Saturation Bounds on Inertially Unstable D-states in Anelastic Equatorial β -plane System

Mark Fruman

Group Meeting

Tuesday, December $14^{\rm th}$, 2004

OUTLINE

1. Anelastic Equations

2. Stable and Unstable Equilibria

3. Saturation Bounds

1. (DEEP) ANELASTIC EQUATIONS

- Nonhydrostatic equations used to model convection
- Assume potential temperature varies only small amount from mean value (i.e. weak stratification)
 ⇒ allow for vertical motion (convection)
- Filter oscillations faster than gravity waves

$$-$$
 timescale $\sim rac{l}{h} N^-$

- "Elastic" (acoustic) term neglected in energetics
- ** density and pressure variations restricted by anelastic continuity equation

- equatorial β -plane; assume x-symmetry, adiabatic
- Momentum equations:

$$u_t = -vu_y - wu_z + \beta_\delta yv - \gamma_\alpha w$$

$$v_t = -vv_y - wv_z - \beta_\delta yu - \frac{1}{B}(\pi_1)_y$$

$$w_t = -vw_y - ww_z + \alpha^2 \left[-\gamma_\alpha u + \frac{1}{B}(\pi_1)_z - \theta_1 \right]$$

• Thermodynamics:

$$\theta_t = -v\theta_y - w\theta_z$$

• Continuity equation:

$$\frac{\partial}{\partial y}(\rho_0 v)\frac{\partial}{\partial z}(\rho_0 w) = 0$$

- Dimensionless parameter $B = \frac{hg}{c_p \Theta_0}$, (0 < B < 1)
- Reference pressure satisfies $\pi_0(z) = 1 Bz$ Reference density satisfies $\rho_0(z) = (1 - Bz)^{\frac{c_p}{c_v}}$

• System is Hamiltonian in variable $\mathbf{x} \equiv (m, \theta, \zeta)$, where

$$m \equiv u - \frac{1}{2}\beta_{\delta}y^2 + \gamma_{\alpha}z$$

(m is a material invariant), and

$$\zeta \equiv \frac{1}{\alpha^2} w_y - v_z$$

• System conserves ENERGY:

$$\mathcal{H} = \iint_{\mathcal{D}} \left[\rho_0 \left(\frac{1}{2} \beta_\delta y^2 - \gamma_\alpha z \right) m + \frac{1}{2\rho_0} \left(\psi_z^2 + \frac{1}{\alpha^2} \psi_y^2 \right) + \frac{1}{\epsilon B} \rho_0 \pi_0 \theta \right] dy dz$$

$$(1)$$

• and CASIMIRS:

$$\mathcal{C} = \iint_{\mathcal{D}} \rho_0 C(m, \theta) \, \mathrm{d}y \, \mathrm{d}z$$

2. STABLE AND UNSTABLE EQUILIBRIA

- Consider steady solution:
 - m = M(y, z),
 - $\overline{\theta} = \Theta(y, z)$,
 - $\zeta = 0$
 - (i.e. purely zonal flow)
- M and Θ satisfy thermal wind balance

$$\frac{1}{\epsilon}\Theta_y = -\gamma_\alpha M_y - \beta_\delta y M_z$$

• **STABILITY DEFINITION:**

Equilibrium $\mathbf{X} \equiv (M, 0, \Theta)$ is stable with respect to the norm $||\mathbf{x} - \mathbf{X}||$ if for every ε , there is a δ such that if $||\mathbf{x}(t=0) - \mathbf{X}|| < \delta$, then $||\mathbf{x}(t) - \mathbf{X}|| < \varepsilon$ for all times t.

• NORM DEFINITION:

$$||\mathbf{x} - \mathbf{X}||_{\lambda}^{2} = \iint_{\mathcal{D}} \left\{ \frac{1}{2\rho_{0}} \left[\frac{1}{\alpha^{2}} (\psi_{y})^{2} + (\psi_{z})^{2} \right] \right\}$$

$$+ \lambda \frac{\rho_0}{2} \left[(m - M)^2 + (\theta - \Theta)^2 \right] \right\} \, \mathrm{d}y \, \mathrm{d}z.$$

• PSEUDOENERGY DEFINITION:

 $\mathcal{A}(\mathbf{x};\mathbf{X}) \equiv (\mathcal{H} + \mathcal{C})(\mathbf{x}) - (\mathcal{H} + \mathcal{C})(\mathbf{X})$

where C is chosen such that $\delta A|_{\mathbf{x}=\mathbf{X}} = 0$ \iff Condition on Casimir density $C(m, \theta)$:

$$C_m(M,\Theta) = -\frac{1}{2}\beta_{\delta}Y^2(M,\Theta) + \gamma_{\alpha}Z(M,\Theta)$$
$$C_{\theta}(M,\Theta) = -\frac{1}{\epsilon B}\left[1 - BZ(M,\Theta)\right]$$

 Assumes existence of [Y²(M, Θ), Z(M, Θ)], the inverse of [M(y², z), Θ(y², z).

RESULT:

• A state X is stable if

 $0 < \mathcal{A}(\mathbf{x}; \mathbf{X}) < \infty$

for all $x \neq X$.

• Condition on \mathcal{A} is equivalent to conditions on $C(m, \theta)$:

for all m and θ .

EXAMPLE:

• Consider equilibrium with

$$M(y,z) = M_0 - \frac{1}{2}by^2$$

$$\Theta(y,z) = \Theta_0 + (\epsilon\gamma)(\frac{1}{2}by^2) + \epsilon\Gamma z$$

• Inverse map:

$$Y^{2}(M,\Theta) = -\frac{2}{b}(M-M_{0})$$
$$Z(M,\Theta) = \frac{1}{\epsilon\Gamma} \left[(\Theta - \Theta_{0}) + \epsilon\gamma(M-M_{0}) \right]$$

• $C(m, \theta)$ satisfies:

$$C_m(M,\Theta) = \left(\frac{\gamma^2}{\Gamma} + \frac{\beta}{b}\right)(M - M_0) + \frac{\gamma}{\epsilon\Gamma}(\Theta - \Theta_0)$$
$$C_{\theta}(M,\Theta) = -\frac{1}{\epsilon B} + \frac{1}{\epsilon^2\Gamma}(\Theta - \Theta_0) + \frac{\gamma}{\epsilon\Gamma}(M - M_0)$$

• Therefore,

/

$$C_{mm} = \frac{\gamma^2}{\Gamma} + \frac{\beta}{b}, \qquad C_{\theta\theta} = \frac{1}{\epsilon^2 \Gamma}, \qquad C_{m\theta} = \frac{\gamma}{\epsilon \Gamma}$$
$$C_{mm}C_{\theta\theta} - C_{m\theta}^2 = \frac{\beta}{\epsilon^2 \Gamma b}$$
$$\Rightarrow \text{ Stable if: } \Gamma > 0 \text{ (static stability), and}$$
$$b > 0 \text{ (inertial stability).}$$

• An example of an UNSTABLE equilibrium:

$$M(y,z) = M_0 - \frac{1}{2}by^2 + \lambda y$$

 $\Theta(y,z) = \Theta_0 + (\epsilon\gamma)(\frac{1}{2}by^2 + \lambda y) + \epsilon\Gamma z$

- State is relevant to middle atmosphere solstice dynamics
- Problem considered by Dunkerton (1981)
- Can solve anelastic equations linearized about this state
 - get something like Dunkerton result ...

Dunkerton problem

- Meridional velocity shear $U = \lambda y$ at the equator violates Rayleigh stability condition in interval $0 < y < \lambda/\beta$
- Dunkerton (1981) solved linearized, hydrostatic equations on β -plane
- Solution exhibits
 - "Taylor Vortices" in unstable region
 PSfrag replace
 - zonal jets over equator
 - pancake structures in
 - temperature perturbation field

2. SATURATION BOUNDS

- Recall: for a stable state \mathbf{X} , $\mathcal{A}(\mathbf{x}; \mathbf{X}) > 0$ for all $\mathbf{x} \neq \mathbf{X}$.
- \mathcal{A} is conserved, and can be written as

$$\mathcal{A} = \mathcal{K}_\perp + \mathcal{APE}$$

where \mathcal{K}_{\perp} is the kinetic energy in the (v, w) components and \mathcal{APE} is available potential energy.

- Consider an unstable equilibrium zonal flow \mathbf{X}_U .
 - An infinitessimal disturbance will lead to the conversion of \mathcal{APE} into \mathcal{K}_{\perp} .
 - \mathcal{K}_{\perp} is always bounded by $\mathcal A$
 - Hence $\mathcal{A}(\mathbf{X}_U; \mathbf{X})$, where \mathbf{X} is any stable state is a rigorous upper bound on \mathcal{K}_{\perp}

- We seek a stable state which gives as tight a "saturation bound" on K_⊥ as possible.
- Consider again the Dunkerton state:

$$M_U(y,z) = -\frac{1}{2}b'y^2 + \lambda'y$$

$$\Theta_U(y,z) = (\epsilon\gamma)(\frac{1}{2}b'y^2 + \lambda'y) + \epsilon\Gamma'z$$

and the class of stable states

$$M(y,z) = M_0 - \frac{1}{2}by^2$$

$$\Theta(y,z) = \Theta_0 + (\epsilon\gamma)(\frac{1}{2}by^2) + \epsilon\Gamma z$$

• Seek M_0 , Θ_0 , b and Γ which minimizes $\mathcal{A}(\mathbf{X}_U; \mathbf{X})$.

• One can write

$$\mathcal{A}(\mathbf{X}_U; \mathbf{X}) = \iint_{0 \ -1}^{1} \int_{-1}^{1} \rho_0(z) \left[\frac{1}{2} C_{mm} (M_U - M)^2 \right]$$

$$+ C_{m\theta} (M_U - M) (\Theta_U - \Theta) + \frac{1}{2} C_{\theta\theta} (\Theta_U - \Theta)^2] dy dz$$

• Using earlier results, this is

$$\mathcal{A} = \frac{2\beta I_0}{b} \left\{ \frac{1}{40} (b'-b)^2 + \frac{1}{6} \left[\lambda'^2 + M_0 (b'-b) \right] + \frac{1}{2} M_0^2 \right\}$$
$$+ \frac{I_0}{\Gamma} \left(\gamma M_0 + \frac{1}{\epsilon} \Theta_0 \right)^2$$
$$- 2I_1 \left(\gamma M_0 + \frac{1}{\epsilon} \Theta_0 \right) \left(\frac{\Gamma' - \Gamma}{\Gamma} \right) + I_2 \frac{(\Gamma' - \Gamma)^2}{\Gamma}$$

... where
$$I_k \equiv \int\limits_0^1 z^k \rho_0(z) \mathrm{d}z$$

• Minimize \mathcal{A} with respect to:

$$M_0, \ b, \ \Gamma, \ \text{and} \ T_0 \equiv \gamma M_0 + \frac{1}{\epsilon} \Theta_0$$

• Solve system: $\frac{\partial \mathcal{A}}{\partial M_0} = \frac{\partial \mathcal{A}}{\partial b} = \frac{\partial \mathcal{A}}{\partial \Gamma} = \frac{\partial \mathcal{A}}{\partial T_0} = 0$

(and test if solution is a minimum of \mathcal{A}).

• Solution is ...

$$\Gamma_{\min} = |\Gamma'|$$

$$b_{\min} = |b'| \sqrt{1 + 15 \left(\frac{\lambda'}{b'}\right)^2}$$

$$(M_0)_{\min} = \frac{1}{6} (b_{\min} - b')$$

$$(T_0)_{\min} = -\frac{I_1}{I_0} (\Gamma_{\min} - \Gamma')$$

- \mathbf{X}_U can be made inertially unstable ($\lambda \neq 0$ and/or b' < 0) or convectively unstable ($\Gamma' < 0$), or both.
- As \mathbf{X}_U approaches a stable state $(\lambda \to 0 \text{ or } \Gamma' \to 0_-)$, \mathcal{A}_{\min} approaches 0 from above.

