Saturation Bounds on Inertially Unstable D-states

in Anelastic Equatorial 3-plane System

Mark Fruman

Group Meeting

Tuesday, December 14", 2004



OUTLINE

1. Anelastic Equations

2. Stable and Unstable Equilibria

3. Saturation Bounds



1. (DEEP) ANELASTIC EQUATIONS

e Nonhydrostatic equations used to model convection

e Assume potential temperature varies only small amount
from mean value (i.e. weak stratification)
= allow for vertical motion (convection)

e Filter oscillations faster than gravity waves

] [
— timescale ~ EN_l

— “Elastic” (acoustic) term neglected in energetics

— *x density and pressure variations restricted by
anelastic continuity equation



e equatorial -plane; assume x-symmetry, adiabatic

e Momentum equations:

U = —VU; — WU, + BsYv — VoW
vy = —vvy — wu, — Bsyu — %(m)y
Wy = —vw, — wWw, + a® | —Yau + é(m)z — 0,
e [hermodynamics:
0, = —vb, —wo,

e Continuity equation:

9, 9,
a—y(Pov)—z(Pow) =0
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e Dimensionless parameter B = (0 < B<1)

e Reference pressure satisfies my(z) =1 — Bz

Cp
Cv

Reference density satisfies pg(2) = (1 — Bz)

e System is Hamiltonian in variable x = (m, 6, (), where
m = u— 5659 + Ya?

(m is a material invariant), and
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e System conserves ENERGY:

i = // [Po (38059% — Yaz) m
D
1

1 2 1 2
+ 2,00 <¢Z + Ck2¢y> + E—Bpoﬂ'()@] dy dz

e and CASIMIRS:

c = [ [ ouCom.)dya:
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2. STABLE AND UNSTABLE
EQUILIBRIA

e Consider steady solution:

m = My, z),
0 =0(y,z2),
=

(i.e. purely zonal flow)

e VM and © satisfy thermal wind balance
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e STABILITY DEFINITION:

Equilibrium X = (M, 0, ©) is stable with respect
to the norm ||x — X]|| if for every ¢, there is a ¢
such that if ||x(t = 0) — X|| < J, then

|x(t) — X|| < € for all times ¢.

e NORM DEFINITION:
I |1
lx = X|Ix = //{QPO [az(wy)2+<¢z)2]
D

+ )\% (m—M)*+ (6’—@)2}} dy dz.




e PSEUDOENERGY DEFINITION:
Ax:X)=(H+C)(x) — (H+C)(X)

where C is chosen such that dA|,—x =0

<= Condition on Casimir density C(m,6):

Con(M,©) = —1B;Y2(M,0) +7aZ(M,6)
Co(M.0) — —EiBu—BZ(M,@)]

e Assumes existence of [Y?*(M,0), Z(M,0)],
the inverse of [M(y?, z), O(y?, z).



RESULT:
e A state X is stable if

0 < A(x;X) < o0
for all x # X.

e Condition on A is equivalent to conditions on

C'(m,0):
Crm > 0
Cop > 0
CrimCop — C2, > 0,

for all m and 6.



EXAMPLE:

e Consider equilibrium with

M(y,z) = My— %byz

O(y,2) = O+ (e7)(5by?) + I’z
e Inverse map:

Y?(M,O)

2
—E(M—Mo)

ks (O —Op) + ey(M — My)]

Z(M,0) = —



e ('(m,0) satisfies:

C,(M,0) = (12 + é) (M — My) + lr(@ — Q)

I b €
C(M@)— 1+1(@ @)+7(M M)
oA B eB € ¥ el’ 0
e [ herefore,
2
_r_ B _ L _
C(mm T + ba C@H — €2F7 Cm@ — EF
e P
CmmCQG Omg €2Fb

= Stable if: I" > 0 (static stability), and
b > 0 (inertial stability).



e An example of an UNSTABLE equilibrium:
M(y,z) = My—3by®+ Xy
O(y,2) = O+ (e7)(3by> + Ay) + ez

e State is relevant to middle atmosphere solstice dynamics

e Problem considered by Dunkerton (1981)

e Can solve anelastic equations linearized about this state
- get something like Dunkerton result . ..



Dunkerton problem

e Meridional velocity shear U = Ay
at the equator violates Rayleigh
stability condition in interval
O<y<A\/p

e Dunkerton (1981) solved linearized,
hydrostatic equations on (3-plane

e Solution exhibits

— “Taylor Vortices” in

unstable region
— zonal jets over equator

— pancake structures in
temperature perturbation field

zonal jet




2. SATURATION BOUNDS
e Recall: for a stable state X, A(x;X) > 0 for all x # X.

e A is conserved, and can be written as
A=K, + APE

where IC, is the kinetic energy in the (v, w) components
and APE is available potential energy.
e Consider an unstable equilibrium zonal flow X4 .

— An infinitessimal disturbance will lead to the
conversion of APE into IC; .

— IC | is always bounded by A

— Hence A(Xy; X), where X is any stable state is a
rigorous upper bound on /C |



o \We seek a stable state which gives as tight a
“saturation bound” on K, as possible.

e Consider again the Dunkerton state:
My(y,z) = —350y° + Ny
Ou(y,2) = (e7)(50'y° + Ny) + I’z
and the class of stable states
M(y,z) = My— %byz
O(y,z) = Oo+ (e7)(3b°) + €'z

e Seek My, Og, b and I' which minimizes A(X; X).



e One can write

XU, //,00 1Cmm My — )

0 —1
+ Cmg(MU — M)(@U — @) -+ %O@Q(@U — @)2} dy dz

e Using earlier results, this is

. 26]0 1 / 2 1 /2 / 1 2

A = - {40(19 b) +2 N2+ Mo(V — b)) + 5 M
7 2
+ I? (’YM()—l— @0>

1 I"—T [V —T)?
— 20 | vMy + -0y +[2( )
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... Where [}, = /zkpo(z)dz

0

e Minimize A with respect to:

1
MO, b, F, and TO — ’yMo + —@0
€

OA OA 0A 0A

oo ar ar Y

e Solve system:

(and test if solution is a minimum of A).

e Solution is . ..



I“min — |F/
v
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Jiens (%)

(MO)min — E(bmln_b/)

bmin

I
(TO)min — _Tl(rmin—rl)
0

e X can be made inertially unstable (A # 0 and/or
b’ < 0) or convectively unstable (I'" < 0), or both.

e As X approaches a stable state (A — 0 or IV — 0_),
A..in approaches 0 from above.






