than −U 2
00/H for realistic values of U00, T00 and H. However, a vertical

shear that violates (3.1.123) is unrealistically large (> 100 (ms−1)km−1).

The inertial stability condition y∂(M,P ) > 0 is satisfied if γ ′U00 > −g, and the static

stability condition y∂(N,M (p)) > 0 is satisfied if γ ′U00 > −gU 2
00/cpT00. Both are satisfied

if (3.1.123) is.

Note that there is no difference between the stability conditions for basic states with

eastward or westward velocities and that the conditions are independent of γ. This is

perhaps surprising in light of the Rayleigh criterion which refers to the radial derivative

of absolute angular momentum, which depends on the sign of γ ′ (Mz = γ + γ′). The

explanation is that the planetary part of the angular momentum gradient is balanced by

the pressure field, i.e. ∂(M (p), P ) = βygD, which is independent of γ.

3.2 Remarks on nonlinear stability

In similar problems (such as Mu et al., 1996), the conditions for linear stability can

be extended to finite amplitude, “nonlinear” stability, meaning that if a basic state X

satisfies appropriate conditions, then arbitrary, even large, perturbations to X will remain

bounded for all time (as governed by the full nonlinear equations). The usual approach

is to define an exact invariant A(x;X), called the pseudoenergy, which is zero if x = X
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and to find conditions on X such that A is strictly positive for all other choices of x

(Shepherd, 1990).

Since linear stability is a necessary condition for nonlinear stability (provided the

norm for the linear problem is the small amplitude limit of the finite amplitude norm

in terms of which nonlinear stability is defined), in this case we would only consider X

having Q = 0 on y = 0 and nowhere else. Recalling that q is materially conserved, one

can show that the functional

CNL =

∫ ∫

D

ρ
{

C−(m, η) +H(q)
[

C+(m, η) − C−(m, η)
]}

dy dz, (3.2.1)

where

H(q) =











0, q < 0

1, q ≥ 0
, (3.2.2)

is conserved by (3.1.1). We would then choose C− and C+ to satisfy (3.1.20) and define

A(x;X) = (H + CNL)(x) − (H + CNL)(X). (3.2.3)

By construction, A(X;X) = 0 and A has a critical point at x = X. However, it is not

a simple matter to find norms to bound A from above and below for all times like we

did with HL in the linear case. There are two separate difficulties. The first is connected

to the asymmetry of the basic state and hence to the difference between C− and C+. If

the flow evolves in such a way that regions of q > 0 develop in the southern hemisphere,

then the corresponding contribution to A from those regions will depend on C+ and not

on C− as it did at the basic state. In this way, it is possible for A to be negative, which

would prevent any rigorous Lyapunov stability result by this method. This problem is

addressed in more detail in the next chapter.

The second difficulty is related to the fact that we are free to choose the C (i)(m, η)

provided we satisfy (3.1.20) and the matching condition at boundaries between the D(i) at

equilibrium (lines of Q = 0), but we cannot choose the dependence of the internal energy
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E on ρ and η and hence cannot bound certain terms in A for all possible perturbations

of ρ and η outside of the ranges of N(y, z) and D(y, z).

One approach to generalizing the linear conditions to finite amplitude is to Taylor

expand the integrand of A about x = X. To avoid the first difficulty, suppose that

X(y, z) is an even function of y, i.e. X(−y, z) = X(y, z). In that case, C−(M,N) =

C+(M,N) = C(M,N). Expanding the integrand (minus the v and w terms, which are

clearly positive) to second order, and using Taylor’s Remainder Theorem,

ρ
[

1
2
u2 + gz + E(ρ, η) + C(m, η)

]

− D
[

1
2
U2 + gZ(M,N) + E(D,N) + C(M,N)

]

=
1

2

{

[ρ̃(1 + Cmm(m̃, η̃))] (u− U)2

+ [2Eρ(ρ̃, η̃) + ρ̃Eρρ(ρ̃, η̃)] (ρ−D)2 + [ρ̃(Eηη(ρ̃, η̃) + Cηη(ρ̃, η̃))] (η −N)2

+ 2 [Cm(m̃, η̃) + ũ] (u− U)(ρ−D) + 2 [ρ̃Cmη(m̃, η̃)] (u− U)(η −N)

+ 2 [ρ̃Eρη + Cη(m̃, η̃) + Eη(ρ̃, η̃)] (ρ−D)(η −N)
}

, (3.2.4)

where (m̃, ρ̃, η̃) is a point on the line joining (M,D,N) and (m, ρ, η). Note that (m̃, ρ̃, η̃)

is a function of (y, z, t). The linear terms vanish in (3.2.4) because C was chosen to

satisfy (3.1.20).

Observe that the quadratic form in the integrand of A has coefficient matrix

Λ̃(m̃, ρ̃, η̃;M,D,N) =















D2
0

ρ̃
c2
s(ρ̃, η̃) D0N0(ρ̃Eρη(ρ̃, η̃) + Cη(m̃, η̃) + Eη(ρ̃, η̃)) D0U0(Cm(m̃, η̃) + ũ)

D0N0(ρ̃Eρη(ρ̃, η̃) + Cη(m̃, η̃) + Eη(ρ̃, η̃)) N2
0 ρ̃(Eηη(ρ̃, η̃) + Cηη(m̃, η̃)) N0U0ρ̃Cmη(m̃, η̃)

D0U0(Cm(m̃, η̃) + ũ) N0U0ρ̃Cmη(m̃, η̃) U2
0 ρ̃(1 + Cmm(m̃, η̃))















,

(3.2.5)

where ũ = m̃+ 1
2
βy2−γz, and Cm(m̃, η̃) = −U(Y (m̃, η̃), Z(m̃, η̃)), which do not generally

cancel except at the basic state. Similarly, Cη(m̃, η̃) = −Eη[ρ(Y (m̃, η̃), Z(m̃, η̃)), η̃] and

Eη(ρ̃, η̃) do not in general cancel except at the basic state.
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The difficulty arises because in principle, (u, ρ, η) can be anything (as long as ρ and

η are positive), so we have almost no information about the likely values of (m̃, ρ̃, η̃).

We can control the behaviour of C(m, η) outside of the ranges of M(y, z) and N(y, z),

but we cannot control E(ρ, η). In addition, while the possible values that m and η can

take are determined by the initial conditions (since they are materially conserved), we

do not know the set of values that ρ will take. The crucial point is that conditions for

the positive definiteness of Λ̃ depend not only on the basic state, but on the states that

the system might pass through over time, the details of which we do not know.

Example: Nonlinear stability of isothermal atmosphere in solid-body rotation

Consider again the case of an isothermal atmosphere in solid-body rotation (Example 1

in Section 3.1). The matrix of coefficients in the integrand of A is

Λ̃ =















D2
0

Rcp
cv

τ̃

ρ̃
D0N0

(

cp
cv
τ̃ − T00

)

D0U0 (ũ− U00)

D0N0

(

cp
cv
τ̃ − T00

)

N2
0

1

cv
ρ̃τ̃ 0

D0U0 (ũ− U00) 0 U 2
0 ρ̃















, (3.2.6)

where τ̃ = τ(ρ̃, η̃) is the temperature corresponding to the state which makes the Taylor

expansion (3.2.4) exact. The bottom right element of Λ̃ is positive, as is the bottom right

2 × 2 subdeterminant

det







N2
0

1

cv
ρ̃τ̃ 0

0 U2
0 ρ̃






= N2

0U
2
0

ρ̃2τ̃

cv
. (3.2.7)

The matrix is therefore positive definite if and only if its determinant is positive,

det Λ̃ = D2
0N

2
0U

2
0 ρ̃

[

R

cv
T 2

00 −
cp
cv

(τ̃ − T00)
2 − 1

cv
τ̃(ũ− U00)

2

]

> 0. (3.2.8)

Clearly, det Λ̃ is not positive for all possible values of τ̃ and ũ. We note that as long

as the system evolves such that the variables stay within realistic limits, det Λ̃ is always

positive. For example, suppose T00 = 300 K and assume that the temperature does not
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change by more than about 100 K anywhere and that the velocity does not change by

more than about 100 ms−1. Then

R

cv
T 2

00 = 3.6 × 104 K2, (3.2.9a)

cp
cv

(τ̃ − T00)
2

. 2 × 104 K2, (3.2.9b)

1

cv
τ̃(ũ− U00)

2
. 6 × 103 K2, (3.2.9c)

so the positive term is greater than the upper limit of the negative terms. Neglecting the

velocity term, we can call the equilibrium nonlinearly stable as long as the temperature

deviation satisfies

|∆τ |
T00

.

√

R

cp
≈ 0.5 (3.2.10)

everywhere for all time, i.e. as long as the temperature does not change by half its value.

Note, however, that this result does not represent a true estimate of the growth of a

disturbance (not even an upper bound) without knowing how the system evolves. If the

evolution of the system satisfies (3.2.10), then that is itself a statement of stability, and

the pseudoenergy result adds nothing to it.

3.3 Summary

Conditions for linear stability of a purely zonal equilibrium to the x-symmetric adiabatic

compressible Euler equations on a β-plane, including a leading order representation of

the cosφ Coriolis force terms (controlled by the parameter γ ≡ 2Ω), have been calcu-

lated. Formally, there is no change to the inertial stability condition from the traditional

hydrostatic result. The condition for stability is still the Rayleigh criterion that angular

momentum in the basic state must increase with latitude towards the equator on surfaces

of constant pressure, although the definition of angular momentum is slightly different

with the inclusion of the γ effect. The “static” stability conditions derived are rather

different from those in the traditional system due to the modification in the surfaces of
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constant planetary angular momentum due to the cosφ terms. We find that for static

stability, the gradient of entropy must be clockwise of the gradient of planetary angular

momentum in the northern hemisphere and anticlockwise in the southern hemisphere.

The symmetric stability condition that potential vorticity be positive in the northern

hemisphere and negative in the southern generalizes to the nonhydrostatic system if the

definition of potential vorticity is modified to account for the nonhydrostatic terms.

Several examples were presented. In each case, pressure and temperature fields are

found which satisfy thermal wind balance. There are two notable examples in which the

γ effect is decisive. In the case of a basic state with angular momentum profile higher

than quadratic in y, conditions for both inertial and static stability are satisfied, but the

potential vorticity condition fails. We show that this is due to the tipping of the angular

momentum gradient more quickly than the entropy gradient as y increases away from the

equator, an effect dependent on the inclusion of the γ terms in the dynamical equations.

In the case of a basic state with linear velocity shear across the equator, the famous

example of Dunkerton (1981), the width of the latitude interval of instability varies with

the velocity shear if γ is included in the equations, approaching zero as λ gets large.

Steps for extending the result to finite amplitude disturbances were outlined, and

the example of an isothermal atmosphere in solid-body rotation discussed. However,

technical details associated with asymmetric basic states and the evolution of the density

field prevent a general result. In the following chapter, we repeat the same problem, but

we make the anelastic approximation, in which the density field is constrained, and half

of the obstacle to the nonlinear result is removed.



80 Chapter 3. Compressible Euler equations

3.A Thermodynamics relations

The specific internal energy of the fluid E(ρ, η) is assumed to be a twice differentiable

function of density ρ and entropy η, with continuous second partial derivatives. The first

law of thermodynamics may be written

dE =
p

ρ2
dρ+ τdη, (3.A.1)

where p is pressure and τ is temperature. The first term in (3.A.1) represents work done

on the fluid by compression, and the second represents heating of the fluid. Implicit in

(3.A.1) are

Eρ ≡
(

∂E
∂ρ

)

η

=
p

ρ2
, Eη ≡

(

∂E
∂η

)

ρ

= τ. (3.A.2)

The second partial derivatives of E are

Eρρ =
1

ρ2

(

∂p

∂ρ

)

η

− 2p

ρ3
, Eηη =

(

∂τ

∂η

)

ρ

, (3.A.3a)

Eρη =
1

ρ2

(

∂p

∂η

)

ρ

, Eηρ =

(

∂τ

∂ρ

)

η

. (3.A.3b)

The requirement that the second partial derivatives of E be continuous implies the

Maxwell relation

1

ρ2

(

∂p

∂η

)

ρ

=

(

∂τ

∂ρ

)

η

. (3.A.4)

A combination of terms that appears frequently is

2ρEρ + ρ2Eρρ =

(

∂p

∂ρ

)

η

= c2s, (3.A.5)

where c2s is the speed of sound in the fluid.

Further Maxwell relations are obtained by Legendre transformation of E with respect

to ρ and η (see any thermodynamics text):

d

(

E +
p

ρ

)

= τdη +
1

ρ
dp, (3.A.6a)

d(E − τη) =
p

ρ2
dρ− ηdτ, (3.A.6b)

d

(

E +
p

ρ
− τη

)

=
1

ρ
dp− ηdτ, (3.A.6c)
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whence, respectively,

(

∂τ

∂p

)

η

= − 1

ρ2

(

∂ρ

∂η

)

p

, (3.A.7a)

1

ρ2

(

∂p

∂τ

)

ρ

= −
(

∂η

∂ρ

)

τ

, (3.A.7b)

1

ρ2

(

∂ρ

∂τ

)

p

=

(

∂η

∂p

)

τ

. (3.A.7c)

Relations for an ideal gas

An ideal gas is defined by the equation of state

p = Rρτ, (3.A.8)

where R ≈ 287 JK−1kg−1 is the universal gas constant 8.314 JK−1 mol−1 divided by the

molar mass of dry air (approximately 29 g mol−1), and by the property that the internal

energy is a linear function of temperature, with

cv ≡
(

∂E
∂τ

)

ρ

= constant. (3.A.9)

cv is called the specific heat capacity at constant volume. By the chain rule,

cv =

(

∂

∂τ
E [ρ, η(ρ, τ)]

)

ρ

=

(

∂E
∂η

)

ρ

(

∂η

∂τ

)

ρ

(3.A.10)

whence
(

∂τ

∂η

)

ρ

=
τ

cv
. (3.A.11)

From (3.A.8) and (3.A.11),

Eρρ =

(

R

cv
− 1

)

p

ρ3
, Eηη =

τ

cv
, Eηρ = Eηρ =

1

cv

p

ρ2
, (3.A.12)

and the speed of sound squared is

c2s =
cp
cv
Rτ, (3.A.13)

where cp = R + cv. cp is called the specific heat at constant pressure.
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3.B Derivatives with respect to M and N

Given distributions of entropy N(y, z) and angular momentum M(y, z) in a domain in

which DQ = ∂(N,M) 6= 0, there exist unique inverse functions Y (M,N) and Z(M,N).

In particular, partial derivatives with respect to y and z can be rewritten in terms of

partial derivatives with respect to N and M using a two-dimensional version of the chain

rule:






∂N

∂M






=







YN ZN

YM ZM













∂y

∂z






, (3.B.1)

where ∂y means partial derivative with respect to y keeping z fixed, ∂N means partial

derivative with respect to N keeping M fixed, etc. Similarly,







∂y

∂z






=







Ny My

Nz Mz













∂N

∂M






, (3.B.2)

so that







∂N

∂M






=







Ny My

Nz Mz







−1 





∂y

∂z






=

1

DQ







Mz −My

−Nz Ny













∂y

∂z






. (3.B.3)

In (3.1.29), (3.1.31), (3.1.33) and (3.1.35), we convert expressions involving YN to expres-

sions involving Mz etc. Comparing (3.B.2) with (3.B.3), we find

(

∂Y

∂N

)

M

=
1

DQ

(

∂M

∂z

)

y

,

(

∂Z

∂N

)

M

= − 1

DQ

(

∂M

∂y

)

z

(3.B.4a)

(

∂Y

∂M

)

N

= − 1

DQ

(

∂N

∂z

)

y

,

(

∂Z

∂M

)

N

=
1

DQ

(

∂N

∂y

)

z

. (3.B.4b)
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3.C Proof of conservation of HL by

linearized dynamics

We show that HL is conserved by the linear equations. From (3.1.27),

HL(x′;X) ≡
n
∑

i=1

∫ ∫

D(i)

{

D(1 + C(i)
mm(M,N))u′2 +Dv′2 +Dw′2

+ (2Eρ(D,N) +DEρρ(D,N))ρ′2

+ D(Eηη(D,N) + C(i)
ηη (M,N))η′2

+ 2DEρη(D,N)ρ′η′ + 2DC(i)
mη(M,N)u′η′

}

dy dz. (3.C.1)

Since the regions of integration are fixed, we may differentiate under the integral:

d

dt
HL =

n
∑

i=1

∫ ∫

D(i)

{

2D(1 + C(i)
mm(M,N))u′u′t + 2Dv′v′t + 2Dw′w′

t

+ 2(2Eρ(D,N) +DEρρ(D,N))ρ′ρ′t

+ 2D(Eηη(D,N) + C(i)
ηη (M,N))η′η′t

+ 2DEρη(D,N)(ρ′tη
′ + ρ′η′t) + 2DC(i)

mη(M,N)(u′tη
′ + uη′t)

}

dy dz.

(3.C.2)

Substituting from (3.1.11) and collecting terms,

d

dt
HL =

n
∑

i=1

∫ ∫

D(i)

{

u′v′
[

2D(1 + C(i)
mm(M,N))(−Uy + βy)

− 2Dβy − 2DC(i)
mη(M,N)Ny

]

(3.C.3a)

+ u′w′
[

2D(1 + C(i)
mm(M,N))(−Uz − γ)

− 2Dγ − 2DC(i)
mη(M,N)Nz

]

(3.C.3b)

+ η′v′
[

−2D(Eηη(D,N) + C(i)
ηη (M,N))Ny

− 2DC(i)
mη(M,N)(Uy − βy)

− 2DEρη(D,N)Dy

]

(3.C.3c)
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+ η′w′
[

−2D(Eηη(D,N) + C(i)
ηη (M,N))Nz

− 2DC(i)
mη(M,N)(Uy + γ)

− 2DEρη(D,N)Dz

]}

dy dz (3.C.3d)

+

∫ ∫

D

{

ρ′v′
[

2

D
Py − 2DEρη(D,N)Ny

− 2(2Eρ(D,N) +DEρρ(D,N))Dy

]

(3.C.3e)

+ ρ′w′

[

2

D
Pz − 2DEρη(D,N)Nz

− 2(2Eρ(D,N) +DEρρ(D,N))Dz

]

(3.C.3f)

+ v′y [−2D(2Eρ(D,N) +DEρρ(D,N)ρ′

− 2D2Eρηη′
]

− 2p′yv
′ (3.C.3g)

+ w′

z [−2D(2Eρ(D,N) +DEρρ(D,N)ρ′

− 2D2Eρηη′
]

− 2p′zw
′
}

dy dz. (3.C.3h)

Each of the expressions in square brackets (3.C.3a)-(3.C.3f) vanishes identically, as we

now show. From (3.1.29) and (3.1.31), (3.C.3a) is

2D(1 + C(i)
mm(M,N))(−Uy + βy) − 2Dβy − 2DC(i)

mη(M,N)Ny

= 2D

(

1

DQ

)

(−βyNzMy − γNyMy − βyDQ+ βyMzNy + γMyNy)

= 0, (3.C.4a)

and (3.C.3b) is

2D(1 + C(i)
mm(M,N))(−Uz − γ) + 2Dγ − 2DC(i)

mη(M,N)Nz

= 2D

(

1

DQ

)

(−βyNzMz − γNyMz + γDQ+ βyMzNz + γMyNz)

= 0. (3.C.4b)

From (3.A.3a), (3.1.35) and (3.A.3b), (3.C.3c) and (3.C.3d) are
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−2D(Eηη(D,N) + C(i)
ηη (M,N))Ny − 2DC(i)

mη(M,N)(Uy − βy) − 2DEρη(D,N)Dy

=
2

D

(

1

DQ

)(

∂P

∂N

)

D

(DyMzNy −DzMyNy −DyNzMy +DzNyMy −DyDQ)

= 0, (3.C.4c)

−2D(Eηη(D,N) + C(i)
ηη (M,N))Nz − 2DC(i)

mη(M,N)(Uz + γ) − 2DEρη(D,N)Dz

=
2

D

(

1

DQ

)(

∂P

∂N

)

D

(DyMzNz −DzMyNz −DyNzMz +DzNyMz −DzDQ)

= 0. (3.C.4d)

Using (3.A.3b) and (3.A.5), (3.C.3e) and (3.C.3f) are

2

D
Py − 2DEρη(D,N)Ny − 2(2Eρ(D,N) +DEρρ(D,N))Dy

=
2

D

(

∂P

∂D

)

N

(Dy +Ny −Ny −Dy)

= 0, (3.C.4e)

2

D
Pz − 2DEρη(D,N)Nz − 2(2Eρ(D,N) +DEρρ(D,N))Dz

=
2

D

(

∂P

∂D

)

N

(Dz +Nz −Nz −Dz)

= 0. (3.C.4f)

Therefore, we have that

d

dt
HL =

∫ ∫

D

{

v′y
[

−2D(2Eρ(D,N) +DEρρ(D,N)ρ′ − 2D2Eρηη′
]

− 2p′yv
′

+ w′

z

[

−2D(2Eρ(D,N) +DEρρ(D,N)ρ′ − 2D2Eρηη′
]

− 2p′zw
′
}

dy dz.

(3.C.5)

Integrating the p′y and p′z terms by parts and applying the no normal flow boundary

condition to eliminate the surface terms, we find

d

dt
HL =

∫ ∫

D

(v′y + w′

z) [−2D(2Eρ(D,N) +DEρρ(D,N)ρ′

− 2D2Eρηη′ + 2p′
]

dy dz, (3.C.6)

which vanishes because of (3.A.5), (3.A.3b) and (3.1.12). Therefore, HL is conserved by

the linearized dynamics.
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Chapter 4

Symmetric stability in the

anelastic system

In the previous chapter, we derived sufficient conditions for the linear stability of a steady

zonal solution to the compressible Euler equations on an equatorial β-plane. We could

not extend the result to finite amplitude because of two difficulties: “uncontrollability” of

density perturbations, and asymmetric steady states. In this chapter, we avoid the first

difficulty by making the anelastic approximation, and we address the second difficulty in

greater detail.

The anelastic approximation, so called because the energy conserved by the approxi-

mate equations does not contain the “elastic energy” term responsible for pressure fluc-

tuations during sound wave propagation, is based on two assumptions. The first is that

the relative departure of potential temperature from a constant value is never large, and

the second is that the time scale on which the velocity and thermodynamic fields vary

is that of gravity wave propagation and is slow. The two assumptions are related — the

first implies a weak stratification which in turn implies a slow gravity wave propagation

speed, much as weak tension in a guitar string implies slow propagation of transverse

waves.

87
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By using the anelastic equations for our symmetric stability problem, we avoid the

density perturbation difficulty that we met using the Euler equations. The reason is that

density is not a prognostic variable in the anelastic system, but is given by a diagnos-

tic (time-independent) equation. Variations in density are determined by variations in

velocity and potential temperature.

The chapter is organized as follows. In Section 4.1, we introduce the modified anelastic

equations (Wilhelmson and Ogura, 1972; Lipps and Hemler, 1982) for an ideal gas on the

equatorial β-plane, of which the classical “deep” equations of Ogura and Phillips (1962)

are a special case. We develop a Hamiltonian form of the longitudinally symmetric

version of the modified anelastic equations in terms of angular momentum, vorticity,

and potential temperature. In Section 4.2, conditions for symmetric stability under the

linearized symmetric equations are derived using the same energy-Casimir approach as

was used in Chapter 3, and then conditions for nonlinear stability of basic states which

are symmetric about the equator are derived. In section 4.3, an exact solution to the

anelastic version of the linear meridional shear problem (the “Dunkerton problem”) is

calculated. Finally, in section 4.4, an important application of the nonlinear stability

result, the calculation of saturation bounds on instabilities (based on Shepherd, 1988), is

applied to this problem. A derivation of the classical anelastic equations is presented in

Appendix 4.A.

4.1 The anelastic equations on the equatorial β-plane

4.1.1 The anelastic approximation and scaling

The motivation for the classical anelastic approximation of Ogura and Phillips (1962)

was to construct a system which filters sound waves without imposing the hydrostatic

approximation. The resulting equations allow for relatively strong vertical accelerations

and are suitable for modelling deep convection. They may be compared wih the Boussi-
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nesq equations (Spiegel and Veronis, 1960), used in modelling ocean dynamics, but the

anelastic equations allow for greater variation in density.

The central assumption leading to the anelastic equations is that the potential tem-

perature, defined by

θ ≡
(

p00

p

)κ

T, (4.1.1)

where p00 is a constant reference pressure and κ ≡ R/cp, where R is the gas constant and

cp the heat capacity at constant pressure, does not vary strongly from a constant value,

the weak stratification allowing for deep vertical motion. We define the parameter

ε ≡ ∆θ

Θ
, (4.1.2)

where ∆θ is the width of the range of values to which θ is presumed to be limited. The

anelastic equations obtain in the limit of ε being small.

Consider again the Euler equations for an ideal gas on an equatorial β-plane (see

(2.3.18)). We nondimensionalize the equations by introducing the characteristic potential

temperature scale Θ and scaling (x, y) and z by the meridional domain half-length L and

domain height H respectively. The parameter ε enters the equations through the time

scale τ , defined by

τ =
L

H
N−1 =

√

L2

gHε
, (4.1.3)

where N is the Brunt-Väisällä frequency, given by

N2 ≡ g

Θ

∆θ

H
=

g

H
ε. (4.1.4)

N is the frequency of vertically propagating internal gravity waves in a linearly stratified

fluid. When ε is small, the gravity wave time scale is long. In particular, it is long

compared to acoustic oscillations.

Pressure is replaced by the nondimensional Exner pressure,

π ≡
(

p

p00

)κ

. (4.1.5)
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Expanding all variables in power series in ε:

v = v0 + εv1 + ε2v2 + . . . , (4.1.6a)

π = π0 + επ1 + ε2π2 + . . . , (4.1.6b)

θ = 1 + εθ1 + ε2θ2 + . . . , (4.1.6c)

where v and θ are dimensionless, and substituting into the nondimensional Euler equa-

tions yields, to O(ε), the anelastic equations of Ogura and Phillips. We will use instead

a modified form of the equations (Lipps and Hemler, 1982), in which the O(1) potential

temperature has a prescribed O(ε) variation in z. That is,

θ = 1 + ε(θ̄1(z) + θ1) + ε2θ2 + . . . (4.1.7)

≡ θ0(z) + εθ1 + ε2θ2 + . . . ,

where θ1 has been redefined from (4.1.6c) implicitly to be the departure of the poten-

tial temperature perturbation from the specified profile θ̄1(z). The classical anelastic

equations are recovered by setting θ0(z) ≡ 1.

The modified anelastic equations are

D0u0

Dt
− βδyv0 + γαw0 +

1

B
θ0
∂π1

∂x
= 0, (4.1.8a)

D0v0

Dt
+ βδyu0 +

1

B
θ0
∂π1

∂y
= 0, (4.1.8b)

D0w0

Dt
+ α2

{

−γαu0 +
1

B

[

∂

∂z
(θ0π1) +

dπ0

dz
θ1

]}

= 0, (4.1.8c)

D0θ1

Dt
+
w0

ε

dθ0

dz
= 0, (4.1.8d)

∂

∂x
(ρ0u0) +

∂

∂y
(ρ0v0) +

∂

∂z
(ρ0w0) = 0, (4.1.8e)

where all variables are dimensionless, and

B ≡ Hg

cpΘ
. (4.1.9)

B may be called the domain thickness parameter. It is the ratio of the domain height

to the maximum height of an atmosphere with flat bottom topography at z = 0 and
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uniform potential temperature Θ in hydrostatic balance. The nondimensional Coriolis

parameters in (4.1.8) are defined by

βδ ≡
1

Sδ
, γα ≡ 1

Sα
, (4.1.10)

where

S ≡ H

L

(

N

2Ω

)

, α ≡ L

H
, δ ≡ a

L
. (4.1.11)

α is the aspect ratio of the flow, and δ is the planetary aspect ratio. S is a form of the

Burger number and is a measure of the assumed maximum stratification.

The O(1) pressure and density fields π0 and ρ0 are functions of z only and are deter-

mined by the hydrostatic balance relation

B + θ0
dπ0

dz
= 0, (4.1.12)

and the O(ε) pressure and density fields π1 and ρ1 are obtained by requiring that the O(1)

continuity equation (4.1.8e) is preserved with time, i.e. by solving the elliptic equation

∂

∂t

[

∂

∂x
(ρ0u0) +

∂

∂y
(ρ0v0) +

∂

∂z
(ρ0w0)

]

= 0. (4.1.13)

The system (4.1.8) conserves the energy integral

E =

∫ ∫ ∫

ρ0

{

1

2

[

u2
0 + v2

0 +
1

α2
w2

0

]

+
1

B
π0θ1)

}

dx dy dz. (4.1.14)

Note that E is not the O(ε) approximation to the energy conserved by the Euler equa-

tions. It is missing the elastic energy term proportional to the integral of pressure fluc-

tuations. Hence the name anelastic equations. See Appendix 4.A for a derivation of the

anelastic equations and their energetics.

4.1.2 Symmetric equations

We will soon return to the problem of the stability of a zonally symmetric zonal flow to

zonally symmetric perturbations but in the context of the anelastic system. In prepara-

tion for that analysis, we present a Hamiltonian representation of the symmetric anelastic
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equations. Recall that the underlying symmetries and conservation laws on which the

energy-Casimir method is based are connected with the Hamiltonian structure of the

equations.

The symmetric version of the equations is obtained by setting ∂x ≡ 0 in (4.1.8). In

terms of Eulerian time derivatives, the symmetric equations are

(u0)t = −v0(u0)y − w0(u0)z + βδyv0 − γαw0, (4.1.15a)

(v0)t = −v0(v0)y − w0(v0)z − βδyu0 −
1

B
θ0(π1)y, (4.1.15b)

(w0)t = −v0(w0)y − w0(w0)z

+ α2

{

−γαu0 +
1

B

[

(θ0π1)z +
dπ0

dz
θ1

]}

, (4.1.15c)

(θ1)t = −v0(θ1)y − w0(θ1)z −
w0

ε

dθ0

dz
, (4.1.15d)

(ρ0v0)y + (ρ0w0)z = 0, (4.1.15e)

where Latin subscripts denote partial differentiation.

Hamiltonian representation

Observe that in the symmetric version of the equations, two fields are materially con-

served — the first order potential temperature,

θ ≡ θ0(z) + εθ1, (4.1.16)

and the component of absolute angular momentum associated with motion in the x-

direction

m ≡ u0 − 1
2
βδy

2 + γαz. (4.1.17)

The 2-D continuity equation (4.1.15e) invites the definition of a vertical-meridional

stream function ψ(y, z, t) defined implicitly by

v0 =
1

ρ0

∂ψ

∂z
, w0 = − 1

ρ0

∂ψ

∂y
. (4.1.18)
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Lastly, we introduce the x-component of the relative vorticity

ζ ≡ 1

α2

∂w0

∂y
− ∂v0

∂z
. (4.1.19)

Using (4.1.18),

ζ = −
[

1

α2

∂

∂y

(

1

ρ0

∂ψ

∂y

)

+
∂

∂z

(

1

ρ0

∂ψ

∂z

)]

. (4.1.20)

The equations (4.1.15) can be written in terms of the new variables as

mt =
1

ρ0

∂(ψ,m), (4.1.21a)

ζt = ∂

(

ψ,
1

ρ0

ζ

)

+ ∂

[

1

ρ0

(

1

εB
ρ0π0

)

, θ

]

+ ∂

[

1

ρ0

[

ρ0

(

1
2
βδy

2 − γαz
)]

,m

]

, (4.1.21b)

θt =
1

ρ0

∂(ψ, θ). (4.1.21c)

We now show that the system (4.1.21) can be written in the Hamiltonian form

∂x

∂t
= J δH

δx
, (4.1.22)

where x ≡ (m, ζ, θ)T is the generalized independent variable, J is the Poisson tensor,

and H is the Hamiltonian. In this case, the Hamiltonian is

H = E ′ + constant

=

∫ ∫

{

ρ0

(

1
2
βδy

2 − γαz
)

m+
1

2ρ0

[

(

∂ψ

∂z

)2

+
1

α2

(

∂ψ

∂y

)2
]

+
1

εB
ρ0π0θ

}

dy dz

(4.1.23)

where integration over the horizontal coordinate x has been suppressed because of the

symmetry in that direction. H is simply the total energy (4.1.14) plus a constant (a

Casimir invariant, to be defined below). δH/δx is the functional gradient of H, defined

in terms of the inner product

(

δH
δx

,w

)

≡
∫ ∫ (

δH
δx

· w
)

dy dz ≡ d

dε

∣

∣

∣

∣

ε=0

H(x + εw), (4.1.24)
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where the “direction” w is a vector in the same space as x. Note that δH/δx is in-

dependent of w. The functional gradient of H is calculated in Appendix 4.B. It has

components

δH
δm

= ρ0(
1
2
βδy

2 − γαz),
δH
δζ

= ψ,
δH
δθ

=
1

εB
ρ0π0. (4.1.25)

Comparison of (4.1.25) with (4.1.21) shows that

mt =
1

ρ0

∂

(

δH
δζ
,m

)

, (4.1.26a)

ζt = ∂

(

1

ρ0

δH
δm

,m

)

+ ∂

(

δH
δζ
,

1

ρ0

ζ

)

+ ∂

(

1

ρ0

δH
δθ
, θ

)

, (4.1.26b)

θt =
1

ρ0

∂

(

δH
δζ
, θ

)

, (4.1.26c)

which is in the form (4.1.22) if we define

J =













0 ρ−1∂(·,m) 0

∂(ρ−1·,m) ∂(·, ρ−1ζ) ∂(ρ−1·, θ)

0 ρ−1∂(·, θ) 0













. (4.1.27)

Casimirs

Hamiltonian representations of fluid systems are typically noncanonical. That is to say,

the state of the system is not specified by the canonical positions and momenta character-

istic of Hamiltonian particle mechanics. In the present case, the dynamics of the velocity

related variables m and ζ and the potential temperature θ are governed by the equations

(4.1.26) which do not refer to positions of fluid parcels. If positions of fluid parcels are

assigned at a given time, then they can be recovered, in principle, by integrating the

solution of (4.1.26) forward and backward in time. This separability is a consequence of

the so called parcel relabelling symmetry. The parcel relabelling symmetry is associated

with the material conservation of potential vorticity q (Salmon, 1982), defined by

q =
(Ω + ∇× v0) · ∇θ

ρ0

, (4.1.28)
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where Ω ≡ (0, γα, βδy) is the local planetary rotation vector. Using ∂x ≡ 0, we find the

symmetric, nondimensional version of q to be

q =
1

ρ0

[(

∂u0

∂z
+ γα

)

∂θ

∂y
−
(

∂u0

∂y
− βδy

)

∂θ

∂z

]

=
1

ρ0

∂(θ,m). (4.1.29)

It may be verified that

qt =
1

ρ0

∂(ψ, q), (4.1.30)

i.e. that q is indeed a material invariant. In the symmetric equations, there are relabelling

type symmetries associated also with m and with θ. Noether’s theorem associates con-

served functionals with continuous symmetries. The conserved functional associated wih

the relabelling symmetries takes the form

C1(m, θ) =

∫ ∫

ρ0C1(m, θ, q) dy dz, (4.1.31)

where C1(m, θ, q) is an arbitrary function. Functionals of the form

C(m, θ) =

∫ ∫

ρ0C(m, θ) dy dz, (4.1.32)

where C(m, θ) is an arbitrary differentiable function, are Casimirs of the system1, mean-

ing that they satisfy

J δC
δx

= 0, (4.1.33)

i.e. that the gradients of C are in the nullspace of the operator J . The components of

the functional gradient of C are

δC
δm

= ρ0
∂C

∂m
,

δC
δζ

= 0,
δC
δθ

= ρ0
∂C

∂θ
, (4.1.34)

from which it may be verified that C satisfies (4.1.33).

1In a canonical formulation of the equations, C would be a conserved functional associated with the
relabelling symmetries through Noether’s theorem. In the noncanonical representation, the symmetry
associated with C is a transformation of a variable that has been reduced from the system, namely parcel
labels. Conserved functionals associated with symmetries in variables which have been reduced from the
system become Casimirs.
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The condition (4.1.33) is not satisfied if the Casimir density function depends on q

(as in (4.1.31)) unless the space of variations is restricted such that δm = δθ = 0 on the

boundary, or the boundary conditions chosen such that ∇m = ∇θ = 0 on the boundary.

Neither choice is natural for our purposes. In spite of that fact, for the nonlinear stability

calculation in Subsection 4.2.2, we use a functional that depends on q. The only property

that is essential for our purpose is that dC1/dt = 0.

4.2 Symmetric stability of zonal equilibrium

In this section, we repeat the calculation of the previous chapter, but because of the

simplification of the anelastic approximation, we make somewhat more progress. Once

again, we investigate the stability of a zonally symmetric zonal flow at the equator to

zonally symmetric perturbations in the velocity and potential temperature fields.

Consider a steady solution of the system (4.1.21) in the domain D = {(y, z)| − 1 ≤

y ≤ 1, 0 ≤ z ≤ 1}, with x = X = (M(y, z), 0,Θ(y, z))T and associated potential vorticity

Q = (1/ρ0)∂(Θ,M). The velocity is strictly in the x-direction, so ζ = 0, and ψ =

constant, which we may take to be zero.1

ζt = 0 and (4.1.21b) imply the condition

(

1

εB

dπ0

dz

)

∂Θ

∂y
− ∂

(

1
2
βδy

2 − γαz,M
)

= 0, (4.2.1)

known as thermal wind balance because the gradient of the velocity field balances the

meridional gradient of the temperature field.

Since X is a steady solution to a system of the form (4.1.22), it satisfies

[

J δH
δx

]∣

∣

∣

∣

x=X

= 0, (4.2.2)

which is to say that δH/δx|x=X is in the nullspace of J |x=X. Therefore, by definition,

1Note that the steady state potential temperature Θ(y, z) is not related to the potential temperature
scaling factor Θ introduced in the derivation of the anelastic system.



4.2. Symmetric stability of zonal equilibrium 97

there is a Casimir C such that

δH
δx

∣

∣

∣

∣

x=X

= − δC
δx

∣

∣

∣

∣

x=X

. (4.2.3)

Comparison of (4.1.25) with (4.1.34) at X gives the following conditions on the partial

derivatives of the function C(m, θ) so that C satisfies (4.2.3):

ρ0Cm|X = −ρ0(
1
2
βδy

2 − γαz), (4.2.4a)

ρ0Cθ|X = − 1

εB
ρ0π0. (4.2.4b)

The functional (H + C)(m, ζ, θ) then has a critical “point” at x = X.1

Note that the right hand sides of (4.2.4) are in terms of y and z, not M and Θ.

We might be tempted to assume that there is a one-to-one inverse of the mapping from

(y, z) to [M(y, z),Θ(y, z)], which we might write as [Y (M,Θ), Z(M,Θ)]. However, for a

realistic basic state, there is not a one-to-one inverse. Recall that the Rayleigh criterion

requires that M(y, z) have a maximum at y = 0. Evidently, a single function C(m, θ)

cannot typically satisfy (4.2.4) at all points (y, z).

We address this problem in slightly different ways for proving linear and nonlinear

stability of X. For linear stability, we partition the domain into regions in whichQ(y, z) 6=

0 and define a functional CL which is the sum of functionals satisfying (4.2.3) in each

region, as we did in the Chapter 3. Using H and CL, we construct a functional HL which

is conserved by the linearized equations. For nonlinear stability, we derive criteria for

Lyapunov stability (to be defined later) only for those basic states which satisfy the linear

stability criteria and are even functions of y by defining a functional of the form (4.1.31)

whose integrand depends on q as well as on m and θ. For basic states which are not

even symmetric functions of y but satisfy the linear stability criteria, we show that the

growth of disturbances is bounded but not arbitrarily close to the basic state. The latter

1The Hamiltonian of a canonical system will itself have a critical point at a steady solution. This is
a consequence of the operator J being invertible for canonical systems.
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is an unexpected result; in most similar problems, the linear stability conditions are also

sufficient for nonlinear stability.

4.2.1 Linear stability

To find conditions for linear stability, we construct a functional that is conserved by

the linearized equations and vanishes at the basic state. We identify conditions for

the functional to be positive definite with conditions for the stability of the basic state

solution.

The linearized equations are

m′

t =
1

ρ0

∂(ψ′,M), (4.2.5a)

ζ ′t = ∂

[

1

ρ0

(

1

εB
ρ0π0

)

, θ′
]

+ ∂
[(

1
2
βδy

2 − γαz
)

,m′
]

, (4.2.5b)

θ′t =
1

ρ0

∂(ψ′,Θ), (4.2.5c)

where primed quantities represent departures from the basic state X.

As in Chapter 3, we assume that the mapping from (y, z) to (M,Θ) has nonzero

Jacobian everywhere in D except perhaps on a finite number of curves, and partition D

into a finite number of subregions D(i), i = 1, . . . , n, such that

Q ≡ 1

ρ0

∂(Θ,M) 6= 0 (4.2.6)

inside each of the D(i) (see Figure 3.1). Repeating the procedure from Chapter 3, we

define the functional

CL =
n
∑

i=1

∫ ∫

D(i)

ρ0C
(i)(m, θ) dy dz, (4.2.7)

where each of the C(i) are arbitrary twice-differentiable functions of m and θ. We observe

that CL is not conserved by the equations (4.1.21) but that dCL/dt|x=X = 0, so we expect

CL to be relevant for small amplitude perturbations to the steady state X.
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Again, we choose the functions C (i) so that CL is tangent to H at the basic state.

That is

δ(H + CL)|
X

= 0, (4.2.8)

where δ(H + CL) is the first variation of (H + CL). For arbitrary (m, ζ, θ),

δ(H + CL) =

∫ ∫

D

{

ρ0(
1
2
βδy

2 − γαz)δm+
1

ρ0

[

1

α2
ψyδ(ψy) + ψzδ(ψz)

]

+
1

εB
ρ0π0δθ

}

dy dz

+
n
∑

i=1

∫ ∫

D(i)

ρ0

(

C(i)
m δm+ C

(i)
θ δθ

)

dy dz, (4.2.9)

so at X,

δ(H + CL)|
X

=
n
∑

i=1

∫ ∫

D(i)

ρ0

{

[(

1
2
βδy

2 − γαz
)

+ C(i)
m (M,Θ)

]

δm

+

[

1

εB
π0 + C

(i)
θ (M,Θ)

]

δθ

}

dy dz. (4.2.10)

Hence δ(H + CL) vanishes at X if

C(i)
m (M,Θ) = −

(

1
2
βδy

2 − γαz
)

, and C
(i)
θ (M,Θ) = − 1

εB
π0 (4.2.11)

for each i. This is well defined because Q 6= 0 within each D(i), so y and z can be

expressed as functions of M and Θ. Note that (4.2.11) implies that at X, the first partial

derivatives of the functions C (i) in adjacent regions match on their common boundaries.

We now construct a quadratic invariant for the linearized equations based on the

second variation of (H + CL). The second variation evaluated at X is

δ2(H + CL)
∣

∣

X
=

∫ ∫

D

1

ρ0

[

1

α2
(δψy)

2 + (δψz)
2

]

dy dz (4.2.12)

+
n
∑

i=1

∫ ∫

D(i)

ρ0

[

C(i)
mm(M,Θ)(δm)2 + 2C

(i)
θm(M,Θ)δθδm+ C

(i)
θθ (M,Θ)(δθ)2

]

dy dz.

The first integral is obviously strictly positive for any perturbation δψ, and the second
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integral is positive if for all i, the matrix

Λ(i) =







C
(i)
mm C

(i)
mθ

C
(i)
θm C

(i)
θθ






(4.2.13)

is positive definite at all points (y, z) = [Y (M,Θ), Z(M,Θ)].

That δ2(H + CL) is positive definite does not obviously imply that X is (even lin-

early) stable because CL is not conserved by the nonlinear dynamics (4.1.21). However,

identifying the primed variables of (4.2.5) with the variations in (4.2.12), we find that

HL =

∫ ∫

D

1

ρ0

[

1

α2
(ψ′

y)
2 + (ψ′

z)
2

]

dy dz

+
n
∑

i=1

∫ ∫

D(i)

ρ0

[

C(i)
mm(M,Θ)m′2 + 2C

(i)
θm(M,Θ)θ′m′ + C

(i)
θθ (M,Θ)θ′2

]

dy dz

(4.2.14)

is conserved by the linearized system (4.2.5). To verify that HL is conserved, we need to

calculate the second partial derivatives of the C (i):

C(i)
mm(M,Θ) = − ∂

∂M

[(

1
2
βδy

2 − γαz
)]

= − 1

ρ0Q
∂
[

Θ,
(

1
2
βδy

2 − γαz
)]

,(4.2.15a)

C
(i)
mθ(M,Θ) = − ∂

∂Θ

(

1
2
βδy

2 − γαz
)

= − 1

ρ0Q
∂
[(

1
2
βδy

2 − γαz
)

,M
]

, (4.2.15b)

C
(i)
θm(M,Θ) =

∂

∂M

(

− π0

εB

)

= − 1

ρ0Q
∂
(

Θ,
π0

εB

)

, (4.2.15c)

C
(i)
θθ (M,Θ) =

∂

∂Θ

(

− π0

εB

)

= − 1

ρ0Q
∂
( π0

εB
,M
)

, (4.2.15d)

where partial derivatives with respect to M are taken with Θ fixed, and vice versa. See

Appendix 4.C for the calculation showing dHL/dt = 0.

We notice that the contribution to HL from each D(i) is quadratic in m′ and θ′ and

hence that HL is positive definite if all of the matrices Λ(i) are positive definite. It

is an easy matter to define a norm on the space of disturbances (m′, ζ ′, θ′) and identify

Lyapunov stability of the linearized equations with positive definiteness and boundedness
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of HL. Let

||x′||2(L) =

∫ ∫

D

1

ρ0

[

1

α2
(ψ′

y)
2 + (ψ′

z)
2

]

dy dz +
n
∑

i=1

∫ ∫

D(i)

ρ0λ
(i)
[

m′2 + θ′2
]

dy dz (4.2.16)

where λ(i) is the minimum of the eigenvalues of Λ(i) for all of the values of M and Θ

inside D(i). Since HL is conserved, it follows that

||x′(t)||2(L) ≤ HL[x′(t)] = HL[x′(0)] ≤ λ+

λ−
||x′(0)||2(L), (4.2.17)

where λ+ is the maximum and λ− the minimum among all of the eigenvalues of the Λ(i).

To derive (4.2.17), we have used the fact that the Λ(i) are symmetric matrices and hence

that any pair (m′, θ′) can be expressed as a linear combination of orthogonal eigenvectors

of any of the Λ(i). The condition that the Λ(i) be positive definite is equivalent to

C(i)
mm(M,Θ) = − 1

ρ0Q
∂
(

Θ, 1
2
βδy

2 − γαz
)

> 0, (4.2.18a)

C
(i)
θθ (M,Θ) = − 1

ρ0Q
∂
( π0

εB
,M
)

=
1

ρ0Q

(

1

εB

dπ0

dz

)

My > 0, (4.2.18b)

C(i)
mm(M,Θ)C

(i)
θθ (M,Θ) − C

(i)
mθ

2
(M,Θ) =

(

− 1

εB

dπ0

dz

)

βδy

ρ0Q
> 0. (4.2.18c)

In general, from (4.1.12), dπ0/dz < 0 (pressure decreases with height). The condition

(4.2.18c) is the familiar symmetric stability condition that potential vorticity be positive

in the northern hemisphere and negative in the southern for stability. (4.2.18b) is the

Rayleigh condition applied to flow in a spherical shell, namely that angular momentum

decrease in magnitude with the absolute value of latitude. (4.2.18a) is a generalization

of static stability, stating that for stability, the potential temperature gradient must be

clockwise of the gradient of planetary angular momentum M (p) ≡ −1
2
βδy

2 + γαz in the

northern hemisphere and anticlockwise in the southern. Far from the equator, where

1
2
βδy

2 À γαz, this reduces to the usual static stability condition Θz > 0.

Conditions (4.2.18a) and (4.2.18c) are formally identical with (3.1.51) and (3.1.47),

the corresponding conditions derived for the Euler equations in Chapter 3, with the caveat

that the definition of potential vorticity is slightly different in the anelastic system.
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The inertial stability condition (4.2.18b), however, is fundamentally different from

(3.1.46) in that it does not refer to pressure surfaces. Note that since static stability

(4.2.18a) and “symmetric” stability (4.2.18c) together imply (4.2.18b) because of thermal

wind balance (4.2.1), an essential difference must be contained in all three conditions.

The counterintuitive examples from Chapter 3 with surprising stability properties due

to the curvature of pressure surfaces behave “normally” here. For example, a steady state

of the form of M = −y4 (see Example 4 in Chapter 3) is inertially stable everywhere

with respect to the anelastic system, and the interval of instability of the steady state

with U = λy (Example 2 in Chapter 3) grows linearly with λ even as λ gets very large

(cf. Figure 3.7).

4.2.2 Nonlinear stability

To establish nonlinear stability using the energy-Casimir method, we must find a func-

tional conserved by the nonlinear equations (4.1.21) which is bounded from above and

below by disturbance norms (as mentioned above, HL is not conserved by the full equa-

tions).

For Lyapunov stability under the nonlinear equations, a basic state must be stable

under the linearized equations. Therefore, in this section we need only consider basic

states satisfying the linear stability criteria.1 In particular, assume that Q = 0 on the

equator and yQ > 0 everywhere else in the domain. We now introduce the functional

CNL(m, θ) ≡
∫ ∫

D

ρ0

{

C−(m, θ) +H(q)
[

C+(m, θ) − C−(m, θ)
]}

dy dz, (4.2.19)

where

H(q) =











0, q < 0

1, q ≥ 0
, (4.2.20)

1To exclude a solution from consideration, we would have to show linear instability, which is to say
that there exists a solution to the linear equations that grows monotonically with time (with respect to
some norm). We have not done that (see Ooyama, 1966, for an example of this type of argument).
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and C− and C+ satisfy

C−

m(M,Θ) = −
[

1
2
βδ [Y −(M,Θ)]

2 − γαZ
−(M,Θ)

]

, (4.2.21a)

C−

θ (M,Θ) = − 1

εB
π0

[

Z−(M,Θ)
]

, (4.2.21b)

C+
m(M,Θ) = −

[

1
2
βδ [Y +(M,Θ)]

2 − γαZ
+(M,Θ)

]

, (4.2.21c)

C+
θ (M,Θ) = − 1

εB
π0

[

Z+(M,Θ)
]

, (4.2.21d)

where (Y −, Z−) and (Y +, Z+) are the inverse functions defined by [M(y, z),Θ(y, z)] in

the regions with Q < 0 and Q ≥ 0 respectively. Note that we do not explicitly require

that C− and C+ and their derivatives match along the curve Q = 0. Unlike the linear

case, CNL is conserved without the matching condition. As we will see, though, the

matching condition is trivially satisfied by Lyapunov stable states, for which C− ≡ C+.

Now consider the pseudoenergy A(x;X), defined by

A(x;X) = (H + CNL)(m, ζ, θ) − (H + CNL)(M, 0,Θ)

=

∫ ∫

D

{

1

2ρ0

[

1

α2
(ψy)

2 + (ψz)
2

]

+ ρ0

[

(1
2
βδy

2 − γαz)(m−M) +
1

εB
π0(θ − Θ)

+ C−(m, θ) − C−(M,Θ)

+ H(q)
(

C+(m, θ) − C−(m, θ)
)

− H(Q)
(

C+(M,Θ) − C−(M,Θ)
)

]}

dy dz. (4.2.22)

By construction, A(X;X) = 0. We rewrite A, using Taylor’s Remainder Theorem, as

C−(m, θ) − C−(M,Θ) =

C−

m(M,Θ)(m−M) + C−

θ (M,Θ)(θ − Θ)

+
1

2

[

C−

mm(m̃(−), θ̃(−))(m−M)2 + 2C−

mθ(m̃
(−), θ̃(−))(m−M)(θ − Θ)

+ C−

θθ(m̃
(−), θ̃(−))(θ − Θ)2

]

, (4.2.23)
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where m̃(−)(y, z, t) ∈ [M,m] and θ̃(−)(y, z, t) ∈ [Θ, θ] (with a similar expansion for C+).

Inserting (4.2.23) into (4.2.22), and using (4.2.21),

A =

∫ ∫

D

{

1

2ρ0

[

1

α2
(ψy)

2 + (ψz)
2

]}

dy dz

+

∫ ∫

D(−)

{

1

2
ρ0

[

C−

mm(m̃(−), θ̃)(m−M)2 + 2C−

mθ(m̃
(−), θ̃(−))(m−M)(θ − Θ)

+ C−

θθ(m̃
(−), θ̃(−))(θ − Θ)2

]

+ ρ0H(q)
[

C+(m, θ) − C−(m, θ)
]

}

dy dz

+

∫ ∫

D(+)

{

1

2
ρ0

[

C+
mm(m̃(+), θ̃(+))(m−M)2 + 2C+

mθ(m̃
(+), θ̃(+))(m−M)(θ − Θ)

+ C+
θθ(m̃

(+), θ̃(+))(θ − Θ)2
]

+ ρ0[1 −H(q)]
[

C−(m, θ) − C+(m, θ)
]

}

dy dz,

(4.2.24)

where D(−) and D(+) are the regions of y < 0 (Q < 0) and y > 0 (Q > 0) repectively. Note

that outside of the ranges of M(y, z) and Θ(y, z), C− and C+ can be defined arbitrarily

without compromising (4.2.21), and because m and θ are materially conserved variables,

we need only extend the definitions of C− and C+ to include the ranges of m(y, z, t = 0)

and θ(y, z, t = 0). If C− can be extended such that (4.2.18) are satisfied for all values of

m and θ accessible to the flow, then all terms in A are positive except those which depend

on the extent to which C− and C+ have been mixed, and hence on the asymmetry of the

basic state.1

The terms in (4.2.24) of indefinite sign are

Aa =

∫ ∫

D(−)

ρ0H(q)
[

C+(m, θ) − C−(m, θ)
]

dy dz

+

∫ ∫

D(+)

ρ0[1 −H(q)]
[

C−(m, θ) − C+(m, θ)
]

dy dz. (4.2.25)

1 More precisely, (4.2.18) must be satisfied by all (m̃, θ̃) in a convex region containing { ran [M(y, z)] ∪
ran [m(y, z, t = 0)] } × { ran [Θ(y, z)] ∪ ran [θ(y, z, t = 0)] }, where the set {ran F} is the range of the
function F , so that Taylor’s theorem may be applied safely in (4.2.23).
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While Aa is not sign definite, it is bounded from above and below. If C− and C+ can be

extended outside of the ranges of M(y, z) and Θ(y, z) in such a way that the difference

|C− − C+| is maximum within the basic state ranges, then we can write bounds on Aa

which depend only on the basic state:

Aa ≥ − max
(M,Θ)

∣

∣C+(M,Θ) − C−(M,Θ)
∣

∣



2

H
∫

0

ρ0dz



 , (4.2.26a)

Aa ≤ max
(M,Θ)

∣

∣C+(M,Θ) − C−(M,Θ)
∣

∣



2

H
∫

0

ρ0dz



 . (4.2.26b)

We will elaborate on the case of X not being an even function of y in Section 4.5. In the

interim, the ideas will be made more concrete with Examples 3 and 4 below.

In the special case of X being even symmetric about y = 0, C− = C+ and Aa = 0.

We then define the norm on phase space displacements ∆x = x−X = (m−M, ζ, θ−Θ),

||∆x||2λ ≡
∫ ∫

D

{

1

2ρ0

[

1

α2
(ψy)

2 + (ψz)
2

]

+ λ
ρ0

2

[

(m−M)2 + (θ − Θ)2
]

}

dy dz. (4.2.27)

Let λ− be the minimum of the eigenvalues of the matrix Λ(m, θ) (see (4.2.13)) over all

possible values of m and θ (see the footnote on page 104). If Λ(m, θ) is positive definite

over the extended domain, then λ− is positive, and we have that

||∆x(t)||2λ− ≤ A[x(t)] = A[x(0)] ≤ λ+

λ−
||∆x(0)||2λ− , (4.2.28)

where λ+ is the maximum of the eigenvalues of Λ(m, θ). (4.2.28) implies that ||∆x(t)||λ
is bounded for all t in terms of its initial value ||∆x(0)||λ. In particular, x(t) can be

bound as close to X as desired by choosing x(0) close enough to X. Since the system

is conservative, the initial time is arbitrary. If the solution ever passes within δ of

equilibrium, then it will always be within ε. This is “stability in the sense of Lyapunov”.

The statement (4.2.28) actually represents a stronger statement than just Lyapunov

stability because it implies that the solution is bound near equilibrium no matter how

far from equilibrium it starts. This fact will be used in Section 4.4 when we calculate

saturation bounds on unstable equilibria.
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4.2.3 Examples

In all of the following examples, we set θ0(z) = 1 (i.e. we use the classical anelastic

approximation). All figures are plotted using βδ = γα = a = b = ε = Γ = 1, and at θ = 0

(we focus on the m-dependence of the C (i)(m, θ) ).

Example 1: Even basic state with quadratic C(m, θ)

Consider the equilibrium state X1, with

M(y, z) = −1
2
by2 (4.2.29a)

Θ(y, z) = (εγ)( 1
2
by2) + εΓz, (4.2.29b)

Q =
1

ρ0

(εΓb)y, (4.2.29c)

where b and Γ are constants. Since X1 is an even function of y, we can define a single

function C(M,Θ) for both q > 0 and q < 0. Inverting (4.2.29) gives

Y 2(M,Θ) = −2M

b
, (4.2.30a)

Z(M,Θ) =
γα
Γ
M +

1

εΓ
Θ, (4.2.30b)

and applying (4.2.21), we find

Cm(M,Θ) =

(

βδ
b

+
γ2
α

Γ

)

M +
γα
εΓ

Θ, (4.2.31a)

Cθ(M,Θ) = − 1

εB
+
γα
εΓ
M +

1

ε2Γ
Θ, (4.2.31b)

and

Cmm(M,Θ) =
βδ
b

+
γ2
α

Γ
, (4.2.32a)

Cθθ(M,Θ) =
1

ε2Γ
, (4.2.32b)

Cmθ(M,Θ) =
γα
εΓ
. (4.2.32c)
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Since all of the second derivatives are constants, we can safely extend the definition of

C(m, θ) to apply to values outside of the ranges of M(y, z) and Θ(y, z) without affecting

the maximum and minimum values of the eigenvalues of Λ. Λ is positive definite if and

only if b > 0 and Γ > 0, which agrees with our physical intuition: Θ must increase with

z, and M must be maximum at the equator and decrease towards either pole.

Example 2: Even basic state with non-quadratic C(m, θ)

Consider the equilibrium state X2, with

M(y, z) = −1
2
by2 − 1

4
ay4, (4.2.33a)

Θ(y, z) = (εγ)( 1
2
by2 + 1

4
ay4) + εΓz, (4.2.33b)

Q =
1

ρ0

(εΓ)(by + ay3), (4.2.33c)

X2 is also an even function of y, so we can define a single function C(M,Θ) for both

q > 0 and q < 0. Inverting (4.2.33),

Y 2(M,Θ) =
1

a

√
b2 − 4aM − b

a
, (4.2.34a)

Z(M,Θ) =
γα
Γ
M +

1

εΓ
Θ, (4.2.34b)

and we find

Cm(M,Θ) =
βδb

2a
− βδ

2a

√
b2 − 4aM +

γ2
α

Γ
M +

γα
εΓ

Θ, (4.2.35a)

Cθ(M,Θ) = − 1

εB
+
γα
εΓ
M +

1

ε2Γ
Θ, (4.2.35b)

and

Cmm(M,Θ) =
γ2
α

Γ
+ βδ(b

2 − 4aM)−1/2, (4.2.36a)

Cθθ(M,Θ) =
1

ε2Γ
, (4.2.36b)

Cmθ(M,Θ) =
γα
εΓ
. (4.2.36c)
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Integrating (4.2.35) gives

C(M,Θ) =
γ2
α

2Γ
M2 +

βδb

2a
M +

βδ
12a

(b2 − 4aM)3/2 +
γα
εΓ

ΘM +
γα

2ε2Γ
Θ2 − βδb

3

12a2
. (4.2.37)

Outside the ranges of M(y, z) and Θ(y, z), we may define C(m, θ) in any way, provided

it remains twice differentiable (this ensures that the Taylor expansion (4.2.23) remains

valid). The simplest choice that does not change the bounds on the norm is to fix the

second derivatives of C(m, θ) at their values on the perimeter of the domain. Hence, set

Cmm(m, θ) =



























γ2
α

Γ
+ βδ

a+b
, m < − b

2
− a

4

γ2
α

Γ
+ βδ(b

2 − 4am)−1/2, − b
2
− a

4
≤ m < 0

γ2
α

Γ
+ βδ

b
, m ≥ 0

, (4.2.38a)

Cθθ(m, θ) =
γα
ε2Γ

, (4.2.38b)

Cmθ(m, θ) =
γα
εΓ
, (4.2.38c)

which corresponds to

C(m, θ) =











































































1
2

(

γ2
α

Γ
+ βδ

a+b

)

(m+ b
2

+ a
4
)2

+
[

−βδ

2
− γ2

α

Γ
( b

2
+ a

4
) + γα

εΓ
θ
]

(m+ b
2

+ a
4
)

+
[

γ2
α

2Γ

(

b
2

+ a
4

)2 −
(

βδb
2a

+ γα

εΓ
θ
) (

b
2

+ a
4

)

+ βδ

12a
(a+ b)3

]

+ γα

2ε2Γ
θ2 − βδb

3

12a2 , m < − b
2
− a

4

γ2
α

2Γ
m2 + βδb

2a
m+ βδ

12a
(b2 − 4am)3/2 + γα

εΓ
θm+ γα

2ε2Γ
θ2 − βδb

3

12a2 , − b
2
− a

4
≤ m < 0

(

γ2
α

Γ
+ βδ

b

)

m2 + γα

εΓ
θm+ γα

2ε2Γ
θ2, m ≥ 0

.

(4.2.39)

(see Figure 4.1). The eigenvalues of Λ in this case are

λ±(Cmm) =
1

2





1

ε2Γ
+ Cmm ±

√

(

1

ε2Γ

)2

+ 4
(γα
εΓ

)2

+ C2
mm − 2

(

1

ε2Γ

)

Cmm



 . (4.2.40)

Cmm is between γ2
α

Γ
+ βδ

a+b
and γ2

α

Γ
+ βδ

b
for all m. The smallest and largest eigenvalues can

be found from (4.2.40), and an upper bound on the growth factor can be computed.
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Figure 4.1: Casimir density function for Example 2: (a) Cmm over the full domain of

all m. The heavy curves are the extensions beyond the range of M(y, z). (b) C(m, θ)

over the full domain of all m for θ = 0. The heavy curves are the extensions beyond the

range of M(y, z).
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Example 3: Asymmetric basic state

We illustrate the ideas related to asymmetric basic states with the following example,

which is a combination of the first two. For this example we proceed using βδ = γα =

ε = 1 so as to eliminate the complication of carrying all of the constants throughout the

analysis.

Consider the basic state X3, with (Figure 4.2a)

M(y, z) =











−1
2
y2, y < 0

−1
2
y2 − 1

4
y4, y ≥ 0

, (4.2.41a)

Θ(y, z) =











1
2
y2 + z, y < 0

1
2
y2 + 1

4
y4 + z, y ≥ 0

, (4.2.41b)

Q(y, z) =















1

ρ0

y, y < 0

1

ρ0

(y + y3), y ≥ 0

. (4.2.41c)

We present this example to illustrate the idea of defining multiple Casimir density func-

tions for multiple regions of invertibility of the basic state. Note that this state satisfies

the linear stability conditions but does not satisfy conditions for Lyapunov stability be-

cause of the asymmetry in y.

Inverting (4.2.41) in two parts

(Y −)2(M,Θ) = −2M, Z−(M,Θ) = M + Θ, (4.2.42a)

(Y +)2(M,Θ) =
√

1 − 4M − 1, Z+(M,Θ) = M + Θ (4.2.42b)

(Figure 4.2b), and applying (4.2.21), we find

C−

m(M,Θ) = 2M + Θ, C−

θ (M,Θ) = M + Θ, (4.2.43a)

C+
m(M,Θ) = 1

2
− 1

2

√
1 − 4M +M + Θ, C+

θ (M,Θ) = M + Θ, (4.2.43b)

and hence
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Figure 4.2: (a) Basic state M(y), which is not symmetric about y = 0 (Example 3).

Dotted line is reflection of y < 0 portion of M(y). (b) Inverse functions of M(y) for y < 0

(solid line) and for y ≥ 0 (dashed line) (the inverse functions squared are plotted).

C−

mm(M,Θ) = 2, C−

θθ(M,Θ) = 1, C−

mθ(M,Θ) = 1, (4.2.44a)

C+
mm(M,Θ) = 1 + (1 − 4M)−1/2, C+

θθ(M,Θ) = 1, C+
mθ(M,Θ) = 1 (4.2.44b)

(Figure 4.3a,b). Note that the derivatives and second derivatives of C− and C+ match

where Q = 0 (which is at M = 0) and that det Λ > 0 so the linear stability conditions

are satisfied. We may integrate (4.2.43) to get

C−(M,Θ) = M 2 + ΘM + 1
2
Θ2, (4.2.45a)

C+(M,Θ) = 1
2
M2 + 1

2
M + 1

12
(1 − 4M)3/2 + ΘM + 1

2
Θ2 − 1

12
, (4.2.45b)

where the additive constant − 1
12

is included in C+ so that it matches C− at M = 0 (see

Figure 4.3c).

In this case, it is convenient to extend the definition of C−(m, θ) so that it takes

the same functional form (4.2.45a) over its whole domain (namely, all real m and θ)

and to extend C+(m, θ) so that the maximum difference between C− and C+ is never

greater than it is in the range of (M,Θ) (this ensures that Aa is bounded). For example,
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extending C+
mm such that

C+
mm(m, θ) =























































2, m < −3
4
− 2ε

(

1
4
ε−2 − 1

4
ε−1
)

m+ 3
16
ε−2 − 11

16
ε−1 + 5

2
, −3

4
− 2ε ≤ m < −3

4
− ε

(

−1
4
ε−2 + 3

4
ε−1
)

m− 3
16
ε−2 + 9

16
ε−1 + 3

2
, −3

4
− ε ≤ m < −3

4

1 + (1 − 4m)−1/2, −3
4
≤ m < 0

2, m ≥ 0

,

(4.2.46)

where ε is an arbitrary positive number (not to be confused with ε, the asymptotic

parameter in the anelastic equations) so that

C−(m, θ) = m2 + θm+ 1
2
θ2, (4.2.47a)

C+(m, θ) =



















































































m2 − 7
96

+ 1
4
ε− 1

6
ε2

+ θm+ 1
2
θ2, m < −3

4
− 2ε

int1(m+ 3
4
) + θm+ 1

2
θ2, −3

4
− 2ε ≤ m < −3

4
− ε

int2(m+ 3
4
) + θm+ 1

2
θ2, −3

4
− ε ≤ m < −3

4

1
2
m2 + 1

2
m+ 1

12
(1 − 4m)3/2

+ θm+ 1
2
θ2 − 1

12
, −3

4
≤ m < 0

m2 + θm+ 1
2
θ2, m ≥ 0

,(4.2.47b)

where

int1(m′) =

(

1

24
ε−2 − 1

24
ε−1

)

m′3 +

(

−1

4
ε−1 +

5

4

)

m′2

+
(

−1 − 1
2
ε
)

m′ +
47

96
− 1

12
ε+

1

6
ε2, (4.2.48a)

int2(m′) =

(−1

24
ε−2 +

3

24
ε−1

)

m′3 +
3

4
m′2 − 5

4
m′ − 43

96
(4.2.48b)

are the cubic spline interpolations corresponding to the spike in C+
mm (see Figure 4.3d,e).

The interpolation has been designed so that C+, C+
m and C+

mm are continuous over all

values of m. ε may be taken as small as desired so that the transition from the forced
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functional form of C+(M,Θ) to the simple quadratic form outside of the range of M can

be virtually instantaneous in m so that the upper bound on |Aa| is as small as possible.

Alternatively, ε may be taken as large as desired so that C+
mm is kept small so that the

upper bound on the symmetric part of A is as small as possible.

Example 4: A case of negative A

In this example, we show explicitly how a perturbation to a linearly stable state can have

negative pseudoenergy. Consider the basic state with

M(y, z) =























−1
2
b−y2, y < 0

M1(y), 0 ≤ y < y1

−1
2
b+y2, y ≥ y1

, (4.2.49a)

Θ(y, z) =























εγα(
1
2
b−y2) + εΓz, y < 0

Θ1(y, z), 0 ≤ y < y1

εγα(
1
2
b+y2) + εΓz, y < 0

, (4.2.49b)

where b+ < b−, and M1(y) and Θ1(y, z) are smooth functions, smoothly connecting the

two pieces that are defined explicitly, and satisfying thermal wind balance. We will

consider a perturbation which only differs from the basic state for y > y1, so for this

exercise, the exact form of the basic state is not required.

We evaluate A(x;X), where x = (m(y), 0,Θ(y, z)) and m(y) is defined by

m(y) =







































M(y), y < y1

M(y1) + λ1(y − y1), y1 ≤ y < y2

M(y3) − λ2(y − y3), y2 ≤ y < y3

M(y), y ≥ y3

(4.2.50)

(Figure 4.4a). Clearly, the only nonzero contribution to A is from the interval in which
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Figure 4.3: Plots of Casimir density functions for Example 3. θ = 0 in all cases. (a) C−

m

and C+
m required to satisfy tangency of C with H at X3. Each function is only plotted for

the values of m included in the range of M(y) for y < 0 and y ≥ 0 respectively. (b)-(c)

Corresponding C−

mm, C+
mm, C− and C+. (d) C−

mm and C+
mm over the full domain (all m).

The heavy curves are the extensions beyond the range of M(y, z), and the dotted curve

is the continuation of C+
mm(M) outside of the range of M(y). (e) C− and C+ over all m.

The heavy curves are the extensions beyond the range of M(y, z), and the dotted curve

is the continuation of C+(M) outside of the range of M(y).
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x and X differ, namely for y1 < y < y3. Therefore,

A =

1
∫

0

y2
∫

y1

ρ0

[(

1
2
βδy

2 − γαz
)

(m−M) + C−(m,Θ) − C+(M,Θ)
]

dy dz

+

1
∫

0

y3
∫

y2

ρ0

[(

1
2
βδy

2 − γαz
)

(m−M) + C+(m,Θ) − C+(M,Θ)
]

dy dz

=

1
∫

0

y2
∫

y1

ρ0

[

1
2
C+
mm(m−M)2 + C−(m,Θ) − C+(M,Θ)

]

dy dz

+

1
∫

0

y3
∫

y2

ρ0

[

1
2
C+
mm(m−M)2

]

dy dz, (4.2.51)

where the Taylor expansion of C+ about (M,Θ) has been used, and the derivatives of C+

have been taken from (4.2.21). Since we seek a perturbation for which A is negative, we

let λ2 → −∞, and henceforth neglect the integration from y2 to y3 (which is positive).

Integrating (4.2.21) for this case, we find

C−(m, θ) =
1

2

(

βδ
b−

+
γ2
α

Γ

)

m2 +
γα
εΓ
θm+

γα
2εΓ

θ2, (4.2.52a)

C+(m, θ) =
1

2

(

βδ
b+

+
γ2
α

Γ

)

m2 +
γα
εΓ
θm+

γα
2εΓ

θ2. (4.2.52b)

Substituting (4.2.52) into (4.2.51) gives

A ≈
1
∫

0

y2
∫

y1

ρ0

[

1

2

(

βδ
b−

+
γ2
α

Γ

)

(m−M)2 − βδ
2

(

1

b+
− 1

b−

)

m2

]

dy dz. (4.2.53)

The difference C+ − C− is an increasing function of m2, so the negative term in the

integrand of (4.2.53) is largest if we let λ1 → 0 and hence m(y) →M(y1) = −1
2
b+y2

1. As

the width of the “step” becomes smaller, m(y) and M(y) become closer together, and

eventually, the sum becomes negative (see Figure 4.5).

We might next consider a perturbation with m(y) being composed of many steps

(see Figure 4.4b). In the limit of infinitely many short steps, the first term in (4.2.53)
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Figure 4.4: Perturbations for which A may be negative. The heavy dashed lines are

the perturbed field m(y). m(y) and M(y) coincide everywhere else. (a) A single “over”

perturbation. (b) A staircase of “over” perturbations. In the limit of infinitely many

steps, the most negative A obtains. (c) An “under” perturbation.

disappears, and A → Alim, where

Alim = −
1
∫

0

ρ0

[

βδb
+

10

(

1 − b+

b−

)]

dz. (4.2.54)

One might object to this, arguing that a state with infinitesimal steps is a small amplitude

perturbation, and that a nonsymmetric state such as (4.2.49) has previously been shown

to be stable under the linearized equations. However, the linearized equations assume

that x is close to X and all derivatives of x are close to the corresponding derivatives

of X. Clearly, the derivatives of the step-like state are not close to those in the steady
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Figure 4.5: A versus y2 for y1 = 0.5 (see (4.2.53) and Figure 4.4a) for three values of

b+/b−. Notice that A is negative for small enough “step” size for b+/b− = 0.5 (the heavy

curve).

state.

Alim is the most negative value of A that can be achieved with this construction.

However, depending on Γ and the ratio b+/b−, it might be possible to achieve a more

negative A with a perturbation in the form of a “step” below the curve M(y), namely

m(y) ≈



























M(y), y < y1

M(y2), y1 < y < y2

M(y), y ≥ y2

(4.2.55)

(Figure 4.4c), where by the ≈ symbol, we are indicating that this is the limiting form of

m(y) when the slopes of the side and base of the step approach −∞ and zero respectively.

In this case,

A =

1
∫

0

y2
∫

y1

ρ0

[

1

2

(

βδ
b+

+
γ2
α

Γ

)

(

−1
2
b+y2 + 1

2
b+y2

2

)2 − 1

2

(

βδ
b+

− βδ
b−

)

(1
2
b+y2

2)
2

]

dy dz.

(4.2.56)
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If we assume that γ2
α/Γ ¿ βδ/b

+, then for fixed y2, A is minimized (most negative) for

y
(min)
1 =





√

1 −
√

1 − b+

b−



 y2. (4.2.57)

4.3 Anelastic version of Dunkerton (1981) problem

The linearized anelastic equations (4.2.5) can be solved analytically for the simplest choice

of reference potential temperature θ0(z) ≡ 1 (recovering the classical anelastic equations)

and the basic state angular momentum profile

M(y, z) = −1
2
by2 + λy, (4.3.1)

where b and λ are positive constants. My = −by + λ, so the state fails the stability

criterion (4.2.18b) in the interval 0 < y < λ/b, where M decreases away from the

equator. This state has a vertical velocity shear Uz = −γ to balance the planetary

angular momentum shear.

The choice of θ0(z) ≡ 1 corresponds to the reference pressure and density profiles

π0(z) = 1 −Bz, (4.3.2a)

ρ0(z) = (1 −Bz)cv/R . (4.3.2b)

We choose the basic state potential temperature profile

Θ(y, z) = (εγα)(
1
2
by2 − λy) + εΓz, (4.3.3)

where Γ is another positive constant, which satisfies thermal wind balance (4.2.1) and is

statically stable. The linearized equations (4.2.5) are then

m′

t =
1

ρ0

(by − λ)ψ′

z, (4.3.4a)

ζ ′t =
1

ε
θ′y + βδym

′

z + γαm
′

y, (4.3.4b)

θ′t = − 1

ρ0

(εγα)(by − λ)ψ′

z +
1

ρ0

εΓψ′

y, (4.3.4c)
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which are combined to get

ρ0

(

1

ρ0

ψ′

z

)

ztt

+
1

α2
ψ′

yytt = −βδby
(

y − λ

b

)

ρ0

(

1

ρ0

ψ′

z

)

z

− Γψ′

yy, (4.3.5)

where (4.1.20) has been used to write ζ ′ in terms of ψ′.

We solve (4.3.5) over the domain y ∈ (−∞,+∞) with the boundary condition that

ψ′ → 0 as y → ±∞.1 We use the method of separation of variables, substituting

ψ′(y, z, t) = Yψ(y)Zψ(z)Tψ(t) (4.3.6)

into (4.3.5) and find the three ordinary differential equations

d2Yψ
dy2

+







k2

Γ − ω2

α2







[

ω2 − βδby

(

y − λ

b

)]

Yψ = 0,

ρ0
d

dz

(

1

ρ0

dZψ
dz

)

+ k2Zψ = 0,

d2Tψ
dt2

+ ω2Tψ = 0,

where k and ω are constants. We obtain the normal mode solution

ψ′(y, z, t) = exp









iωt− 1

2

√

√

√

√

√

βδbk2

Γ − ω2

α2

(

y − λ

2b

)2









Hn















βδbk
2

Γ − ω2

α2







−
1
4
(

y − λ

2b

)









× (1 −Bz)
1
2
(1 + cv

R
)
{

c1knJ1
2
(1 + cv

R
)

[

k

B
(1 −Bz)

]

+ c2knY1
2
(1 + cv

R
)

[

k

B
(1 −Bz)

]}

, (4.3.7)

where Jν and Yν are νth order Bessel functions of the first and second kinds, n is a

non-negative integer satisfying the characteristic equation

2n+ 1 =

√

√

√

√

√

k2

Γ − ω2

α2

[

ω2 + βδb

(

λ

2b

)2
]

, (4.3.8)

1These boundary conditions are chosen rather than the fixed finite walls used in the stability analysis
so that we can get an exact analytical solution of simple form. Neither choice is physically correct, and
we hope that the behaviour near the equator is not substantially changed either way.
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Figure 4.6: (a) Contours of stream function ψ′ for the n = 0, k = kc (see Figure

4.7) mode of solution (4.3.7) and the parameters listed in Table 4.1. Dark contours

represent negative values (clockwise circulation) and light contours represent positive

values (anticlockwise circulation). The vertical scale k−1
c is chosen to be that of the

deepest unstable mode. (b) Angular momentum perturbation m′ contours; note the zonal

jets on equatorward side of unstable region. (c) Potential tempertaure perturbation θ ′

contours; note the checkerboard pattern of pancake structures (cf. Figure 1.2).
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Scaling Nondimensional (derived) Steady State X

H = 2 × 104 m α = 150 b = βδ

L = 3 × 106 m δ = 2.1 λ = βδ

a = 6.4 × 106 m B = 0.2 Γ = 1

g = 10 ms−2 ε = 0.9

Ω = 7 × 10−5 s−1 S = 0.95

N = 2 × 10−2 s−1 βδ = 0.5

cp = 103 J K−1 γα = 0.007

Θ = 103 K Hs/H = 1.5

Table 4.1: Parameters used in plots of Figures 4.6 and 4.8.

Hn is the nth degree Hermite polynomial, and c1kn and c2kn are normalization constants.

Figure 4.6 shows contour plots of stream function, angular momentum, and potential

temperature for the n = 0 mode of the solution (4.3.7) given the choices of parameter

values listed in Table 4.1. The discrete mode structure of the solution is the result of

the condition that ψ′ remain finite as y → ±∞ (see any reference on Sturm-Liouville

theory; e.g. Arfken, 1985). The solution is unstable, i.e. there exists a mode which is

monotonically growing with time, if ω2 < 0. Rearranging (4.3.9) gives

ω2 = −
[

βδb

(

λ

2b

)2

+
(2n+ 1)2

2α2k2

]

+
1

2

(

2n+ 1

k

)

√

√

√

√

1

α2

[

4βδb

(

λ

2b

)2

+
(2n+ 1)2

k2α2

]

+ 4Γ . (4.3.9)

Inspection of (4.3.9) reveals that ω2 will be negative for large enough vertical wavenumber

k for any values of velocity shear λ 6= 0, potential temperature gradient Γ > 0, and

meridional index n. For any given k, the most negative ω2, i.e. the fastest growing mode,

has n = 0. Figure (4.7) shows ω2 as a function of vertical wavenumber k for n = 0. Modes

with k > kc are unstable. For the parameter choices listed in Table 4.1, kc corresponds
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Figure 4.7: Frequency squared ω2 of n = 0 mode as a function of vertical wavenumber

k. Modes with k > kc are unstable (growing).

to a vertical wavelength of about 7 km.

In the limit of k À α−1 (the vertical wavelength being much smaller than the aspect

ratio L/H), (4.3.9) becomes

ω2 ≈
√

Γ

k
(2n+ 1) − βδb

(

λ

2b

)2

, (4.3.10)

which is almost identical to the characteristic equation in the hydrostatic case (see

Dunkerton, 1981). This is expected because the terms involving α come from the verti-

cal velocity term ρ−1
0 α−2ψ′

yytt = α−2w′

ytt in (4.3.5), which is negligible in the hydrostatic

system. The effects of using the anelastic approximation rather than the hydrostatic,

namely allowing deep vertical motion, are not important for small vertical wavelength

modes.

The meridional velocity solution in the hydrostatic case, at fixed y and t, satisfies

v′hydro ∝ exp

(

1

2

H

Hs

z + i

√

k2 − 1

4(Hs/H)2
z

)

, (4.3.11)

where Hs ≡ RΘ/g = constant is the scale height. For Hs ¿ H, the structure is close to

sinusoidal in z, and for large Hs, the amplitude grows with z. In the anelastic system,
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Figure 4.8: z-dependence of meridional velocity perturbation in anelastic solution (solid)

and hydrostatic solution (dashed).

the meridional velocity at fixed y and t satisfies

v′anelastic ∝ (1 −Bz)−cv/R
d

dz
J1

2
(1 + cv

R
)

[

k

B
(1 −Bz)

]

. (4.3.12)

The domain depth parameter B = gH/cpΘ plays the role of Hs in the anelastic solution:

for B ¿ 1 (a shallow domain), the solution is approximately sinusoidal, and for B . 1, it

grows with z. In Figure 4.8, the two solutions are plotted for the values of the parameters

in Table 4.1. Properly normalized, they overlap almost exactly, with the amplitude of

v′hydro growing slightly faster with z.

Qualitatively, the familiar signatures of inertial instability are evident in the solution
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— compare Figures 4.6 with Figure 1.1, with Taylor vortices stacked over the centre of the

unstable region (Figure 4.6a), oppositely signed zonal jets stacked on the equatorward side

of the unstable region (Figure 4.6b), and the characteristic pattern of pancake structures

in the temperature field (Figure 4.6c) which has been observed in satellite data of the

stratopause region (see Section 1.2).

The parameters were chosen so that the unstable region covers about 30◦ of latitude

in the northern hemisphere, and the vertical wavelength of the largest scale unstable

modes for n = 0 is similar to what is observed (∼ 10 km; see Figure 1.2), although it

should be noted that (4.3.9) implies that the modes with smallest vertical scale have the

highest growth rates. Why the observed vertical scale is as large as it is is still an open

question.

4.4 Saturation bounds

The pseudoenergy A was introduced in order to demonstrate Lyapunov stability of steady

states which are even functions of y and satisfy the linear stability conditions (4.2.18).

It was argued that the statement of stability (4.2.28) implies that solutions are bound

arbitrarily close to equilibrium (in terms of the norm (4.2.27)) provided they are initially

close enough to equilibrium: for any ε, there is a δ such that ||∆x(0)|| < δ implies

||∆x(t)|| < ε for all times t.

In Section 4.2.2, it was noted that (4.2.28) also implies that no matter how far from

equilibrium the system starts, it is bound for all time within a definite radius: for any δ,

there is an ε such that ||∆x(0)|| < δ implies ||∆x(t)|| < ε.

This suggests the following interesting application (following, e.g., Mu et al., 1996).

Consider an initial state which is close to an unstable equilibrium. The pseudoenergy

consists of a positive definite term due to the kinetic energy in the meridional and vertical
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velocity components,

K⊥(x) ≡
∫ ∫

D

{

1

2ρ0

[

1

α2
(ψy)

2 + (ψz)
2

]}

dy dz, (4.4.1)

and the term

APE(x;X) ≡
∫ ∫

D

{

ρ0

[

(1
2
βδy

2 − γαz)(m−M)

+
1

εB
π0(θ − Θ) + C(m, θ) − C(M,Θ)

]}

dy dz, (4.4.2)

which may be called available potential energy when the reference state X is nonlinearly

stable. Since A is conserved and APE is strictly positive, K⊥ is bound from above by

A. In particular, for an unstable equilibrium XU , K⊥ is bound from above by A(XU ;X),

where X is any nonlinearly stable equilibrium.

Shepherd (1988) calls the lowest such value of A the saturation bound on the distur-

bance amplitude in the transverse plane. The short time evolution of the system from

near the unstable equilibrium follows approximately the solution of the linearized equa-

tions (see Section 4.3 for a particular case) for which K⊥ grows monotonically in time.

The long time evolution of K⊥ in the nonlinear system, while unknown in detail, is bound

by this result.

In practice, all of APE is not converted into K⊥ because X had to be chosen such

that APE(x;X) was positive for any perturbed state x, and the true evolution does

not sample every state. Also, in reality there is inevitably some diffusion of heat and

momentum which limits the production of K⊥.

If the saturation amplitude calculated with this method is found to be close to what is

observed (in high resolution simulations, for example), then it can potentially be part of a

parameterization scheme in coarse resolution models which cannot satisfactorily simulate

inertial adjustment. Specifically, the kinetic energy estimate can be used to estimate an

effective diffusivity for vertical mixing due to inertial adjustment.
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As an example, consider again the anelastic system with θ0(z) ≡ 1, and the unstable

basic state XU with

MU(y, z) = −1
2
bUy

2 + λUy, (4.4.3a)

ΘU(y, z) = (εγα)(
1
2
bUy

2 − λUy) + εΓUz. (4.4.3b)

We seek to minimize A(XU ;X) where X is chosen from the class of nonlinearly stable

basic states of the form

M(y, z) = M0 − 1
2
by2, (4.4.4a)

Θ(y, z) = Θ0 + (εγα)(
1
2
by2) + εΓz (4.4.4b)

(see Example 1 above). From the earlier calculation, we have the second partial deriva-

tives of C(m, θ) (the constants M0 and Θ0 do not change the Casimir density function),

and since they are constants, the second order Taylor expansion equals C(m, θ) exactly.

Also, the K⊥ term is zero for the state XU . Therefore,

A(XU ;X) =

1
∫

0

1
∫

−1

ρ0

[

1
2
Cmm(MU −M)2 + Cmθ(MU −M)(ΘU − Θ) + 1

2
Cθθ(ΘU − Θ)2

]

dy dz.

(4.4.5)

Substituting (4.2.32), XU , and X into (4.4.5) gives, after some cancellation,

A(XU ;X) =

1
∫

0

1
∫

−1

ρ0

{

βδ
2b

[

−1
2
(bU − b)y2 + λUy

]2 − βδ
b
M0

[

−1
2
(bU − b)y2 + λUy

]

}

dy dz

+

1
∫

0

1
∫

−1

ρ0

[

1

2

(

γ2
α

Γ
+
βδ
b

)

M2
0 +

γα
εΓ
M0Θ0 +

1

2

(

1

ε2Γ

)

Θ2
0

− 1

Γ

(

γαM0 +
1

ε
Θ0

)

(ΓU − Γ)z +
1

2

(ΓU − Γ)2

Γ
z2

]

dy dz. (4.4.6)

After integration,
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A(XU ;X) = I0

(

βδ
b

){

1

20
(bU − b)2 +

1

3

[

λ2
U +M0(bU − b)

]

+M2
0

}

+ I0

(

1

Γ

)(

γαM0 +
1

ε
Θ0

)2

− 2I1

(

γαM0 +
1

ε
Θ0

)(

ΓU − Γ

Γ

)

+ I2

[

(ΓU − Γ)2

Γ

]

, (4.4.7)

where

Ik ≡
∫ 1

0

zkρ0(z) dz. (4.4.8)

We seek values of b, Γ, M0, and Θ0 which minimize A. To that end, we calculate the

partial derivatives of A with respect to each parameter and set them equal to zero. Since

Θ0 only appears in (4.4.7) in the grouping Π0 ≡ γαM0 + (1/ε)Θ0, it is convenient to

differentiate A with respect to Π0 rather than Θ0:

∂A
∂Π0

=
2I0
Γ

Π0 −
2I1
Γ

(ΓU − Γ), (4.4.9)

whence the optimum choice of Π0 is

Π
(min)
0 =

I1
I0

(ΓU − Γ). (4.4.10)

Differentiating with respect to Γ gives

∂A
∂Γ

= − 1

Γ2
I0Π

2
0 + 2I1Π0

(

1

Γ
+

ΓU − Γ

Γ2

)

− 2I2

[

ΓU − Γ

Γ
− (ΓU − Γ)2

2Γ2

]

. (4.4.11)

Inserting Π
(min)
0 for Π0 and setting ∂A/∂Γ = 0 gives a minimizing value of Γ of

Γ(min) = |ΓU |, (4.4.12)

where the absolute value is used because for stability of X, Γ must be positive. Evidently,

if ΓU is positive (statically stable), then the minimizing choice of Γ is ΓU itself. This is

perhaps not surprising. Continuing, we calculate

∂A
∂M0

= 2βδI0

[

1

6

(

bU − b

b

)

+
M0

b

]

, (4.4.13)

∂A
∂b

= 2βδI0

{

− 1

b2

[

1

40
(bU − b)2 +

1

6

(

λ2
U +M0(bU − b)

)

+
1

2
M2

0

]

− 1

b

[

1

20
(bU − b) − 1

6
M0

]}

, (4.4.14)



128 Chapter 4. Symmetric stability in the anelastic system

whence

b(min) = −|bU |

√

1 + 15

(

λU
bU

)2

, (4.4.15)

M
(min)
0 = −1

6
(bU − b(min)). (4.4.16)

Combining (4.4.10) and (4.4.12) gives a minimizing value of Θ0 of

Θ
(min)
0 = ε

[

I1
I0

(ΓU − |ΓU |) +
γα
6

(bU − b(min))

]

. (4.4.17)

4.4.1 Examples

Example 1: Inertial instability

Consider a statically stable (ΓU > 0), inertially unstable (λU > 0) state XU . The z

dependence of the minimizing stable state X(min) is the same as that of XU by virtue

of (4.4.12). The y dependence of X(min), including the shifts M0 and Θ0 is given by

(4.4.15)-(4.4.17). M (min)(y) for an example case is plotted in Figure 4.9a. Substituting

(4.4.12), (4.4.15), (4.4.16), and (4.4.17) into (4.4.7) gives a minimum value of A of

A(min)(λU , bU) ≡ A(XU ;X(min))

=
βδI0bU

√

1 + 15

(

λU
bU

)2





2

45



1 −

√

1 + 15

(

λU
bU

)2


+
2

3

(

λU
bU

)2


 .

(4.4.18)

In Figure 4.9c, A(min) is plotted as a function of λU for fixed bU . Notice in particular that

A(min) approaches zero as λU approaches zero, i.e. as the stability threshold is approached.
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Figure 4.9: (a) Stable Mmin(y) (thin curve) which minimizes A for MU(y) = −1
2
y2 + 1

2
y

(thick curve) for inertially unstable case. (b) Stable Θ(min)(0, z) (thin) which minimizes

A for convectively unstable ΘU(0, z) = −z (thick). The point of intersection depends on

ρ0(z), which in turn depends on the domain depth parameter B. The case shown is for

a choice of B = 0.5. (c) Upper bound on kinetic energy in released into overturning flow

during inertial adjustment, Amin as a function of velocity shear λU for fixed bU = 0.1.
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Example 2: Convective instability

Now let XU be inertially stable (λU = 0) but statically unstable (ΓU < 0).

Substituting (4.4.12) and (4.4.17) into (4.4.7) gives a saturation bound of

A(min) =
4

I0
(I0I2 − I2

1 )|ΓU |, (4.4.19)

It must be true from the theory previously presented, but note anyway that A(min) in

(4.4.19) is necessarily positive because ρ0(z) > 0, and

I0I2 − I2
1 =

1

2

1
∫

0

1
∫

0

(x− y)2ρ0(x)ρ0(y) dx dy > 0. (4.4.20)

See Figure 4.9b for a plot of the stable potential temperature profile which minimizes

A(min) for a given convectively unstable potential temperature profile ΘU .

4.5 Summary and discussion

Using the energy-Casimir method, conditions for linear equatorial symmetric stability

in the anelastic system were derived, and in the case of steady states that are even

symmetric about the equator, were shown to imply nonlinear stability. The conditions,

that potential vorticity have the sign of latitude and that potential temperature increase

(decrease) in the direction of the local planetary rotation vector in the northern (southern)

hemisphere, are formally identical with the corresponding conditions derived in Chapter

3 for the Euler equations.

Unlike in the Euler equations case, however, in the anelastic case, the “inertial stabil-

ity” condition — that angular momentum increase towards the equator — implied by the

other two conditions through thermal wind balance, does not depend on the equilibrium

pressure field. Because of this difference the steady states considered in Chapter 3 that

were inertially and statically stable but, in the vicinity of the equator, failed the potential

vorticity condition with respect to the Euler equations, are stable with respect to the

anelastic equations.
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We solved an anelastic version of the problem of Dunkerton (1981), namely the com-

putation of the normal mode solution of the equations linearized about the inertially

unstable state with constant meridional shear in the zonal velocity at the equator. The

solution in the anelastic case is qualitatively very similar to the hydrostatic case consid-

ered by Dunkerton, differing only for small values of aspect ratio α = L/H, for which

the hydrostatic approximation becomes unrealistic (see Chapter 2).

Following Mu et al. (1996), we used a class of nonlinearly stable states (which are

necessarily even symmetric functions of y) to calculate a rigorous upper bound on the

kinetic energy released when an unstable state is perturbed slightly from equilibrium, the

so-called saturation bound. We showed that for the unstable state of nonzero meridional

shear in the zonal velocity at the equator, the saturation bound approaches zero as the

shear at the equator approaches zero.

The Lyapunov (nonlinear) stability result does not apply to steady states that are

not even symmetric with respect to the equator. In fact, we saw that the pseudoenergy

A(x;X), which for stability must be positive definite, can be negative if X is asymmetric

even if the linear stability criteria are satisfied. The minimum (most negative) value of

A is apparently bounded in terms of X, suggesting that if the symmetric part of A, i.e.

A−Aa, is positive definite, then a norm ||x−X|| is bounded in terms of its initial value,

but not arbitrarily close to zero. The bound on ||x − X|| depends on

√

|A(min)
a |, where

A(min)
a is the most negative value of the asymmetric part of A, a lower bound on which

is given by (4.2.26a). Explicitly, for any ε >

√

|A(min)
a |, ||x(t)−X|| < ε for all t provided

||x(0) − X|| < δ ≡ kλ

√

ε2 − |A(min)
a |, (4.5.1)

where kλ > 0 depends on the ratio of the minimum to the maximum eigenvalue of the

coefficient matrix of the integrand of the symmetric part of A (see (4.2.28)). Note that

this is not a statement of Lyapunov stability because ε cannot be arbitrarily small.

Asymmetric basic states can also be used to calculate saturation bounds, with the
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meridional-vertical kinetic energy K⊥ bounded by

K⊥(t) ≤ A(XU ;X) + |A(min)
a (X)|, (4.5.2)

for all unstable equilibria XU and linearly stable X. Since |A(min)
a (X)| is probably a gross

overestimation of the actual minimum value that A is likely to attain, it seems unlikely

that (4.5.2) can have practical application to, for example, a parameterization scheme.

The above statements about asymmetric basic states assume that |Aa| can be bounded

in terms of the basic state X, which assumes that the Casimir density functions C−(m, θ)

and C+(m, θ) can always be defined such that the absolute value of their difference has

a maximum value, which we can compute. We showed how this can be done for a simple

case in Example 3 of Section 4.2.3, in which the Θ dependences of C− and C+ were

identical, but we did not show that it can be done in the general case.
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4.A Derivation of anelastic equations

Exact equations

Consider the Euler equations for adiabatic flow of an ideal gas on the equatorial β-plane

with first-order representation of both the sinφ and cosφ Coriolis acceleration terms

(Equations (2.3.18)):

ut + uux + vuy + wuz = βyv − γw − 1
ρ
px, (4.A.1a)

vt + uvx + vvy + wvz = −βyu− 1
ρ
py, (4.A.1b)

wt + uwx + vwy + wwz = γu− g − 1
ρ
pz, (4.A.1c)

ρt + uρx + vρy + wρz = −ρ(ux + vy + wz), (4.A.1d)

θt + uθx + vθy + wθz = 0, (4.A.1e)

where θ is potential temperature. The equation of state is the ideal gas law, p = ρRT ,

where T is temperature1. It will prove convenient to replace p with the non-dimensional

Exner pressure π, defined by

π ≡
(

p

p00

)κ

, (4.A.2)

where p00 is a constant reference pressure, and κ ≡ R/cp, with cp being the heat capacity

with respect to constant pressure processes. ρ and T can be written as functions of θ

and π according to

ρ =
(p00

R

) π
1
κ
−1

θ
, T = πθ. (4.A.3)

We non-dimensionalize the equations by introducing characteristic length, time and

potential temperature scales. We temporarily adopt the convention that symbols followed

by an asterisk are non-dimensional, and let

(x, y) = L(x∗, y∗), z = Hz∗, t = τt∗, θ = Θθ∗. (4.A.4)

1Do not confuse T with equilibrium temperature, as it is in Chapter 3. The symbol τ is used in this
chapter for the characteristic time scale.
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The associated velocity, density and temperature scales are defined by

(u, v) = (L/τ)(u∗, v∗), w = (H/τ)w∗, (4.A.5a)

ρ = (p00/RΘ)ρ∗, T = ΘT ∗. (4.A.5b)

The Coriolis parameters are scaled in a trivial way:

β =
2Ω

a
β∗, γ = 2Ωγ∗, (4.A.6)

with γ∗ = β∗ = 1. We leave γ∗ and β∗ in the equations so that we can monitor the effects

of rotation on the conditions for equilibrium and stability.

To reduce the clutter in the equations, the asterisk notation is suppressed unless there

is possibility of confusion. Henceforth, all variables are assumed to be dimensionless

unless otherwise stated. Equations (4.A.1) become

L2

τ 2

Du

Dt
=

2ΩL2

τ

(

L

a
βyv − H

L
γw

)

− (cpΘ)θ
∂π

∂x
, (4.A.7a)

L2

τ 2

Dv

Dt
=

2ΩL2

τ

(

−L
a
βyu

)

− (cpΘ)θ
∂π

∂y
, (4.A.7b)

H2

τ 2

Dw

Dt
=

2ΩHL

τ
γu−Hg − (cpΘ)θ

∂π

∂z
, (4.A.7c)

(

1 − 1

κ

)

D

Dt
(lnπ) =

∂u

∂x
+
∂v

∂y
+
∂w

∂z
, (4.A.7d)

Dθ

Dt
= 0, (4.A.7e)

The system (4.A.7) is exact insofar as (4.A.1) is exact. Of course, the scale factors have

been introduced with the understanding that the nondimensional variables are of order

unity. The specification of the scale factors is tantamount to choosing a regime of solution

space for which certain approximations are justifiable.

Classical anelastic approximation

To obtain the classical anelastic equations, we choose the characteristic time scale τ to

be

τ =
L

H
N−1 =

√

L2

gHε
, (4.A.8)
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where ε ≡ ∆θ/Θ = ∆θ∗, and N 2 ≡ (g/H)(∆θ/Θ), where ∆θ is the width of the range of

values to which θ is presumed to be limited.

Inserting (4.A.8) into the equations (4.A.7a-c) gives

(

Hg

cpΘ

)

ε

[

Du

Dt
−
(

2Ω

N

)(

L

H

)(

L

a
βyv − H

L
γw

)]

+ θ
∂π

∂x
= 0, (4.A.9a)

(

Hg

cpΘ

)

ε

[

Dv

Dt
+

(

2Ω

N

)(

L

H

)(

L

a
βyu

)]

+ θ
∂π

∂y
= 0, (4.A.9b)

(

H

L

)2(
Hg

cpΘ

)

ε

[

Dw

Dt
−
(

2Ω

N

)(

L

H

)2

(γu)

]

+
Hg

cpΘ
+ θ

∂π

∂z
= 0, (4.A.9c)

where one factor of τ in the Coriolis terms is deliberately left in terms of N instead

of ε to emphasize that the decision to neglect those terms is dependent on the size of

(2ΩL)/(NH) and not on the smallness of ε.

Define the dimensionless parameters

B ≡ Hg

cpΘ
, S ≡ H

L

(

N

2Ω

)

, (4.A.10a)

α ≡ L

H
, δ ≡ a

l
. (4.A.10b)

α is the aspect ratio of the flow, and δ is the planetary aspect ratio. S is a form of the

Burger number. B may be interpreted in terms of the thickness of an atmosphere with

flat bottom topography at z = 0 and uniform potential temperature Θ (i.e. θ∗ = 1) in

hydrostatic balance. This follows from the nondimensional hydrostatic balance condition

B + θ
∂π

∂z
= 0, (4.A.11)

whence, for θ = 1,

πhydrostatic(z) = 1 −Bz. (4.A.12)

The pressure πhydrostatic vanishes at z = B−1 so we may write B = H/Hmax, where Hmax is

the maximum thickness of the corresponding isentropic atmosphere. Obviously, B must

be less than unity for the equations to have any meaning — otherwise, there would be

negative pressure in the upper part of the domain.
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Perturbation expansion

The (exact) dimensionless momentum equations as they now stand are

ε

[

Du

Dt
− βδyv + γαw

]

+
1

B
θ
∂π

∂x
= 0, (4.A.13a)

ε

[

Dv

Dt
+ βδyu

]

+
1

B
θ
∂π

∂y
= 0, (4.A.13b)

ε

[

1

α2

Dw

Dt
− (γαu)

]

+ 1 +
1

B
θ
∂π

∂z
= 0, (4.A.13c)

where βδ ≡ β/(Sδ) and γα ≡ γ/(Sα).

Consider the perturbation expansion in ε of all dependent variables:

v = v0 + εv1 + ε2v2 + . . . , (4.A.14a)

π = π0 + επ1 + ε2π2 + . . . , (4.A.14b)

θ = 1 + εθ1 + ε2θ2 + . . . , (4.A.14c)

where in (4.A.14c), we have followed Ogura and Phillips (1962) and set the leading order

term of θ equal to unity because of (4.1.2). This is appropriate since the departure from

θ∗ = 1 is assumed to be of order ε.

Substituting (4.A.14) into (4.A.13) and (4.A.7d) yields the zeroth order equations

∂π0

∂x
=

∂π0

∂y
= 0, (4.A.15a)

∂π0

∂z
= −B, (4.A.15b)

∂ρ0

∂t
= −

[

∂

∂x
(ρ0u0) +

∂

∂y
(ρ0v0) +

∂

∂z
(ρ0w0)

]

, (4.A.15c)

where

ρ0 = π
1
κ
−1

0 . (4.A.16)

We can solve (4.A.15a,b) for π0 (and hence for ρ0):

π0(z, t) = π0(0, t) −Bz, (4.A.17)
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and, assuming mass conserving boundary conditions, integrating (4.A.15c) over the entire

domain gives

∫ ∫ ∫

∂ρ0

∂t
dx dy dz = −

∫ ∫ ∫

∇ · (ρ0v0) dx dy dz = 0. (4.A.18)

Substitution of (4.A.17) into (4.A.18) using (4.A.16) leads to, after some manipulation,

[

∂

∂t
π0(0, t)

] ∫

π
1
κ
−2

0 dz = 0. (4.A.19)

Since π0 > 0 everywhere in the domain, it follows that π0(0, t) is a constant. If we choose

p00 to be the surface pressure of the hydrostatic isentropic atmosphere with θ ≡ 1, then

we have that π0|z=0 ≡ 1. It follows that ∂ρ0/∂t = 0, and the zeroth order continuity

equation becomes

∂

∂x
(ρ0u0) +

∂

∂y
(ρ0v0) +

∂

∂z
(ρ0w0) = 0. (4.A.20)

That is, the divergence of the O(1) mass flux vector ρ0v0 vanishes.

The O(ε) equations are

D0u0

Dt
− βδyv0 + γαw0 +

1

B

∂π1

∂x
= 0, (4.A.21a)

D0v0

Dt
+ βδyu0 +

1

B

∂π1

∂y
= 0, (4.A.21b)

D0w0

Dt
+ α2

[

−γαu0 +
1

B

∂π1

∂z
− θ1

]

= 0, (4.A.21c)

D0θ1

Dt
= 0, (4.A.21d)

where

D0

Dt
=

∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
+ w0

∂

∂z
. (4.A.22)

The final equation required is obtained by noting that the O(1) anelastic continuity

equation (4.A.20) must hold for all time. Equivalently, the time derivative of the left

hand side must vanish. Using (4.A.21a-c), we arrive at the elliptic (which is to say

readily solved numerically) diagnostic equation for the pressure perturbation π1
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1

B

[

∂

∂x

(

ρ0
∂π1

∂x

)

+
∂

∂y

(

ρ0
∂π1

∂y

)

+ α2 ∂

∂z

(

ρ0
∂π1

∂z

)]

= α
∂

∂z
(ρ0θ1) −∇ · [ρ0(v0 · ∇)v0]

+

{

∂

∂x
[ρ0 (βδyv0 − γαw0)] +

∂

∂y
[ρ0(−βδyu0)] + α

∂

∂z
[ρ0(γαu0)]

}

.(4.A.23)

We now have a closed set of equations for v0, π1 and θ1, with ρ1, p1 and T1 obtained from

ρ1

ρ0

=

(

1 − κ

κ

)

π1

π0

− θ1, (4.A.24a)

p1

p0

=
1

κ

π1

π0

, (4.A.24b)

T1

T0

=
π1

π0

+ θ1, (4.A.24c)

where, from (4.A.2) and (4.A.3), p0 = π
1
κ

0 and T0 = π0.

Energy in anelastic system

The anelastic system as derived above conserves a form of the energy functional that

is almost the O(ε) approximation to the energy conserved by the fully compressible

equations. We may discover the form that the energy functional takes by the following

educated trial and error approach.

The total energy conserved by the compressible Euler equations is

Ecomp =

∫ ∫ ∫

ρ
(

1
2
|v|2 + gz + cvT

)

dx dy dz, (4.A.25)

where all of the dependent and independent variables are dimensional. In terms of

nondimensional variables,

Ecomp =
(p00

κ

)

L2HB

∫ ∫ ∫

ρ∗
{

ε

2

[

u∗2 + v∗2 +
1

α2
w∗2
]

+ z∗ +
1

B
(1 − κ)T ∗

}

dx∗dy∗dz∗ (4.A.26)
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Naturally, we define the dimensionless energy E∗

comp to be the integral in (4.A.26). Drop-

ping the asterisks once more, we have

Ecomp =

∫ ∫ ∫

ρ

{

ε

2

[

u2 + v2 +
1

α2
w2
]

+ z +
1

B
(1 − κ)T

}

dx dy dz, (4.A.27)

where all variables are dimensionless.

If we now substitute the series (4.A.14) into (4.A.27), we find

Ecomp =

∫ ∫ ∫

ρ0

[(

1 − κ

B

)

+ κz

]

dx dy dz

+ ε

∫ ∫ ∫

ρ0

{

1
2

[

u2
0 + v2

0 +
1

α2
w2

0

]

− θ1z

}

dx dy dz (4.A.28)

+ ε

∫ ∫ ∫ (

1 − κ

B

)(

ρ0
p1

p0

)

dx dy dz + O(ε2).

The first integrand in (4.A.28) is a function of z and as such the integral is trivially a

constant. We may expect, therefore, that the anelastic equations (4.A.21) conserve the

O(ε) terms in (4.A.28). However, it happens that the equations conserve the second

integral exactly and not the third,

Eelastic ≡ ε

∫ ∫ ∫ (

1 − κ

B

)(

ρ0
p1

p0

)

dx dy dz, (4.A.29)

the so called elastic energy term. Sound wave solutions, which we want to exclude,

involve the oscillating exchange of elastic and kinetic energies. The omission of this term

from the energy is what gives the system its name. Hence, we define the anelastic energy

by

E ≡
∫ ∫ ∫

ρ0

{

1
2

[

u2
0 + v2

0 +
1

α2
w2

0

]

− θ1z

}

dx dy dz. (4.A.30)

It may be verified that E is conserved by the equations subject to “conservative” bound-

ary conditions (e.g. no normal flow on the boundaries of a closed domain).

Modified anelastic system

It was decided (Wilhelmson and Ogura, 1972) that the anelastic system of Ogura and

Phillips (1962) was too coarse an approximation for the horizontal momentum equations

for some purposes.
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The horizontal pressure gradient force in (4.A.21a,b) depends only on the mean po-

tential temperature Θ (dimensional). For quasihorizontal motions which do not signifi-

cantly alter the potential temperature profile from a slowly varying basic state θ0(z), it

is preferable to include an O(ε2) term that accounts for that behaviour.

The resulting modified anelastic equations cannot be derived in as clean a manner as

the classic anelastic equations. We argue somewhat qualitatively below.

Consider the alternative expansion for the (dimensionless) potential temperature

θ = 1 + ε(θ̄1(z) + θ1) + ε2θ2 + . . . (4.A.31)

≡ θ0(z) + εθ1 + ε2θ2 + . . . ,

in which θ1 has been redefined implicitly to be the departure of the potential temperature

perturbation from the specified profile θ̄1(z).

The equations of motion are adjusted in order to accomodate the extra precision in

the horizontal momentum equations while still conserving energy (Lipps and Hemler,

1982). This involves changing both the O(1) and O(ε) vertical momentum equations.

The O(1) equation (4.A.15b) becomes

B + θ0(z)
dπ0

dz
= 0. (4.A.32)

The O(ε) equation (4.A.21c) becomes

D0w0

Dt
+ α2

{

−γαu0 +
1

B

[

∂

∂z
(θ0π1) +

dπ0

dz
θ1

]}

= 0, (4.A.33)

where the new term (π1/B)dθ0/dz is added solely to ensure conservation of energy. The

new term is O(ε) smaller than the other terms. Evidently, we have moved some of the

precision from the vertical to the horizontal equations.

We summarize the modified anelastic equations:

D0u0

Dt
− βδyv0 + γαw0 +

1

B
θ0
∂π1

∂x
= 0, (4.A.34a)

D0v0

Dt
+ βδyu0 +

1

B
θ0
∂π1

∂y
= 0, (4.A.34b)
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D0w0

Dt
+ α2

{

−γαu0 +
1

B

[

∂

∂z
(θ0π1) +

dπ0

dz
θ1

]}

= 0, (4.A.34c)

D0θ1

Dt
+
w0

ε

dθ0

dz
= 0, (4.A.34d)

∂

∂x
(ρ0u0) +

∂

∂y
(ρ0v0) +

∂

∂z
(ρ0w0) = 0. (4.A.34e)

Notice the thermodynamic equation (4.A.34d) has changed formally only (because of

the introduction of θ0(z) and the redefinition of θ1). The equation for π1 is again

∂

∂t
[∇ · (ρ0v0)] = 0. (4.A.35)

The other thermodynamic variables ρ, p, and T change in the obvious ways, satisfying

ρ1

ρ0

=

(

1 − κ

κ

)

π1

π0

− θ1

θ0

, (4.A.36a)

p1

p0

=
1

κ

π1

π0

, (4.A.36b)

T1

T0

=
π1

π0

+
θ1

θ0

, (4.A.36c)

where now π0(z) is determined from (4.A.32), ρ0 = (1/θ0)π
1
κ
−1

0 , and T0 = θ0π0.

The anelastic energy in this case is

E =

∫ ∫ ∫

ρ0

{

1

2

[

u2
0 + v2

0 +
1

α2
w2

0

]

+
1

B
π0θ1)

}

dx dy dz, (4.A.37)

which no longer has the neat interpretation as the total energy less the pressure pertur-

bation term, but it differs from the exact anelastic energy only by O(ε).

4.B Functional derivatives of H

Let w = (∆m,∆ζ,∆θ)T and ε ∈ R. Then

H(x + εw) =

∫ ∫ {

ρ0

(

1
2
βδy

2 − γαz
)

(m+ ε∆m)

+
1

2ρ0

[

(

∂

∂z
(ψ + ε∆ψ)

)2

+
1

α2

(

∂

∂y
(ψ + ε∆ψ)

)2
]

(4.B.1)

+
1

εB
ρ0π0(θ + ε∆θ)

}

dy dz,
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where ∆ψ is the change in ψ induced by the change ∆ζ. From (4.1.20),

∆ζ = −
[

∂

∂z

(

1

ρ0

∂

∂z
(∆ψ)

)

+
1

α2

∂

∂y

(

1

ρ0

∂

∂y
(∆ψ)

)]

. (4.B.2)

Expanding (4.B.1),

H(x + εw) =

∫ ∫ {

ρ0

(

1
2
βδy

2 − γαz
)

(m+ ε∆m)

+
1

2ρ0

[

(

∂ψ

∂z

)2

+
1

α2

(

∂ψ

∂y

)2
]

+
ε

ρ0

[(

∂ψ

∂z

)(

∂∆ψ

∂z

)

+
1

α2

(

∂ψ

∂y

)(

∂∆ψ

∂y

)]

+
1

εB
ρ0π0(θ + ε∆θ)

}

dy dz + O(ε2), (4.B.3)

Differentiating with respect to ε,

d

dε
H(x + εw) =

∫ ∫ {

ρ0

(

1
2
βδy

2 − γαz
)

(∆m)

+
1

ρ0

[(

∂ψ

∂z

)(

∂∆ψ

∂z

)

+
1

α2

(

∂ψ

∂y

)(

∂∆ψ

∂y

)]

+
1

εB
ρ0π0(∆θ)

}

dy dz + O(ε). (4.B.4)

Integrating the middle term by parts, and, finally, setting ε = 0,

d

dε

∣

∣

∣

∣

ε=0

H(x + εw) =

∫ ∫ {

ρ0

(

1
2
βδy

2 − γαz
)

(∆m)

+ ψ(∆ζ) +
1

εB
ρ0π0(∆θ)

}

dy dz. (4.B.5)

Comparing (4.B.5) with (4.1.24), the functional gradient of H has components

δH
δm

= ρ0(
1
2
βδy

2 − γαz), (4.B.6a)

δH
δζ

= ψ, (4.B.6b)

δH
δθ

=
1

εB
ρ0π0. (4.B.6c)
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4.C Proof of conservation of HL by

linearized dynamics

In Section 4.2.1, the Hamiltonian for the linearized dynamics was defined

HL =

∫ ∫

D

1

ρ0

[

1

α2
(ψ′

y)
2 + (ψ′

z)
2

]

dy dz

+
n
∑

i=1

∫ ∫

D(i)

ρ0

[

C(i)
mm(M,Θ)m′2 + 2C

(i)
θm(M,Θ)θ′m′ + C

(i)
θθ (M,Θ)θ′2

]

dy dz

(4.C.1)

We now show that HL is conserved by the linearized equations. Taking its time derivative,

we find

1

2

d

dt
HL =

∫ ∫

D

1

ρ0

[

1

α2
ψ′

yψ
′

yt + ψ′

zψ
′

zt

]

dy dz

+
n
∑

i=1

∫ ∫

D(i)

ρ0

[(

C(i)
mm(M,Θ)m′ + C

(i)
θm(M,Θ)θ′

)

m′

t

+
(

C
(i)
θθ (M,Θ)θ′ + C

(i)
mθ(M,Θ)m′

)

θ′t

]

dy dz. (4.C.2)

Substituting (4.2.5):

1

2

d

dt
HL =

∫ ∫

D

ψ′

{

∂
[(

1
2
βδy

2 − γαz
)

,m′
]

+ ∂
( π0

εB
, θ′
)}

dy dz

+
n
∑

i=1

∫ ∫

D(i)

[(

C(i)
mm(M,Θ)m′ + C

(i)
θm(M,Θ)θ′

)

∂(ψ′,M)

+
(

C
(i)
θθ (M,Θ)θ′ + C

(i)
mθ(M,Θ)m′

)

∂(ψ′,Θ)
]

dy dz. (4.C.3)

Expanding the integrals in the sum by parts:
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1

2

d

dt
HL =

∫ ∫

D

ψ′

{

∂
[(

1
2
βδy

2 − γαz
)

,m′
]

+ ∂
( π0

εB
, θ′
)}

dy dz

−
n
∑

i=1

∫ ∫

D(i)

ψ′

[

∂(C(i)
mm(M,Θ)m′,M) + ∂(C

(i)
mθ(M,Θ)θ′,M)

+ ∂(C
(i)
mθ(M,Θ)m′,Θ) + ∂(C

(i)
θθ (M,Θ)θ′,Θ)

]

dy dz

+
n
∑

i,j=1

∫

∂D(i)∩∂D(j)

ψ′

{

ı̂ ×
[(

(C(i)
mm − C(j)

mm)m′ + (C
(i)
mθ − C

(j)
mθ)θ

′

)

∇M

+
(

(C
(i)
mθ − C

(j)
mθ)m

′ + (C
(i)
θθ − C

(j)
θθ )θ′

)

∇Θ
]}

· ν̂(i)dl(i)(y, z). (4.C.4)

The boundary integrals vanish if the C (i) are such that their second partial derivatives

match on the boundaries of the D(i) at equilibrium. Expanding the Jacobians using the

product rule for derivatives, and substituting from (4.2.15):

1

2

d

dt
HL =

n
∑

i=1

∫ ∫

D(i)

ψ′

{

∂
[(

1
2
βδy

2 − γαz
)

,m′
]

+ ∂
( π0

εB
, θ′
)

+
1

ρ0Q

(

∂
[

Θ,
(

1
2
βδy

2 − γαz
)]

∂(m′,M) + ∂
( π0

εB
,M
)

∂(θ′,Θ)

+ ∂
(

Θ,
π0

εB

)

[∂(θ′,M) + ∂(m′,Θ)]

)}

dy dz (4.C.5)

=
n
∑

i=1

∫ ∫

D(i)

ψ′

{

m′

y

[

γα +
1

ρ0Q

(

Mz(−γαΘy − βδyΘz) +
1

εB

dπ0

dz
ΘzΘy

)]

+ m′

z

[

βδy +
1

ρ0Q

(

−My(−γαΘy − βδyΘz) −
1

εB

dπ0

dz
ΘyΘy

)]

+ θ′y

[

− 1

εB

dπ0

dz
+

(

1

εB

dπ0

dz

)

1

ρ0Q
(−MyΘz +MzΘy)

]

+ θ′z

[

1

εB

dπ0

dz

1

ρ0Q
(−Θy(−My) −MyΘy)

]}

dy dz (4.C.6)

= 0,

where (4.2.1) and (4.2.6) are used to see that each term vanishes.



Chapter 5

Nonlinear stability of inviscid

homogeneous Taylor-Couette flow

In this chapter, we consider the stability of steady flow of a homogeneous, incompressible

fluid confined between two rotating solid cylinders. The subject is known as Taylor-

Couette flow, after M. Couette, who used a stationary inner cylinder inside a rotating

outer cylinder to measure the viscosity of liquids, and G. I. Taylor, who made a compre-

hensive theoretical and experimental study of the instability of the flow at high rotation

rates of the inner cylinder with stationary outer cylinder (Taylor, 1923). The experiment

has an obvious connection with the atmospheric problem of symmetric instability.

We focus on the case of both cylinders rotating. By increasing the rate of rotation

of the inner cylinder compared to the outer, a stable laminar azimuthal flow can be

made unstable. The resulting axisymmetric pattern of helical rolls is known as Taylor

vortex flow. Further increase of the ratio of rotation rates takes the system through

a series of bifurcations corresponding to different classes of stable flow and eventually

into turbulence (Andereck et al., 1986). Experimentally, the flow can be made visible

by injecting dye into the fluid or by suspending reflective particles that align with the

direction of flow. See Tagg (1994) for a review of experimental and numerical results,

145
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Chandrasekhar (1961) and Chossat and Iooss (1994) for mathematical treatments, and

Koschmieder (1993) for an overview of the general subject.

In the absence of viscosity, the instability is explained by Rayleigh’s centrifugal sta-

bility theorem (Rayleigh, 1916), which holds that an axisymmetric rotating fluid is stable

as long as the magnitude of angular momentum increases with distance from the axis of

rotation. If no-slip boundary conditions are assumed, then Rayleigh’s criterion is always

violated by the case of the inner cylinder rotating with the outer cylinder at rest, but

viscosity delays the onset of instability. Taylor calculated the neutral stability curve for

the linearized viscous problem, and his result agrees well with experiments, including his

own. Rayleigh’s theorem is the zero viscosity limit of Taylor’s result.

The only steady solutions to the viscous Navier-Stokes equations with no-slip bound-

ary conditions on the surfaces of the cylinders have the azimuthal Couette velocity profile

V (r) = Ar + B/r, where the constants A and B depend on the radii and rotation rates

of the cylinders. Although the uniqueness of the Couette solution depends on viscosity,

the flow is itself independent of the Reynolds number, with Re = ∞ being a singular

limit. This suggests that the behaviour of the instability, at least for short times, might

be described by inviscid dynamics, and we therefore think it reasonable to consider the

stability of the Couette solution under inviscid conditions. Also, since the observed flow

for weakly unstable axisymmetric initial conditions is axisymmetric, i.e. Taylor vortex

flow, we restrict our attention to axisymmetric disturbances.

The viscous problem has been studied extensively. Joseph (1976) describes an energy

method with which it can be shown that flow sufficiently close to solid-body rotation

(small |B|) is asymptotically stable1. If only axisymmetric perturbations are considered,

as in our case, then satisfying the Rayleigh criterion implies asymptotic stability when

the inner cylinder is rotating faster than, but in the same sense as, the outer. See Figure

1The inviscid problem that we consider cannot exhibit asymptotic stability because it would violate
energy conservation.
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Figure 5.1: Stability regions for viscous Taylor-Couette flow. Ω1 and Ω2 are the angular

speeds of, respectively, the inner cylinder of radius a and the outer cylinder of radius b.

ν is the kinematic viscosity. The dashed line through the origin is the inviscid criterion

of Rayleigh (1916). Below the uppermost curve, viscous flow is linearly stable to axisym-

metric disturbances (Taylor, 1923). Between the parallel diagonal lines straddling the

origin, representing near solid-body rotation, the flow is asymptotically stable (Joseph,

1976). The circles and triangles represent points of instability in experiments of Coles

(1965). From Joseph and Hung (1971).

5.1 for a summary of linear and nonlinear results.

Szeri and Holmes (1988) showed that Rayleigh’s criterion is valid for finite but small

amplitude disturbances to steady axisymmetric inviscid flows in an annular cylinder, of

which the Couette profile is a particular case. We extend this result to arbitrarily large

disturbances to stable Couette profiles with the restriction that the ratio of cylinder

speeds not be too high and apply the saturation bound method of Shepherd (1988) to

estimate the amount of energy that can be released into the overturning component of

Taylor vortex flow.
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Figure 5.2: Torque required to maintain the cylinders rotating at Ω1 and Ω2, respec-

tively, divided by the corresponding torque if the fluid were undergoing Couette flow.

Large values indicate instability of Couette flow. Note, in particular, instability at high

Ω2b
2/Ω1a

2. From Joseph (1976), and see references therein.

Our failure to demonstrate nonlinear stability at high values of the rotation rate of the

outer cylinder is qualitatively consistent with experiments. Measurements of the torque

required to maintain given cylinder rotation rates compared to the torque required if the

fluid between the cylinders were undergoing Couette flow show that Couette flow breaks

down at high rotation rates of the outer cylinder (see Figure 5.2).

5.1 Stability of Couette profile

The Euler equations in cylindrical coordinates for axisymmetric motion of an unstratified,

incompressible fluid are

ut + uur + wuz = 1
r
v2 − pr, (5.1.1a)
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Figure 5.3: Schematic diagram of Taylor-Couette apparatus: top view on left and cross-

section through rotation axis on right. The flow is assumed to be periodic in the vertical

direction with some large period r1H.

vt + uvr + wvz = −1
r
uv, (5.1.1b)

wt + uwr + wwz = −pz, (5.1.1c)

(ru)r + (rw)z = 0, (5.1.1d)

where u, v and w are the radial, azimuthal and vertical components of the velocity, p

is the fluid pressure, defined so as to incorporate the uniform density and gravity, r is

distance from the axis of rotation, and z is height measured from an arbitrary reference

point. (5.1.1b) can be rewritten

mt + umr + wmz = 0, (5.1.2)

where m ≡ rv is the vertical component of angular momentum about the rotation axis.

Thus m is a materially conserved quantity. We consider the flow between two infinitely

long coaxial cylinders rotating with constant, but independent, angular speeds. Let r1

be the radius of the inner cylinder and Ω1 its angular speed, and let r2 and Ω2 be the
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radius and angular speed respectively of the outer cylinder (Figure 5.3). We assume that

all variables are periodic in z with period r1H, and that there is no normal flow at the

surfaces of the cylinders (i.e. u(r = r1) = u(r = r2) = 0). For brevity of notation, we

introduce the dimensionless constants η ≡ r2/r1 and µ ≡ Ω2r
2
2/Ω1r

2
1.

Let the equations be nondimensionalized so that r1 is the unit of length, Ω1r1 the

unit of velocity and Ω−1
1 the unit of time.

Solutions to (5.1.1) conserve total energy

H(u, v, w) =

H
2
∫

−
H
2

η
∫

1

[

1
2
(u2 + v2 + w2)

]

r dr dz (5.1.3)

and all integrals of the form

C(u) =

H
2
∫

−
H
2

η
∫

1

C(m)r dr dz, (5.1.4)

where C(m) is an arbitrary function of angular momentum. C is a Casimir invariant in

the Hamiltonian formulation of the dynamics. Note that in all subsequent integrations,

the limits are as in (5.1.3) and (5.1.4) and will be omitted.

We seek conditions for the stability of steady state solutions with v having the form

V (r) = Ar +
B

r
, (5.1.5)

and with u = w = 0. Assuming no-slip boundary conditions on the surfaces of the

cylinders, the Couette coefficients in (5.1.5) are

A =
µ− 1

η2 − 1
, B =

η2 − µ

η2 − 1
. (5.1.6)

To prove that a steady state X is stable, we need to introduce a positive definite

functional (a norm) on the phase space of disturbances to X. Stability can then be

defined in terms of bounds on the norm.
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Let ||∆x|| be a norm defined on the disturbances ∆x ≡ x − X = (u, v − V (r), w)T .

The equilibrium X is stable if for every ε > 0, there exists a δ > 0 such that

||∆x(t = 0)|| < δ ⇒ ||∆x(t)|| < ε ∀t > 0. (5.1.7)

We can show (5.1.7) by finding a conserved functional that can be bounded from above

and below by comparable disturbance norms. The required functional is the disturbance

pseudoenergy

A(u, v, w;V ) ≡ (H + C)(u, v, w) − (H + C)(0, V, 0) (5.1.8)

with C defined so that A is stationary at X. That is,

δA(δx)|
X

= δ(H + C)|
X
≡
∫ ∫

[(V + C ′(M)r)δv] r dr dz = 0 (5.1.9)

for arbitrary variations δx ≡ (δu, δv, δw). We therefore define the arbitrary function C(·)

to be that satisfying

C ′(M) = −V
r

= − AM

M −B
, (5.1.10)

where M ≡ rV = Ar2 + B is the angular momentum of the steady state, and we have

assumed that M is an invertible function of r2. If A 6= 0, then M is invertible, and (5.1.9)

can be satisfied at all points in the domain. On the other hand, if A = 0 (µ = 1), then M

is not invertible, (5.1.9) cannot be satisfied, and this method does not apply. As we will

see, µ = 1 is a bifurcation point between stable and unstable steady states. Henceforth,

we will assume A 6= 0.

Explicitly,

A =

∫ ∫

{

1
2
[(∆u)2 + (∆v)2 + (∆w)2] + V∆v + C(M + ∆m) − C(M)

}

r dr dz,

(5.1.11)

where ∆v ≡ v − V , etc. We can simplify A by applying Taylor’s remainder theorem to

C(m):

C(M + ∆m) − C(M) = ∆mC ′(M) + 1
2
(∆m)2C ′′(m̃), (5.1.12)
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where m̃(r) ∈ [M,M + ∆m]. Noting that V∆v = −∆mC ′(M), this gives

A =

∫ ∫

1
2
[(∆u)2 + (∆w)2 + (1 + r2C ′′(m̃))(∆v)2] r dr dz. (5.1.13)

For infinitesimal disturbances, we may approximate the remainder term in (5.1.12)

sufficiently well by evaluating C ′′ at M . From (5.1.10),

C ′′(M) =
AB

(M −B)2
, (5.1.14)

so A is strictly positive if

1 + r2C ′′(m̃) ≈ M

M −B
=
Ar2 +B

Ar2
=

2

r

(

M

dM/dr

)

> 0, (5.1.15)

and bounded if A 6= 0. Since r ≥ 1, (5.1.15) is satisfied if d(M 2)/dr > 0 for all r, which is

Rayleigh’s criterion for stability. In terms of the coefficients A and B, (5.1.15) is satisfied

if B/A > −1, which is true if and only if µ > 1.

For arbitrarily large perturbations to X, we must allow for all possible values of m̃.

If the function

F (r, m̃) = 1 + r2C ′′(m̃) (5.1.16)

can be bounded from above and below in the rectangle (1 ≤ r ≤ η, 1 ≤ m̃ ≤ µ) by

positive constants λ+ and λ−, then A can be bounded from above and below by norms

satisfying

||∆x||2λ =

∫ ∫

1
2
[(∆u)2 + (∆w)2 + λ(∆v)2] r dr dz, (5.1.17)

where λ = λ− or λ = λ+. Note that while it is permissible for m, and hence possible for

m̃, to be outside of the interval [1, µ] (and we must bound F (r, m̃) for all possible values

of m̃), the function C(·) can be extended beyond that interval in such a way that

C ′′(m) = C ′′(1) for m < 1, (5.1.18a)

C ′′(m) = C ′′(µ) for m > µ (5.1.18b)

(see Figure 5.4a), so we need only consider C ′′(m̃) for values of m̃ in the range of M(r).

Observe that the continuation of C ′′(M) “blows up” at m = B so a construction like
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(5.1.18) is necessary. (5.1.18) may not be the best choice of extension in the sense that

a different choice might lead to a stronger stability condition. The choice of how to

define C(m) outside the range of the equilibrium distribution of m is a freedom in the

energy-Casimir procedure.

The function C ′′(m) is obviously finite in the interval [1, µ] (and for all m because of

(5.1.18)) and can only be negative if A < 0 (µ < 1) or B < 0 (µ > η2). In either case, the

minimum value of F (r, m̃) in the intervals r ∈ [1, η] and m̃ ∈ [1, µ] occurs for r = η and

m̃ = 1. This represents a perturbation that transposes fluid from near the inner cylinder

to near the outer cylinder, conserving its angular momentum. We have in that case

min
AB<0

[F (r, m̃)] = F (η, 1) = 1 + η2B

A
= (η2 + 1 − µ)

(

η2 − 1

µ− 1

)

, (5.1.19)

which is always negative in the case of A < 0 (this is the small amplitude condition) and

in the case of B < 0, it is negative if µ > η2 + 1. We can conclude that the equilibrium

profile M(r) is nonlinearly stable if 1 < µ < η2 + 1, since

||∆x(t)||2λ− ≤ A(t) = A(0) ≤ ||∆x(0)||2λ+
<
λ+

λ−
||∆x(0)||2λ− (5.1.20)

where λ− = inf[F (r, m̃)] and λ+ = sup[F (r, m̃)]. (5.1.7) is then satisfied with δ =
√

λ−/λ+ε.

Note that “small amplitude perturbation” and ||∆x||λ ¿ 1 are not the same. The

former means that ∆x(r, z, t) and its derivatives are small at all values of (r, z, t) while

the latter means that the integral in (5.1.17) is small. The linear stability result (5.1.15)

implies stability for suitably small amplitude perturbations, but it does not imply that

there is a ball of radius δ about X in phase space (excluding X itself) inside which A is

positive, and hence inside which the evolution of the system is contained if ||x(t = 0)|| is

sufficiently small. Consider for example

m(r) = M(r) −G
√
r exp

[

−(η − r)2

4ε1

]

, (5.1.21)
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C(m) is defined to satisfy (5.1.10) for the basic state with η = 1.2 and µ = 1.2. The

dashed curves in both plots are the extensions of the functional forms of C ′′(M) and
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where G and ε1 are constants, and with u = w = 0. For fixed G, ε1 can be made as small

as we like, and for ε1 ¿ η − 1,

||∆x||2λ ≈ λHG2

√

πε1

8
. (5.1.22)

Therefore, any ball in the space of perturbations that includes the origin also includes

perturbations of the form (5.1.21). If µ > η2 + 1, and if G is sufficiently large and ε1

sufficiently small, then A(x;X) < 0.

Hence, we cannot conclude nonlinear stability by this argument if the ratio of cylinder

speeds is too high. In the early experiments of Couette (1890) and those of Schultz-

Grunow (1959), instability was observed at high values of µ, but it was attributed to

asymmetry or imperfections in the construction of the cylinders (see Koschmieder, 1993).

Joseph notes the instability at high µ, claiming that in the case of |Ω2| being sufficiently

large, “the Rayleigh mechanism does not operate strongly, and more complicated time-

dependent and subcritical motions are observed.” (Joseph, 1976, p. 141)

5.2 Saturation bounds on Taylor-Couette instability

Observe that (5.1.20) is a stronger statement than (5.1.7), which simply requires that

solutions are bounded near X provided their initial conditions are close enough to X.

But (5.1.20) implies that every solution is bounded relative to X, no matter how far it

is from X at t = 0.

In particular, the evolution of an initial condition in the neighbourhood of a linearly

unstable basic state XU is constrained by the initial value of ||XU − X||. This suggests

an important application of the energy-Casimir method, namely the calculation of rig-

orous saturation bounds on an instability (Shepherd, 1988). By choosing an optimum

nonlinearly stable basic state X, an upper bound on, for example, the contribution to the

kinetic energy by the radial and vertical components of the velocity that can be released
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into the flow during the evolution of the system from near an unstable equilibrium may

be computed.

Consider an unstable equilibrium XU = (0, VU , 0), and a solution x(t) which begins

near XU . The kinetic energy in the vertical-radial plane K⊥(x) is always less than the

pseudoenergy of x relative to any nonlinearly stable reference state X = (0, V, 0)T (this

is true for any x):

K⊥(x(t)) ≡
∫ ∫

1
2
[(u(t))2 + (w(t))2] r dr dz ≤ A(x(t);X), (5.2.1)

but conservation of A allows us to bound K(x) in terms of x(t=0) ≈ XU according to

K⊥(x(t)) ≤ A(XU ;X) =

∫ ∫

[

1
2
(VU − V )2 + V (VU − V ) + C(MU) − C(M)

]

r dr dz.

(5.2.2)

In this case, we can calculate A(XU ;X) exactly. If we require that C(m) and C ′(m) be

continuous everywhere, then (5.1.10) and (5.1.18) imply (up to an additive constant)

C(m) =



























































−AB ln |M1 −B| − A(M1 −B)

− AM1

M1 −B
(m−M1) +

AB

2(M1 −B)2
(m−M1)

2, m ≤M1

−AB ln |m−B| − A(m−B), M1 ≤ m ≤Mη

−AB ln |Mη −B| − A(Mη −B)

− AM1

Mη −B
(m−Mη) +

AB

2(Mη −B)2
(m−Mη)

2, m ≥Mη

,

(5.2.3)

where M1 = M(1) and Mη = M(η) (see Figure 5.4b).

Consider an unstable equilibrium with angular momentum

MU =

(

µU − 1

η2 − 1

)

r2 +

(

η2 − µU
η2 − 1

)

≡ AUr
2 +BU , (5.2.4)

corresponding to the fluid at the inner cylinder having angular momentum MU = 1 and

the fluid at the outer cylinder having MU = µU < 1. We look for the stable equilibrium

with angular momentum of the form

M = M1

[(

µ− 1

η2 − 1

)

r2 +

(

η2 − µ

η2 − 1

)]

≡ Ar2 +B, (5.2.5)
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Figure 5.5: Partition of interval of integration for a typical stable reference state.

corresponding to a state in which the innermost fluid has M = M1 and the outermost

M = Mη = µM1 (where 1 < µ < η2 + 1), which minimizes A.

Note that for this calculation, we have implicitly scaled m based on the unstable

equilibrium XU because it is fixed and we can compare A(XU ;X) for stable equilibria

X with different values of M(1). Also note that X and XU do not satisfy the same

boundary conditions. This is not a problem because we did not assume that the pertur-

bation satisfied any particular boundary conditions. Physically, we might think of the

perturbation X → XU as a quasistatic (which is to say that the fluid is always in a state

of equilibrium) change in the rotation rates of the cylinders.

In evaluating A, the integral over r is computed in three segments because of the

partition of C(m). Let R1 be the point at which MU = M1µ, if it exists and is in the

interval 1 ≤ r ≤ η, and let R2 be the point at which MU = M1, if it exists and is in
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1 ≤ r ≤ η (see Figure 5.5). Then,

1

H
A(XU ;X) =

∫ η

1

[

1

2
(V 2

U − V 2) + C(MU) − C(M)

]

r dr (5.2.6a)

=

[

A2
U + A2

8
r4 +

(AUBU − AB)

2
r2

+
(B2

U −B2)

2
ln |r| + AB

2
r2(ln |Ar2| − 1)

]η

1

(5.2.6b)

+

{

1

2
[−AB ln |Mη −B| − A(Mη −B)

+
AMη

Mη −B
(Mη −BU) +

AB

2(Mη −B)2
(Mη −BU)2

]

r2

+
1

4

[

− AMη

Mη −B
AU − AB

(Mη −B)2
AU(Mη −BU)

]

r4

+
AB

12(Mη −B)2
A2
Ur

6

}R1

1

(5.2.6c)

+

[

−A(BU −B)

2
r2 − AAU

4
r4

− AB

2AU
(AUr

2 +BU −B)
(

ln |AUr2 +BU −B
)

]R2

R1

(5.2.6d)

+

{

1

2
[−AB ln |M1 −B| − A(M1 −B)

+
AM1

M1 −B
(M1 −BU) +

AB

2(M1 −B)2
(M1 −BU)2

]

r2

+
1

4

[

− AM1

M1 −B
AU − AB

(M1 −B)2
AU(M1 −BU)

]

r4

+
AB

12(Mη −B)2
A2
Ur

6

}η

R2

. (5.2.6e)

If either of R1 and R2 is not in the interval 1 < r < η, then the obvious adjustment to

the integral limits is made (i.e. depending on how the range of MU overlaps the interval

[M1,Mη], one or two of the brackets (5.2.6c)-(5.2.6e) is omitted).

5.3 Numerical results

For a given unstable equilibrium MU(r), A/H was calculated relative to stable equilibria

M(r) with µ between 1 and 1+η2 and M1 between 0 and 1.5. Some examples are plotted
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in Figure 5.6.

The minimum of A occurs when M1 = µU and µ = µ−1
U . Such a pair of MU(r) and

M(r) are shown in Figure 5.7. Such a basic state achieves an optimum balance between

the azimuthal kinetic energy and Casimir contributions to A. V 2
U − V 2 is negative when

M > MU (assuming both are positive) and, since C(m) is a decreasing function in the

range of M(r), C(MU) − C(M) is positive when M > MU . The reverse is true when

M < MU . We have shown that A is positive for every stable M(r), so as the two profiles

diverge, the contribution from the positive term must eventually dominate.

In Figure 5.8a, the minimum A is shown as a function of the angular momentum ratio

of the unstable equilibrium µU . As the linear stability threshold µU = 1 is approached

from below, the maximum disturbance amplitude approaches 0. This is characteristic of

supercritical bifurcations. Assuming the existence of a non-laminar equilibrium solution

for µU < 1 (which has been experimentally shown to be Taylor vortex flow near µU = 1),

its amplitude must be small for small 1 − µU .

On the other hand, the threshold1 µU = 1 + η2, which does not represent a critical

point for linear stability, may be an indication of a subcritical bifurcation at some µU >

1+η2. Joseph (1976) mentions an instability at high rotation rates of the outer cylinder,

saying that in that regime, “the Rayleigh mechanism does not operate strongly, and

more complicated time-dependent and subcritical motions are observed.” In the case

of a subcritical bifurcation, multiple stable equilibria exist for values of the stability

parameter (µU in this case) on the stable side of the bifurcation point (see Figure 5.9

and, for example, Iooss and Joseph 1990).

Finally, in Figure 5.10, we show an upper bound on the fraction of the kinetic energy

K(VU) in the unstable equilibrium that can be converted to kinetic energy in the over-

turning components of the flow (K⊥) as a function of radius ratio. Evidently, a greater

1Actually, we do not claim that µ = 1+ η2 is necessarily a threshold of stability-instability, only that
we cannot show stability for µ > 1 + η2.
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Figure 5.6: Pseudoenergy of unstable equilibrium with angular momentum ratio µU =

0.8 as a function of µ of stable state for multiple values of M1. Radius ratio is η = 1.2.

(a) values of M1 widely spaced, (b) values of M1 near the minimizing case.
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fraction of the energy can be released for larger cylinder gaps. Eventually (not shown),

the curve asymptotes to 1 as η gets very large. This does not imply that all of the energy

can be released into the overturning flow, but rather that we cannot bound the energy

released using this method. In any case, for extremely wide cylinder gaps, the notion of

an inviscid fluid having the Couette velocity profile is unphysical.

5.4 Summary

Using an energy-Casimir approach, we have shown that steady inviscid flow in the Taylor-

Couette problem having the Couette velocity profile is nonlinearly stable if the Rayleigh

criterion µ ≡ Ω2r
2
2/Ω1r

2
1 > 1 is satisfied together with the further requirement that

µ < η2 + 1 ≡ (r2/r1)
2 + 1.

We then applied the method of Shepherd (1988) to bound the amplitude at which
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ratio η are plotted. (a) Pseudoenergy. (b) Pseudoenergy divided by kinetic energy in

unstable equilibrium, K(VU).
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Figure 5.9: Bifurcation diagrams for supercritical (left) and subcritical (right) bifur-

cations. Plotted are amplitudes of equilibrium solutions as functions of some critical

parameter ε. The dashed curves represent unstable equilibria and the solid curves repre-

sent stable equilibria. The pseudoenergy saturation bound curve in Figure 5.8 suggests

that there is a supercritical bifurcation at the linear stability threshhold µ = 1. The

upper limit on nonlinear stability µ = η2 + 1 may indicate a subcritical bifurcation at

some µ2 > η2 + 1. The shaded region in the subcritical diagram indicates a nonlinear

bound on the subcritical instability in terms of the “threshold” µc = η2 + 1.

disturbances to unstable equilibria must saturate. Bounds on saturation amplitude are

obtained by calculating the pseudoenergy in the unstable equilibrium relative to any

stable equilibrium. The stable equilibrium, considering only Couette velocity profiles for

both the stable and unstable equilibria, that gives the least upper bound is that with

angular momentum M(r) satisfying M(r1) = MU(r2) and M(r2) = MU(r1), where MU(r)

is the angular momentum profile of the unstable equilibrium. We have shown that the

saturation amplitude in the neighbourhood of the linear stability threshold approaches

zero, consistent with supercritical bifurcations.

A limitation on our saturation bound result is that we have only considered ax-

isymmetric perturbations. While experiments on corotating cylinders (e.g. Andereck

et al., 1986) suggest that the first bifurcation is into (axisymmetric) Taylor vortices,

non-axisymmetric states emerge as the supercriticality is increased. The maximum su-
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approaches unity.

percriticality for which Taylor vortices prevail becomes ever smaller as the Reynolds

number is increased. In that sense, the two assumptions of axisymmetry and inviscid

flow are not particularly compatible.

We conjecture that the upper limit on µ for nonlinear stability is indirect evidence of

a subcritical bifurcation at some higher value of µ.
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5.A Uniqueness of Couette solution to steady

viscous equations

In vector form, the Navier-Stokes equation is

∂v

∂t
+ (v · ∇)v = −∇p+ ν∇2v, (5.A.1)

where v is the fluid velocity, p is pressure, and ν the kinematic viscosity. The geometry

of the Taylor-Couette problem suggests cylindrical coordinates (r, φ, z), with associated

unit vectors êr, êφ and êz. Let the velocity vector have components (u, v, w) so that

v = uêr + vêφ + wêz. (5.A.2)

The vectors êr and êφ are themselves functions of φ:

d

dφ
êr = êφ,

d

dφ
êφ = −êr. (5.A.3)

Therefore, the components of the advection term are

(v · ∇)v ≡ u
∂v

∂r
+
v

r

∂u

∂φ
+ w

∂v

∂z

=

(

v · ∇u− v2

r

)

êr +
(

v · ∇v +
uv

r

)

êφ + (v · ∇w) êz, (5.A.4)

and of the viscosity term are

∇2v ≡ 1

r

∂

∂r

(

r
∂v

∂r

)

+
1

r2

∂2v

∂φ2
+
∂2v

∂z2

=

(

∇2u− 2

r2

∂v

∂φ
− u

r2

)

êr

+

(

∇2v +
2

r2

∂u

∂φ
− v

r2

)

êφ

+∇2wêz. (5.A.5)

We seek steady solutions to (5.A.1) which are independent of φ and have u = w = 0.

The components of the resulting equilibrium equation are
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V 2

r
− ∂P

∂r
= 0, (5.A.6a)

ν

[

1

r

∂

∂r

(

r
∂V

∂r

)

− V

r2

]

= 0, (5.A.6b)

∂P

∂z
= 0, (5.A.6c)

where P (r, z) and V (r, z) are the pressure and azimuthal velocities of the equilibrium

solution. From (5.A.6c) and (5.A.6a) respectively, we have that P (r, z) and V (r, z) are

independent of z. The general solution to (5.A.6b) is the Couette profile

V (r) = Ar +
B

r
, (5.A.7)

where A and B are constants determined from boundary conditions, and from (5.A.6a),

the pressure is (up to an arbitrary additive constant)

P (r) =
A2r2

2
+ 2AB ln r − B2

2r2
. (5.A.8)
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Conclusion

Symmetric instability is a fundamental phenomenon that can be observed in, for exam-

ple, the Taylor-Couette experiment on flow of a liquid confined between coaxial rotating

cylinders. It is also a significant part of the dynamics in the Earth’s equatorial middle

atmosphere during solstice seasons, when the heating by the sun is stronger in the sum-

mer hemisphere than in the winter. It contributes to the overturning circulation in the

tropical middle atmosphere and the resulting smoothing of angular momentum and tem-

perature gradients over the equator (Semeniuk and Shepherd, 2001), to the semiannual

oscillation in the wind direction at the equatorial stratopause (Shepherd, 2000), and is

one mechanism for exciting the two-day wave in the summer subtropical stratosphere

(Limpasuvan et al., 2000).

The physics underlying the instability is simple. If a fluid is stably stratified parallel

to an axis of symmetry, or homogeneous as is typical in the Taylor-Couette experiment,

then instability sets in when the angular momentum somewhere decreases in the direction

normal to the axis of symmetry. This is the Rayleigh (1916) inertial instability criterion.

If the stratification is more complicated, then the inertial stability condition is (in a

sense) mixed with the condition for convective stability.

In the Earth’s atmosphere, the density stratification is approximately aligned with

167
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gravity (surfaces of constant density are approximately spherical), and the rest state with

respect to the rotating Earth has cylindrical surfaces of constant (“planetary”) angular

momentum. Symmetric stability depends on the relative orientations of the planetary

rotation vector Ω and the gradients of entropy, angular momentum and pressure.

Previous studies (Dunkerton, 1981; Stevens, 1983; Bowman and Shepherd, 1995) have

neglected the component of Ω tangent to the surface, in which case the stratification is

very nearly aligned with the rotation vector. The stability conditions that we have

calculated do not differ significantly from those of the earlier studies for typical Earth

velocity, length, time and temperature scales except in the immediate neighbourhood of

the equator. This is due to the fact that the Coriolis force terms in the dynamical equa-

tions associated with the traditionally neglected component of Ω are relatively small,

although not negligibly so near the equator (White and Bromley, 1995). It is worth not-

ing, however, that including the neglected Coriolis terms restricts the choices of velocity,

density, and temperature (or entropy) fields that satisfy the conditions for equilibrium,

which must obviously be satisfied before one can begin to discuss stability (see Section

3.1.6).

6.1 Summary of results

We have considered the problem of equatorial symmetric stability in the Earth’s middle

atmosphere, taking into account the effects of the often neglected Coriolis force terms

associated with the component of the planetary rotation vector tangent to the surface.

Using an energy-Casimir method based on the Hamiltonian structure of the governing

equations, we derived conditions for the linear stability of a steady zonal solution to the

adiabatic, compressible Euler equations on an equatorial β-plane. We showed that for

stability, it is sufficient that the potential vorticity have the sign of latitude and that

the entropy increase (decrease) in the direction of the local planetary rotation vector in
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the northern (southern) hemisphere. By explicitly solving the steady state equations, we

showed that there are solutions that are stable under the “traditional” equations (without

the neglected Coriolis terms) but unstable in the more general system.

We also looked at symmetric stability in the anelastic equations system. We defined an

exact invariant functional A, the pseudoenergy, that vanishes at the equilibrium state and

showed that conditions for the positive definiteness of A are conditions for the nonlinear

stability of the equilibrium. We were able to show that steady states that are even

functions of latitude and that satisfy the conditions for linear stability are stable with

respect to finite amplitude perturbations. We then applied the saturation bound method

of Shepherd (1988) to calculate an upper bound on the kinetic energy that can develop

in adjustment from an unstable steady state in terms of the pseudoenergy relative to a

stable steady state. Surprisingly, it appears that for states that are asymmetric functions

of latitude, perturbations for which A is negative always exist, although that in itself

does not imply that the equilibrium is necessarily unstable.

We solved the anelastic equations linearized about a state of linear meridional shear

in the zonal velocity, the anelastic counterpart to the problem of Dunkerton (1981).

The solution is unstable in an interval of latitude between the equator and a latitude

proportional to the strength of the shear. The normal mode solution exhibits Taylor

vortices centred over the unstable region, stacked alternately signed anomalies in the

zonal velocity on the equatorward side of the unstable region, and out of phase columns

of temperature anomalies of alternating sign on either side of the unstable region. These

are the features that, when identified in observational data or numerical simulations, are

considered evidence of symmetric instability.

Lastly, we applied the energy-Casimir method to steady flows in the Taylor-Couette

experiment. We showed that steady solutions having the Couette velocity profile are

nonlinearly stable if they satisfy the Rayleigh criterion, that the magnitude of angular

momentum increase with distance from the axis of rotation, and an upper bound on
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the gradient of angular momentum that depends on the width of the gap between the

cylinders.

6.2 Future work

The linear stability criteria in Chapter 3 and Chapter 4 are sufficient for stability. To

demonstrate that they are necessary, an approach such as that of Ooyama (1966) may

be used to show that a positive definite measure of disturbance is always increasing with

time if the stability conditions are not met.

Deriving conditions for stability in a spherical shell, as opposed to on the β-plane

(Bowman and Shepherd, 1995, considered this case for the hydorstatic system), should

also be possible. Any nonlinear calculation will have to take into account the position

dependence of the volume element in the disturbance norm, as was necessary for the

cylindrical geometry of the Taylor-Couette problem in Chapter 5.

If it can be shown to be comparable with “realistic” values (derived from, perhaps,

high resolution, small domain simulations), the saturation bound on the kinetic energy in

the transverse plane derived in Chapter 4 may be incorporated into a scheme for param-

eterizing the effects of unresolved inertial instability. Linear theory, such as was used in

deriving the normal mode solution in Section 4.3, predicts that the most unstable modes

have the smallest vertical scales, while observations and simulations show instability cells

at slightly above or at the smallest vertical scale that can be resolved. Undoubtedly, there

is energy in the unresolved scales. Furthermore, general circulation models that resolve

equatorial inertial instability tend to exhibit overly strong vertical mixing, probably be-

cause all of the available potential energy is going into relatively large instability cells.

An inertial adjustment scheme instantaneously redistributes angular momentum in an

unstable state such that marginal stability is restored and total angular momentum is

conserved. This is analogous to convective adjustment parameterization schemes that
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redistribute potential temperature to produce a marginally convectively stable state in

such a way that total potential energy is conserved (see, e.g., Emanuel, 1994, Chapter

16). The saturation bound could be used to infer the mixing (of chemicals, for example)

that would have occured during the adjustment, since the effective diffusivity is related

to the kinetic energy in the overturning inertial instability cells (assuming that the mix-

ing can be described by a diffusion model). The effective diffusivity also depends on the

vertical scale of the cells, which would have to be inferred by another method.
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