
INTRODUCTION

The “traditional” hydrostatic approximation to the equations of fluid motion
on a sphere includes certain geometrical approximations necessary for retain-
ing conservation of energy and angular momentum. In particular, the radial
coordinate is replaced by the earth’s mean radius, and the horizontal com-
ponent of the earth’s rotation vector is neglected. The neglected terms are
most significant near the equator. Studies by White and Bromley (1995) and
de Verdière and Schopp (1994) have suggested that neglecting these terms
near the equator is not justified.

We consider the importance of making the hydrostatic approximation in the
context of equatorial inertial instability. Inertial instability refers to a flow
becoming unstable due to its distribution of angular momentum. The sim-
plest case, axisymmetric circular flow, is unstable if the angular momentum
decreases with distance from the axis of rotation. Adjustment to a stable
state involves the formation of vertical rolls superposed on the circular flow.
These are known as Taylor vortices after the Taylor-Couette experiment on
flow between co-rotating cylinders (Fig. 1a). In the equatorial middle atmo-
sphere, the approximately zonal mean flow can become inertially unstable if
the angular momentum is maximum away from the equator, leading to the
formation of vortices in the vertical-meridional plane (Fig. 1b).



PREVIOUS RESULTS

Dunkerton (1981) - considered a zonal flow on an equatorial β-plane with
no vertical velocity shear and linear horizontal shear. The linearized system
can be solved exactly. The most unstable mode consists of rolls in the yz
plane, the formation of vertically stacked zonal jets of alternating direction,
and vertically stacked cells of relatively warm and relatively cold air (see
Fig. 2). The zonal jets are a signature of inertial instability in observations
of the equatorial deep ocean (Hua et al 1997) and the temperature cells in
observations of the equatorial middle atmosphere (Hitchman et al 1987).

Stevens (1983) - derived linear stability criteria for symmetric zonal flow on
a sphere in hydrostatic system.

Cho et al (1993) and Mu et al (1996) - applied energy-Casimir method to
symmetric stability problem on an f -plane. Found linear and nonlinear sta-
bility criteria.

Bowman and Shepherd (1995) - found linear and nonlinear stability criteria
for flow on a sphere in hydrostatic system using energy-Casimir method.

White and Bromley (1995) - reexamined traditional hydrostatic approxima-
tion for purposes of numerical weather prediction. Presented scaling argu-
ments that showed neglected Coriolis terms can be as large as 10
Hua, Moore and Le Gentil (1997) - motivated by observations of equatorial
ocean, performed numerical experiments on inertial adjustment keeping the
nonhydrostatic Coriolis terms. They derived the criterion for linear stability
in nonhydrostatic system.



GOVERNING EQUATIONS

Fluid parcels undergoing frictionless, zonal motion in a spherical shell con-
serve absolute zonal angular momentum

L ≡ ur cosφ+ Ωr2 cos2 φ,

where u is zonal velocity, r is distance from the centre of the earth, and φ is
latitude.

For flow near the equator, we consider only the largest non-constant terms
in the Taylor expansion of L
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where Ω is the earth’s angular velocity, a is the mean radius of the earth,
y ≡ rφ is arclength away from the equator, and z is distance above the
earth’s surface, and we approximate the spherical geometry with that of a
plane. In this study, we consider flow in a rectangular (x, y, z) box with
periodic boundary conditions in x that materially conserves the “angular
momentum”

m ≡ u− 1
2
βy2 + γz,

where β ≡ 2Ω/a and γ ≡ 2Ω. The appropriate set of equations is

ut = −vuy − wuz + βyv − γw
vt = −vvy − wvz − βyu− 1

ρ
py

}
horizontal momentum

γu− g − 1
ρ
pz = 0 “hydrostatic” condition

ρt = −(ρv)y − (ρw)z continuity equation

st = −vsy − wsz adiabatic motion

In the above, ρ and p are density and pressure, u, v, and w are velocities in the
x, y and z directions, g is the acceleration due to gravity, and s is the entropy.

Setting γ = 0 reduces the system to the usual hydrostatic equatorial β-plane
equations (see Andrews et al 1987). The system as it stands incorporates the
more realistic angular momentum information. It might be called the quasi-
hydrostatic equatorial β-plane equations after White and Bromley (1995).



THE ENERGY-CASIMIR METHOD OF STABILITY ANALYSIS

We now introduce the energy-Casimir method of stability analysis. The
idea is to exploit the connection between the stability of an equilibrium and
the phase space geometry of a conserved function of the dynamics in the
neighbourhood of the corresponding fixed point. As an introduction, we out-
line the method for finite dimensional systems (governed by sets of ordinary
differential equations in canonical form) before describing and applying the
method to an infinite dimensional fluid problem (governed by a set of partial
differential equations in noncanonical form).

Ordinary Differential Equations

The state of a system governed by a set of ordinary differential equations
xt = F(x) can be represented by a point in a finite dimensional phase space.
If the system is conservative, then there is a conserved function H(x) called
the Hamiltonian, and the evolution of the system in phase space is con-
strained to curves of constant H.

If the system is in canonical form, then equilibrium solutions X of the equa-
tions (satisfying F(X) = 0) are critical points of the Hamiltonian. That
is

F(X) = 0 ⇒ ∂H

∂xi

∣∣∣∣∣
X

= 0, i = 1..n,

where n is the dimension of the phase space.

X is a linearly stable solution if the equations linearized about X have no
exponentially growing solutions. Linear stability follows if X is an extreme
point of the Hamiltonian, or equivalently, if the matrix

∂2H

∂xi∂xj

∣∣∣∣∣
X

, i, j = 1..n

is positive definite (has strictly positive eigenvalues). This is intuitive in two-
dimensions: in the neighbourhood of an extremum, H is shaped like a bowl,
and level curves of H are closed; in the neighbourhood of an unstable equi-
librium, H is shaped like a saddle, and level curves are open (so the system
is not constrained to stay near the equilibrium).



Partial Differential Equations and Noncanonical Representation

The same analysis can be applied to systems of partial differential equations.
In that case, the state of the system is represented by a point x in an infinite
dimensional phase space, and stability is assessed based on the geometry of
a conserved functional of the dynamical fields.

Hamiltonian representations of fluid systems are typically cast in noncanon-
ical form. The Hamiltonian functional H is conserved as well as families of
Casimir invariants C. A fixed point X of the system is a critical point of a
combined invariant H + C. We denote this condition by

δ(H + C)
δx

∣∣∣∣∣
X

= 0.

Linear stability of the solution X follows if it can be shown that the second
variation,

δ2(H + C)|X
is of definite sign. The Casimirs are typically arbitrary functions of mate-
rially conserved quantities. In practice, we use the first criterion above to
determine the appropriate Casimir and the second to determine sufficient
conditions for stability of the equilibrium flow.



STABILITY OF ZONAL EQUATORIAL FLOW

Linear stability

The quasi-hydrostatic β-plane system conserves the total energy

H(m, v, ρ, s) =
∫ ∫

ρ
(

1
2
(u2 + v2) + gz + E(ρ, s)

)
dydz

where E(ρ, s) is the internal energy, obeying the thermodynamic identity

dE =
p

ρ2
dρ+ Tds,

where T is temperature. It also conserves the family of Casimirs

C(m, ρ, s) =
∫ ∫

ρC(m, s)dydz,

where C(m, s) is an arbitrary function.

We investigate the stability of a steady, purely zonal flow, with m = M
(u = U), v = 0 (w = 0), ρ = R, s = S (with corresponding p = P (R, S) and
steady state temperature T (R, S) determined by a thermodynamic equation
of state). The flow must satisfy the thermal wind equation

βyMz + γMy =

(
∂T

∂R

)
S

(RzSy −RySz).

We determine C(m, s) by calculating the first variation ofH+C and requiring
that it vanish for the equilibrium flow. We obtain

C = −1
2
U2 − gz(M,S)− E(R, S)−R

(
∂E
∂R

)
S
,

Cm = −U, Cs = −T,
which is meaningful and consistent only if the steady state fields M(y, z) and
S(y, z) uniquely define inverse maps y(M,S) and z(M,S). That is equivalent
to assuming that the steady state potential vorticity

Q(y, z) ≡MzSy −MySz

is single-signed in the domain of interest.



The next step is to determine conditions on C such that the basic flow is
an extremum of H + C. To that end, we calculate the second variation of
H+ C, and require it to be positive definite (positive for arbitrary variations
of the dynamical variables m, v, ρ, s from their basic states). We obtain the
conditions

(ρEρρ + 2Eρ)|(R,S) > 0

(1 + Cmm)|(M,S) > 0[
(ρEρρ + 2Eρ)(Ess + Css)− ρE2

ρs

]∣∣∣
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]
(1 + Cmm)− (ρEρρ + 2Eρ)C

2
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> 0.

We can rewrite the conditions in the more instructive forms

c2 ≡
(
∂P

∂R

)
S

> 0
c is the speed of sound,
so this is trivially true

1
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(βySz + γSy) > 0 static stability
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[βyUMz + (γU − g)My] > 0 inertial stability
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fQ > 0
(result of Hua et al 1997)

Observe that for an ideal gas, for example, (∂T/∂R)S is positive, so the in-
ertial stability condition implies that M decreases away from the equator
(g � γU ≈ 2× 10−4 m/s2 - the dominant balance is −gMy/Q > 0).

The final condition partly validates our assumption that Q be single-signed.
Since f changes sign only at the equator, Q must be positive in the northern
hemisphere, negative in the southern, and (for continuity) must vanish at
the equator itself. Under our stability conditions, the map (y, z) → (M,S)
is invertible in each hemisphere. Q changing sign away from the equator can
be shown to imply instability (Hua et al 1997).



Nonlinear stability

We have found conditions under which a zonal flow near the equator is lin-
early stable. This ensures that solutions to the equations linearized about
that basic state have no exponentially growing modes.

True stability, however, requires that a solution that starts “near” the equi-
librium, remains “near” for all subsequent time. We define nearness in terms
of a disturbance norm. Nonlinear (or finite amplitude) stability, then, means

||x′(t = 0)|| < ε⇒ ||x′(t)|| < δ(ε)∀t > 0,

where x′(t) = (m′(t), v′(t), ρ′(t), s′(t)) is the departure of the state of the
system from equilibrium X at time t, and || · || is a norm.

We can demonstrate nonlinear stability of our basic flow by defining the
pseudoenergy of the perturbed state

A ≡ (H + C)(x)− (H + C)(X)

and showing that it can be bounded from above and below for all time by
two comparable disturbance norms || · ||− and || · ||+. Since A is an exact
invariant, the following logical chain establishes nonlinear stability

||x′(t)||− < A(t) = A(0) < ||x′(0)||+ < k||x′(0)||−

so that
||x′(0)|| < ε⇒ ||x′(t)|| < kε.

It can be shown that for some ρ̃ ∈ [R,R + ρ′], m̃ ∈ [M,M + m′] and
s̃ ∈ [S, S + s′],
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ρ0

s0
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where ˜ above a symbol indicates that it is evaluated at (ρ̃, m̃, s̃) and ρ0, m0

and s0 are arbitrary, positive dimensional constants.

We define a family of norms by
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and observe that if
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ρ0

s0
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Ẽρ) +

s0

ρ0
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(where the minimum and maximum are taken over the whole domain and all
time), then for all t,

||x′||2c− ≤ A ≤ ||x′||2c+ .
and nonlinear stability follows as outlined above.



There is a fine point that should be addressed now. The linear stability cri-
teria imply nonlinear stability only if the interpolated phase point x̃ at which
the functions are evaluated in the norms is part of the domain at the initial
time. This is true of m̃ and s̃ for a natural perturbation because m and s
are Lagrangian invariants of symmetric adiabatic flow. The evolution of the
system does not introduce any new values of m and s. It is not necessarily
true for ρ̃, but if we assume that Eρs and Ess are positive and bounded for all
time (reasonable for an ideal gas in the normal atmosphere), then nonlinear
stability can be claimed. See Bowman and Shepherd (1995) for a discussion
of this issue.

The nonlinear stability result has an interesting application. Given an unsta-
ble equilibrium, it is natural to ask how large the instability can grow before
it saturates. To answer this question, we consider the unstable equilibrium as
a finite amplitude perturbation to a nonlinearly stable equilibrium. We can
thereby compute an upper bound to the saturation of the instability. The
upper bound will depend on c−, c+, and the particular stable state that we
choose. The problem then becomes one of minimizing the upper bound over
these variables. See Mu et al (1996) for an application of this method to a
related problem.



CONCLUSION

We have considered the effects of relaxing the traditional hydrostatic approx-
imation on the classic problem of symmetric stability. It is reassuring that
the basic results concerning the stability criteria generalize from the hydro-
static β-plane case. In that sense, the fundamental structure of the system
is unchanged.

Future work will focus on deriving saturation bounds on various unstable
basic states and will look for quantitative differences from the hydrostatic
case.
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