
Analyse Hamiltonienne d’instabilité
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1. L’ENERGIE ET LA STABILITE

MAIN IDEA:

• For systems that conserve energy, the stability

of fixed points (i.e. time independent

solutions) is closely related to the behaviour of

the energy function(al) near the fixed point.
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• If a system is in canonical Hamiltonian form and the

Hamiltonian function(al) does not depend explicitly on

time, then:

– The Hamiltonian is conserved in time.

– Steady state solutions are critical points of the

Hamiltonian function(al).

• For many systems, the Hamiltonian is the total energy

(kinetic energy T plus potential energy U).
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• Example: If the state of the system is described by

generalized coordinate qqq(t) = (q1(t), .., qn(t)) and its

conjugate momentum ppp(t) = (p1(t), .., pn(t)), and the

Hamiltonian function is H(qqq,ppp), then Hamilton’s

Equations are

dqi
dt

=
∂H

∂pi

,
dpi

dt
= −

∂H

∂qi

(cf. Newton’s equations m
dqi

dt
= pi,

dpi

dt
= −

∂U(qqq)

∂qi

)

• Therefore,

dH

dt
=

n
∑

i

(

∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt

)

= 0

dqi

dt
=

dpi

dt
= 0 ⇐⇒ ∇(qqq,ppp)H = 0
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• What does this have to do with stability?

– Stability of a steady solution means that if the system

starts close enough to the steady solution, it will

remain close for all time.

– Mathematically (Lyapunov):

Steady state (QQQ,PPP) is stable with respect to the norm

||(qqq−QQQ,ppp− PPP)|| if:

for every ε, there is a δ such that,

if ||(qqq(t = 0),ppp(t = 0))− (QQQ,PPP)|| < δ,

then ||(qqq(t),ppp(t))− (QQQ,PPP)|| < ε for all times t.
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• Norm might be Euclidean norm (distance)

||(qqq−QQQ,ppp− PPP)|| ≡

√

∑

i

[(qi −Qi)2 + (pi −Qi)2]

ε

δ

• Black line is trajectory of sys-

tem through phase space (the

space of all states (qqq,ppp))

(← these balls are at least

3-dimensional)
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• In the neighbourhood of a critical point, the Hamiltonian

can have one of two geometries, corresponding to

stability and instability:

Phase space

level curves →

“bowl” “saddle”

Point is stable Point is unstable



1. L’ENERGIE ET LA STABILITE INSTABILITE A INERTIE EQUATORIALE

• Hamilton’s equations can be generalized to

non-canonical forms; i.e. systems for which the state of

the system xxx is not described by conjugate pairs of

coordinates and momenta.

• In that case, the equations (still) take the form

dxxx

dt
= JJJ(xxx)∇xxxH(xxx)

but the matrix JJJ 6=

(

0 IIIn

−IIIn 0

)

and is not invertible.

• Therefore, fixed points might not be critical points of

the Hamiltonian!
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• However . . . in non-canonical systems, there exist other

conserved functionals called Casimir invariants.

• They may be thought of as constraints on the dynamics:

– Fixed points are critical points of the Hamiltonian

given the constraints of the Casimir invariants.

– Equivalently, fixed points are points at which there

exists a Casimir invariant C(xxx) such that the surface

of constant Hamiltonian H(xxx) is tangent to the

surface of constant C(xxx).

(cf. the method of Lagrange multipliers for finding

extrema of constrained systems).

• For stability, we look at the geometry of H(xxx) + C(xxx)

near the fixed point.
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2. EXEMPLE: LA “RIGID BODY” TOURNANT
(e.g. Arnold, V. I. Mathematical Methods of Classical Mechanics)

• The rotational properties of a free rigid body are

characterized by its moments of inertia I1, I2, and I3
about its three principal axes.

• The state of the system is given by mmm = (m1,m2,m3),

the body’s angular momentum about each of its

principal axes. The Hamiltonian is the kinetic energy

H(mmm) =
1

2

(

m2
1

I1
+
m2

2

I2
+
m2

3

I3

)

and the Casimir is total angular momentum

C(mmm) = m2
1 +m2

2 +m2
3
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• The trajectories of the system through phase space (i.e.

the three dimensional space of angular momentum) are

thus the intersections of a sphere (angular momentum),

and an ellipsoid (kinetic energy).

• Fixed points are points at which the sphere and the

ellipsoid are tangent.

• If the moments of inertia are all different, the only fixed

points correspond to rotation strictly about one of the

principal axes.

• Are these fixed points STABLE or UNSTABLE?
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• Rotation about the lightest axis . . .
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• Rotation about the lightest axis is

⇒ STABLE!
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• Rotation about the heaviest axis . . .
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• Rotation about the heaviest axis is

⇒ STABLE!
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• Rotation about the middle axis . . .
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• Rotation about the middle axis is

⇒ UNSTABLE!
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3. LA STABILITE SYMETRIQUE
EQUATORIALE

• Hamiltonian methods can also apply to the partial

differential equations of fluid mechanics.

• The independent variables are continuous functions of

time and space, and the Hamiltonian is a functional of

the independent variables.

• Hamiltonian fluid systems written in Eulerian variables

(velocity, temperature, entropy, etc.) are non-canonical.

• The Casimirs are commonly functionals of Lagrangian

invariants like potential vorticity and entropy.
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• Consider the problem of the stability of a zonal

(east-west) flow in the equatorial atmosphere.

• Instability in equatorial zonal flows is a significant

process in shaping the dynamics in the equatorial

stratosphere during solstice seasons, and in organizing

moist convection in the equatorial troposphere.

• If the flow is adiabatic and inviscid, it can be described

by a non-canonical Hamiltonian system of equations.

• If the system is also assumed to be independent of

longitude, its stability characteristics can be determined

with the “energy-Casimir” method.

• We use the anelastic approximation on the equatorial

β-plane.
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• The state of the system is described by xxx = (m, ζ, θ),

where m is the component of absolute angular

momentum corresponding to zonal motion,

ζ is the component of relative vorticity in the zonal

direction (corresponding to meridional and vertical

motion), and θ is potential temperature.

• The Hamiltonian is:

H =

Z Z

(

ρ0

`

1

2
βy2

− γz
´

m+
1

2ρ0

"

„

∂ψ

∂z

«

2

+

„

∂ψ

∂y

«

2
#

+ ρ0π0θ

)

dy dz

where (y, z) are latitude and altitude, (0, γ, βy) is the

local planetary rotation vector, ψ is a streamfunction for

motion in the (y, z) plane, and π0(z) and ρ0(z) are

prescribed pressure and density fields.
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• The Casimirs are functionals of the form

C =

∫ ∫

C(m, θ) dy dz

where C(m, θ) is an arbitrary twice differentiable

function.

• Steady states XXX = (M(y, z), 0,Θ(y, z)) satisfy the

thermal wind equation
(

dπ0

dz

)

∂Θ

∂y
− βy

∂M

∂z
+ γ

∂M

∂y
= 0
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• Step 1: Find the Casimirs which are tangent to the

Hamiltonian at the fixed points. These give relations

between the derivatives of C(m, θ) and the steady state

functions M and Θ.

• Step 2: Find conditions under which H + C has a

minimum at the basic state. These are conditions on the

second derivatives of C(m, θ) and in turn on the

gradients of M and Θ, and in particular on the potential

vorticity Q = 1
ρ0

∂(Θ,M).

• Step 3: We can then define a norm on the displacements

x−X with respect to which the conditions found in

Step 2 are sufficient for Lyapunov stability.
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⇒ Stability Conditions

1

Q
∂(Θ,− 1

2
βy2 + γz) > 0
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SOMMAIRE

• In Hamiltonian systems, there is a direct connection

between the geometry of the energy functional near fixed

points and their stability properties.

• Non-canonical Hamiltonian systems have additional

invariants (besides energy) called Casimir invariants.

Fixed points are critical points of the Hamiltonian given

the Casimir invariants as constraints.

• The free rotations of a rigid body are an example of a

system described by a non-canonical Hamiltonian system

of equations. Rotation about the principal axis of

intermediate moment of inertia is an unstable fixed

point.
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• Inviscid, adiabatic fluid systems in Eulerian variables are

also non-canonical Hamiltonian.

• Longitudinally symmetric zonal flows at the equator are

stable if the potential vorticity has the sign of latitude,

and the absolute zonal angular momentum increases

towards the equator.


