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Motivation

Observations of the equatorial Atlantic:

(b)  950−1050 dbar floats
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Gouriou et al. 2001 =⇒
– instantaneous merid. sect. 23◦ W

– strongly barotropic jets

⇐= Ollitrault et al. 2006
– zonal currents near 1000 m depth

– multiple, equally spaced jets
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Observations of the equatorial Atlantic:

low-frequency variability (30-60 days) in meridional velocity,
predominantly near western boundary and coherent over O(1000m) depth
(Bunge et al., 2006)

zonally symmetric zonal velocity with strong barotropic component
(Gouriou et al., 2001)

symmetry about the equator in both zonal and meridional velocity
(Bourles et al., 2003).

Dispersion diagram for meridionally confined
equatorial waves:

Short wavelength Rossby and mixed
Rossby-gravity waves have low-frequency
and eastward group velocity.

Variability near western boundary could
excite such waves which would then
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Jet formation through wave instability

In the short wavelength limit, the instability of barotropic Rossby waves
(Lorenz, 1972; Gill, 1974; Lee and Smith, 2003) leads to the formation of zonal jets
(Manfroi and Young, 1999).
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Jet formation through wave instability

In the short wavelength limit, the instability of barotropic Rossby waves
(Lorenz, 1972; Gill, 1974; Lee and Smith, 2003) leads to the formation of zonal jets
(Manfroi and Young, 1999).

Equatorial Rossby and mixed Rossby-gravity (MRG) waves have dispersion relations
and velocity fields similar to barotropic Rossby waves and are thus subject to the same
barotropic instability (even though they are inherently baroclinic).

Numerical simulations of MRG waves excited
from the western boundary show that they can
lead to zonal jets:

Baroclinic equatorial deep jets
(d’Orgeville et al., 2007; Hua et al., 2008)

Extra-equatorial barotropic jets
(Ménesguen et al., submitted)

EQUATOR

x

y

x

z

Jets and instabilities – p. 5/24



Simulations of low frequency MRG waves

To understand the basic mechanism performed high-resolution Primitive Equations
simulations using the Regional Ocean Modeling System (ROMS)
(Shchepetkin and McWilliams, 2005) initialized with a mixed Rossby-gravity wave in a
zonally-periodic reentrant β-plane channel.
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(Shchepetkin and McWilliams, 2005) initialized with a mixed Rossby-gravity wave in a
zonally-periodic reentrant β-plane channel.

Fixed parameters were:

buoyancy frequency N = 2 × 10−3 s−1

ocean depth H = 5000 m

vertical mode 1, with wavelength 10000 m

giving:

a gravest mode Kelvin wave speed c ≡ NH
π

= 3.2 m s−1

an equatorial deformation radius LD ≡
√

c
β

= 375 km

Parameters varied were the amplitude of meridional velocity V ∗
0 and the zonal

wavelength λx, or in nondimensional terms:

Froude number V0 ≡ V ∗
0

c
, zonal wavenumber k = 2π

LD

λx
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Simulations of low frequency MRG waves

Considered cases with −6 < k < −16 (wavelengths between 150 km and 350 km)
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Simulations of low frequency MRG waves

Considered cases with −6 < k < −16 (wavelengths between 150 km and 350 km)

Dispersion relation:

ω ≡ ω∗

√
βc

=
1

2

(

k +
√

k2 − 4
)

For vertical mode 1, simulations have wave periods between 50 and 200 days.

In the k ≪ −1 (low frequency) limit,

ω ∼ − 1

k

⇒ zonal shear in meridional velocity dominates the β effect (rotation)
and ω (wave propagation).
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Simulations of low frequency MRG waves

Simulation with V0 = 0.11 (0.36 cm amplitude) and k = −6.3 (350 km wavelength)

at 0.1◦ × 0.1◦ horizontal resolution (1◦ ≈ 100km)

100-200 vertical levels (25-50 m vertical resolution)
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Barotropic Instability

V < 0

V > 0

Barotropic instability occurs in horizontally sheared horizontal flows. It redistributes
horizontal momentum.
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Barotropic Instability

inflection
point

V < 0

V > 0

Barotropic instability occurs in horizontally sheared horizontal flows. It redistributes
horizontal momentum.

A necessary condition for instability is that the flow V (x) have an inflection point
(Rayleigh), and furthermore, that it be a maximum of absolute vorticity (Fjortoft).
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Barotropic Instability

Vxx < 0

Vxx > 0

“Rossby” waves propagate in the positive y direction relative to background flow where
Vxx > 0, and in the negaive y direction where Vxx < 0.

Approximate dispersion relation:
ω

l
≈ V +

Vxx

l2
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Barotropic Instability

“Rossby” waves propagate in the positive y direction relative to background flow where
Vxx > 0, and in the negaive y direction where Vxx < 0.

Approximate dispersion relation:
ω

l
≈ V +

Vxx

l2

For small enough values of l, waves can phase lock and grow exponentially.
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Linear theory in k ≪ −1 limit

Scale length and time like (x, y) = k−1(ξ, η) and t = (kV0)−1τ . Basic state wave is:

V ∼ V0 exp

(−η2

2k2

)

cos(z) cos(ξ),

U ∼ k−1V0

( η

k

)

exp

(−η2

2k2

)

cos(z) sin(ξ),

W ∼ −k−2V0

( η

k

)

exp

(−η2

2k2

)

sin(z) cos(ξ),

Z ∼ −kV0 exp

(−η2

2k2

)

cos(z) cos(ξ),
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adv. of ζ′ by V

+ k−1Zξu
′
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adv. of Z by u′

=
V0

k2
(UZξ + V Zη)

︸ ︷︷ ︸

self-interaction of wave
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Perturbation vorticity equation is approximately

ζ̃′τ + V ζ̃′η
︸ ︷︷ ︸

adv. of ζ′ by V

+ k−1Zξu
′

︸ ︷︷ ︸

adv. of Z by u′

=
V0

k2
(UZξ + V Zη)

︸ ︷︷ ︸

self-interaction of wave

Next order in k−1: time dep. of MRG wave, advection by U , β effect.
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Linear theory in k ≪ −1 limit

Look for horizontally non-divergent perturbations u′ = −ψ′
η , v′ = ψ′

ξ. Then

∇2ψ′

τ + cos(z) exp
(

−η2

2k2

)

cos(ξ)
(
∇2ψ′

η + ψ′

η

)
= V0

k
S[cos(2ξ), sin(2ξ), y, z]

Linear partial differential equation with coefficients periodic in ξ.
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ψ′(ξ, η, z, t) = ℜ

{

ein0ξ
∞∑

n=−∞

ψ̂n(η, t; z)einξ

}

Coefficient proportional to cos(ξ) couples adjacent terms in the summation.

ˆψ0(η, t; z) corresponds to the zonally symmetric zonal velocity (the zonal jet).

A good approximation is obtained with a three term truncation:

ψ′ ≈ ℜ

{

ψ̂−1(η, z, t)e
−iξ + ψ̂0(η, z, t) + ψ̂1(η, z, t)e

iξ
}
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Linear theory in k ≪ −1 limit

Substituting the truncated series into the PDE, setting the coefficients of e−iξ, e0, and
eiξ equal to zero, and discretizing the differential operators in η yields:

∂
∂τ
ψ + cos(z)Aψ = S
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Linear theory in k ≪ −1 limit

Substituting the truncated series into the PDE, setting the coefficients of e−iξ, e0, and
eiξ equal to zero, and discretizing the differential operators in η yields:

∂
∂τ
ψ + cos(z)Aψ = S

where ψ ≡ [ψ
−1 |ψ0 |ψ1], and A is a matrix

Unstable modes are eigenvectors of A corresponding to
eigenvalues with positive real parts.

Right hand side S acts like an initial seed
for the perturbation.

Growth rate is proportional to cos(z).
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Linear theory in k ≪ −1 limit

Most unstable mode for k = −6.3 :

Zonal mean U Streamfunction
(even and odd modes) (of even mode)
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Linear theory in k ≪ −1 limit

u0(y) for fastest
growing even eigenmodes

Growth rate vs.
meridional wavenumber
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Comparison with simulations
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Comparison with simulations
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Equatorial jet always westward. Probably due to mixing of planetary angular
momentum by zonally short modes (strongest at equator) biasing simulations towards
westward flow at equator.
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Equatorial jet always westward. Probably due to mixing of planetary angular
momentum by zonally short modes (strongest at equator) biasing simulations towards
westward flow at equator.

Extra-equatorial jet positioning poleward of that in most unstable linear mode:
barotropic instability?

barotropic instability possible when Uyy = β

(does not lead to meridional jets due to
Coriolis effect).
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Role of inertial instability

An important mechanism in the development of the zonal jets is

inertial instability (Fruman et al., submitted):
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Inertial Instability
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⇒ An axially symmetric flow is inertially stable if
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(
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> 0 (Rayleigh, 1917).
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Inertial Instability
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A famous example of inertial instability is the instability of laminar flow in the
Taylor-Couette experiment, when outer cylinder rotates too fast relative to inner cylinder
(Taylor (1923)).
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Inertial Instability

Ω1

Ω2

r1
r1

r2

r2

A famous example of inertial instability is the instability of laminar flow in the
Taylor-Couette experiment, when outer cylinder rotates too fast relative to inner cylinder
(Taylor (1923)).

First bifurcation leads to Taylor vortices in the radial-vertical plane.

For inertial stability on the earth, maximum angular momentum must be at the equator.

Combined with effects of stratification, the condition for stability is that Potential Vorticity
have the sign of latitude (“symmetric stability”).
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Inertial Instability

For stability, maximum angular momentum M ≈ U − 1
2
βy2 must be at the equator:

Equatorial shear
inertial instability

“Curvature”
inertial instability

PV

EQUATOR

M

WESTWARD EASTWARD WESTWARD EASTWARDEASTWARD

PV

EQUATOR

REST REST

M

(Dunkerton, 1981)

U = λy, unstable for all λ 6= 0

Adjustment mixes in latitude and depth.

U = (−U00 + 1

2
by2)e

−
1

2
y2

, un-
stable for b > β
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Inertial Instability

For stability, maximum angular momentum M ≈ U − 1
2
βy2 must be at the equator:

Equatorial shear
inertial instability

“Curvature”
inertial instability

PV

EQUATOR

M

EASTWARDWESTWARD WESTWARD

PV

EQUATOR

M
REST

EASTWARDEASTWARD
REST

inertial adjustment takes place over wider latitude interval than covered by initial
instability (Hua et al., 1997, Griffiths, 2003).

Results in wide area of zero PV .
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Inertial instability in simulations

Evidence of inertial instability in the simulations:

Absolute vorticity vs. latitude Jet amplitude and anomalous PV
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Also, energy increase in zonally symmetric components of v and w fields.
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Baroclinic equatorial deep jets

If the instability is barotropic, why are the jets
seen in the observations and in basin simula-
tions (d’Orgeville et al., 2007) alternating in sign
with depth?

z

x
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Baroclinic equatorial deep jets

If the instability is barotropic, why are the jets
seen in the observations and in basin simula-
tions (d’Orgeville et al., 2007) alternating in sign
with depth?

z

x

Hua et al., 2008:

Since the destabilization is taking place mostly in the western edge of the basin,
what is observed in the remainder of the basin is the projection of the jets pattern
onto low-frequency, long zonal wavelength waves with eastward group velocities.

The only such wave is the equatorial Kelvin
wave, which has

u(y, z) ∝ cos(mz) exp

[

−
(
βm

2NH

)

y2
]

.The vertical mode m of the observed
jets corresponds to the vertical mode of
the Kelvin wave with meridional width
√

NH/βm comparable to the width of the
most unstable barotropic jet mode, namely
m ∝ k2 ∝ T 2.
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Layering, zonal jets, and inertial instability

Inertial instability is also important for mixing of density and tracers in the equatorial
track, a potentially important element in balancing the global mass circulation.
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Layering, zonal jets, and inertial instability

Inertial instability is also important for mixing of density and tracers in the equatorial
track, a potentially important element in balancing the global mass circulation.

(Ménesguen et al., submitted)

Regions of vertical mixing are concentrated in westward jets, and are strongly
correlated with the criterion for marginal inertial instability.
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Summary

Zonal jets in the equatorial oceans can be generated in high
resolution numerical simulations by the barotropic instability of low
frequency equatorial waves. (d’Orgeville et al., 2007)
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Summary
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A truncated Floquet series solution to the linearized vorticity equation
for barotropic perturbations predicts jet widths and number from
simulations.

Jet positioning and equilibration amplitude is explained in terms of
inertial stability. (Fruman et al., submitted)

Baroclinic Equatorial Deep Jets predominate in basin simulations
because they correspond to Kelvin waves, which have eastward group
velocities. (Hua et al., 2008)

Inertial instability leads to vertical mixing of density and tracers in
equatorial track. (Ménesguen et al., submitted)
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Continuing Work

Very short wavelength waves lead to local super-rotation. Application
to planetary atmospheres?

Baroclinic effects of depth-dependent triggering of inertial instability.

The effect of the non-traditional
Coriolis force? Simulations show
strong vertical symmetry breaking.
Evidence of global conservation of
angular momentum for wave
momentum flux?
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