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OUTLINE

e Inertial instability, examples

e Hamiltonian form of
hydrostatic g-plane equations

e Stability of zonal solution

e Solution to equations linearized
about zonal solution

e Saturation of instability



Inertial instability

e Steadily rotating flows have balance
between centrifugal and pressure gradient
forces

e Flow is inertially unstable if radial
perturbations are amplified by imbalance of
forces

e Rayleigh criterion for stability:

absolute angular momentum
everywhere increases with distance
from axis of rotation

e Examples:
— Couette-Taylor experiment

— Equatorial ocean and middle atmosphere



Equatorial g-plane

e Model equatorial dynamics with g-plane
instead of sphere

e Since inertial stability depends on angular
momentum distribution, we must retain
as much information about angular
momentum in spherical as we can.

e Zonal flows in rotating, spherical shell
conserve

mo = ur COS ¢ + Qr? cos? 0,

e Construct symmetric g-plane equations to
conserve largest terms in mg. Hydrostatic
system conserves
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Hydrostatic g-plane equations

(for adiabatic, zonally symmetric flow)

U = —vuy — wuz + Pyv

v = —UUy — WUz — Byu — %py
g—4pz = 0
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e Conserve total energy
H(m,v,p,0) = [ [ p{b(u?+0?)

+ g2+ E(p,0)}dydz

e and integrals of the form

C(m,0) = // pC'(m, 0)dydz



Hamiltonian form

e By switching to pressure coordinates
we can put the system in the Hamiltonian
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where 9 is a streamfunction defined by

e [ he vector on the right side is the
functional derivatives of

H(¢,m,0) = [ [{3v? + 38y°m
+E&(p, 0) + p/p?}dydp



Noncanonical structure

e System is generalization of Hamilton's
equations of particle dynamics:
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e Difference is that fluid systems are
noncanonical.

— J is not invertible

— X; = 0 does not imply that %—Z =0
(equilibria are not critical points of H)

— T here exist Casimir invariants

oC
satisying J5— = 0 Vx. Namely,
X

C(m,0) = // C(m, 0)dydp



Stability of equilibrium

e An equilibrium X is stable with respect to
the norm || - || if

Ve 46 such that
1x(0) — Xol| < = [|x(t) — Xql| < eVt

(the solution x(¢) can be bounded arbitrar-
ily close to X if it starts close enough)

e Energy-Casimir method

)
— Choose C(m,0) suchthat —(H+C)] =0
ox Xo

— Define pseudoenergy
Ax)=(H+C)(x) — (H+C)(Xo)

— Find a norm || - || such that for all ¢
1x(t) — Xol| < A(t) < ¢f|x(t) — Xo|| < o

— Then X is stable with respect to || - ||.



Zonal equilibrium

e Consider a purely zonal equilibrium
solution X with

m = M(y,p), (=0, 0 =0(y,p)

with associated temperature T'(p, ©)
and density R(p, ©)

e Must satisfy thermal wind equation
oM 1 (0O
%9 %y ) T Rroe\ o
P/y Y/p
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Cm = —38[y(M,©)]? and Cp= —cp&



Aside: Linear stability

e Necessary condition for stability is that the
equations linearized about Xy be stable.

e Follows if quadratic approximation to A is
positive definite

bowl shaped saddle shaped

VErsus

A(m/ v, 0" ~ // {%0’2 -+ %X/T/\X/}dydp
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Linear stability <= A positive definite



Linear stability (cont’d)

e /\ is positive definite if and only if
its eigenvalues \{(M,©) and \>(M,O) are
positive almost everywhere.

Equivalently, if
Cmm > 0, Cpgp > O

e Evaluating the derivatives, we find
conditions for linear stability

—By (0O : s
0 (ap)y > 0 static stability

rOQ oy >p > 0 inertial stability

R%yQ >0 symmetric stability



Normed stability

e Linear stability criteria are in fact nonlinear
stability criteria with slight modification

e Using Taylor's Remainder Theorem, write

A(m/, v, 0) = // {%?}/2 -+ %X’T/N\X/}dydp

) m3Cmm  moBoChnyg
where N\ =

| m000Cme  ©5Ce0 | |(m.0)
and m € [M,M +m/], 6 € [©,0 4+ m/]

e If A is symmetric with eigenvalues a1 < a»,
a1]x]? < xTAx < as|x|? Vx

suggesting the family of norms

[T = [ {4 3



Normed stability (cont’d)

e Define
Amin = MiN(A(m, 0)), Amaz = Mmax(A(m,0))

e | hen
1x(t) — Xoll3

< A®) = A(0) < [|x(0) — Xol|3

and, finally,
1x(0) = Xoll} <4

A
= |[x(t) — Xoll§ < %s

Amz’n

e If the linear stability conditions are
satisfied for all values of m and 6 accessible
by perturbation, the equilibrium is
nonlinearly stable.



Saturation of instability

e [ he nonlinear stability analysis suggests a
method for bounding the amount of Kinetic
energy released when an unstable
equilibrium is perturbed

e Consider unstable equilibrium as finite
amplitude perturbation to a stable
equilibrium, and use

Cy(8) = [ [ 3072(8) dydp < A(t) = A(0)

e Example: Dunkerton basic state

m = U + sy — 50y°
as perturbation to
M = Ug — 5By?
© = Qop_HNQ/g
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SUMMARY

e Linearized solution to equatorial inertial
instability problem exhibits Taylor vortices
as in Couette-Taylor experiment

e Hamiltonian formulation of equatorial
B-plane equations for symmetric, adiabatic,
hydrostatic flow exists

e Inertial stability conditions analogous to those
in Couette-Taylor experiment can be
derived for zonal flows on the equatorial
B-plane using energy-Casimir method

e Leads to method for bounding saturation
of instability



