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OUTLINE

• Inertial instability, examples

• Hamiltonian form of

hydrostatic β-plane equations

• Stability of zonal solution

• Solution to equations linearized

about zonal solution

• Saturation of instability



Inertial instability

• Steadily rotating flows have balance

between centrifugal and pressure gradient

forces

• Flow is inertially unstable if radial

perturbations are amplified by imbalance of

forces

• Rayleigh criterion for stability:

absolute angular momentum

everywhere increases with distance

from axis of rotation

• Examples:

– Couette-Taylor experiment

– Equatorial ocean and middle atmosphere



Equatorial β-plane

• Model equatorial dynamics with β-plane

instead of sphere

• Since inertial stability depends on angular

momentum distribution, we must retain

as much information about angular

momentum in spherical as we can.

• Zonal flows in rotating, spherical shell

conserve

m0 = ur cosφ+Ωr2 cos2 φ

• Construct symmetric β-plane equations to

conserve largest terms in m0. Hydrostatic

system conserves

m = u− 12βy
2

where β ≡
2Ω

a
.



Hydrostatic β-plane equations

(for adiabatic, zonally symmetric flow)

ut = −vuy − wuz + βyv

vt = −vvy − wvz − βyu−
1
ρ py

g − 1ρ pz = 0

ρt = −(ρv)y − (ρw)z

θt = −vθy − wθz

• Conserve total energy

H(m, v, ρ, θ) =
∫ ∫

ρ{12(u
2+ v2)

+ gz+ E(ρ, θ)}dydz

• and integrals of the form

C(m, θ) =
∫ ∫

ρC(m, θ)dydz



Hamiltonian form

• By switching to pressure coordinates

we can put the system in the Hamiltonian

form
∂xi
∂t

= Jij
δH

δxj
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where ψ is a streamfunction defined by

v = −∂ψ∂p ω = ∂ψ
∂y

and ζ ≡
∂v

∂p
.

• The vector on the right side is the

functional derivatives of

H(ζ,m, θ) =
∫ ∫

{12v
2+ 1

2βy
2m

+E(ρ, θ) + p/ρ2}dydp



Noncanonical structure

• System is generalization of Hamilton’s
equations of particle dynamics:







∂pi
∂t

∂qi
∂t






=





0 −I

I 0
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• Difference is that fluid systems are
noncanonical.

– J is not invertible

– xt = 0 does not imply that δH
δx = 0

(equilibria are not critical points of H)

– There exist Casimir invariants

satisying J
δC

δx
= 0 ∀x. Namely,

C(m, θ) =
∫ ∫

C(m, θ)dydp



Stability of equilibrium

• An equilibrium X0 is stable with respect to

the norm || · || if

∀ε ∃δ such that

||x(0)−X0|| < δ ⇒ ||x(t)−X0|| < ε ∀t

(the solution x(t) can be bounded arbitrar-
ily close to X0 if it starts close enough)

• Energy-Casimir method

– Choose C(m, θ) such that
δ

δx
(H+ C)

∣

∣

∣

∣

X0

= 0

– Define pseudoenergy

A(x) ≡ (H+ C)(x)− (H+ C)(X0)

– Find a norm || · || such that for all t

||x(t)−X0|| ≤ A(t) ≤ c||x(t)−X0|| <∞

– Then X0 is stable with respect to || · ||.



Zonal equilibrium

• Consider a purely zonal equilibrium

solution X0 with

m =M(y, p), ζ = 0, θ = Θ(y, p)

with associated temperature T (p,Θ)

and density R(p,Θ)

• Must satisfy thermal wind equation

βy

(

∂M

∂p

)

y

=
1

RΘ

(

∂Θ

∂y

)

p

•
δ

δx
(H+ C)

∣

∣

∣

∣

X0

= 0 if

Cm = −12β [y(M,Θ)]2 and Cθ = −cp
T
Θ



Aside: Linear stability

• Necessary condition for stability is that the

equations linearized about X0 be stable.

• Follows if quadratic approximation to A is

positive definite

bowl shaped saddle shaped

versus

A(m′, v′, θ′) ≈
∫ ∫

{

1
2v
′2+ 1

2x
′TΛx′

}

dydp

where

x′ ≡







m′

m0

θ′

θ0






, Λ ≡







m20Cmm m0θ0Cmθ

m0θ0Cmθ Θ20Cθθ







∣

∣

∣

∣

∣

∣

∣

(M,Θ)

Linear stability ⇐⇒ Λ positive definite



Linear stability (cont’d)

• Λ is positive definite if and only if

its eigenvalues λ1(M,Θ) and λ2(M,Θ) are

positive almost everywhere.

Equivalently, if

Cmm > 0, Cθθ > 0

CmmCθθ − C
2
mθ > 0

• Evaluating the derivatives, we find

conditions for linear stability

−βy
Q

(

∂Θ
∂p

)

y
> 0 static stability

−1
RΘQ

(

∂M
∂y

)

p
> 0 inertial stability

βy
RΘQ > 0 symmetric stability



Normed stability

• Linear stability criteria are in fact nonlinear

stability criteria with slight modification

• Using Taylor’s Remainder Theorem, write

A(m′, v′, θ′) =
∫ ∫

{

1
2v
′2+ 1

2x
′TΛ̃x′

}

dydp

where Λ̃ ≡







m20Cmm m0θ0Cmθ

m0θ0Cmθ Θ20Cθθ







∣

∣

∣

∣

∣

∣

∣

(m̃,θ̃)

and m̃ ∈ [M,M +m′], θ̃ ∈ [Θ,Θ+m′]

• If A is symmetric with eigenvalues α1 ≤ α2,

α1|x|
2 ≤ xTAx ≤ α2|x|

2 ∀x

suggesting the family of norms

∣

∣

∣

∣

∣

∣(m′, v′, θ′)T
∣

∣

∣

∣

∣

∣

2

λ
=
∫ ∫

{

1
2v
′2+ λ

2x
′Tx′

}

dydp



Normed stability (cont’d)

• Define

λmin ≡ min(λ(m, θ)), λmax ≡ max(λ(m, θ))

• Then

||x(t)−X0||
2
λmin

≤ A(t) = A(0) ≤ ||x(0)−X0||
2
λmax

and, finally,

||x(0)−X0||
2
λmin

< δ

⇒ ||x(t)−X0||
2
λmin

<
λmax

λmin
δ

• If the linear stability conditions are

satisfied for all values of m and θ accessible

by perturbation, the equilibrium is

nonlinearly stable.



Saturation of instability

• The nonlinear stability analysis suggests a

method for bounding the amount of kinetic

energy released when an unstable

equilibrium is perturbed

• Consider unstable equilibrium as finite

amplitude perturbation to a stable

equilibrium, and use

Ky(t) ≡
∫ ∫

1
2v
′2(t) dydp ≤ A(t) = A(0)

• Example: Dunkerton basic state

m = U0+ sy − 12βy
2

θ = θ0p
−HN2/g

as perturbation to

M = U0 −
1
2By

2

Θ = θ0p
−HN2/g

yields Ky ≤
8
3
s5

β3 (c.f. Ky ≈
27
20

s5

β3 )



SUMMARY

• Linearized solution to equatorial inertial

instability problem exhibits Taylor vortices

as in Couette-Taylor experiment

• Hamiltonian formulation of equatorial

β-plane equations for symmetric, adiabatic,

hydrostatic flow exists

• Inertial stability conditions analogous to those

in Couette-Taylor experiment can be

derived for zonal flows on the equatorial

β-plane using energy-Casimir method

• Leads to method for bounding saturation

of instability


