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1. (DEEP) ANELASTIC EQUATIONS

• Nonhydrostatic equations used to model convection

• Assume potential temperature varies only small amount

from mean value (i.e. weak stratification)

⇒ allow for vertical motion (convection)

• Filter oscillations faster than gravity waves

– timescale ∼
l

h
N−1

– “Elastic” (acoustic) term neglected in energetics

– ∗∗ density and pressure variations restricted by

anelastic continuity equation



• equatorial β-plane; assume x-symmetry, adiabatic

• Momentum equations:

ut = −vuy − wuz + βδyv − γαw

vt = −vvy − wvz − βδyu−
1

B
(π1)y

wt = −vwy − wwz + α
2

[

−γαu+
1

B
(π1)z − θ1

]

• Thermodynamics:

θt = −vθy − wθz

• Continuity equation:

∂

∂y
(ρ0v)

∂

∂z
(ρ0w) = 0



• Dimensionless parameter B =
hg

cpΘ0

, (0 < B < 1)

• Reference pressure satisfies π0(z) = 1−Bz

Reference density satisfies ρ0(z) = (1−Bz)
cp
cv

• System is Hamiltonian in variable x ≡ (m, θ, ζ), where

m ≡ u− 1
2
βδy

2 + γαz

(m is a material invariant), and

ζ ≡
1

α2
wy − vz



• System conserves ENERGY:

H =

∫ ∫

D

[

ρ0

(

1
2
βδy

2 − γαz
)

m

+
1

2ρ0

(

ψ2
z +

1

α2
ψ2
y

)

+
1

εB
ρ0π0θ

]

dy dz

(1)

• and CASIMIRS:

C =

∫ ∫

D

ρ0C(m, θ) dy dz



2. STABLE AND UNSTABLE
EQUILIBRIA

• Consider steady solution:

m =M(y, z),

θ = Θ(y, z),

ζ = 0

(i.e. purely zonal flow)

• M and Θ satisfy thermal wind balance

1

ε
Θy = −γαMy − βδyMz



• STABILITY DEFINITION:

Equilibrium X ≡ (M, 0,Θ) is stable with respect

to the norm ||x−X|| if for every ε, there is a δ

such that if ||x(t = 0)−X|| < δ, then

||x(t)−X|| < ε for all times t.

• NORM DEFINITION:

||x−X||2λ =

∫ ∫

D

{

1

2ρ0

[

1

α2
(ψy)

2 + (ψz)
2

]

+ λ
ρ0

2

[

(m−M)2 + (θ −Θ)2
]

}

dy dz.



• PSEUDOENERGY DEFINITION:

A(x;X) ≡ (H + C)(x)− (H + C)(X)

where C is chosen such that δA|x=X = 0

⇐⇒ Condition on Casimir density C(m, θ):

Cm(M,Θ) = −1
2
βδY

2(M,Θ) + γαZ(M,Θ)

Cθ(M,Θ) = −
1

εB
[1−B Z(M,Θ)]

• Assumes existence of [Y 2(M,Θ), Z(M,Θ)],

the inverse of [M(y2, z),Θ(y2, z).



RESULT:

• A state X is stable if

0 < A(x;X) <∞

for all x 6= X.

• Condition on A is equivalent to conditions on

C(m, θ):

Cmm > 0

Cθθ > 0

CmmCθθ − C2
mθ > 0,

for all m and θ.



EXAMPLE:

• Consider equilibrium with

M(y, z) = M0 −
1
2
by2

Θ(y, z) = Θ0 + (εγ)(
1
2
by2) + εΓz

• Inverse map:

Y 2(M,Θ) = −
2

b
(M −M0)

Z(M,Θ) =
1

εΓ
[(Θ−Θ0) + εγ(M −M0)]



• C(m, θ) satisfies:

Cm(M,Θ) =

(

γ2

Γ
+
β

b

)

(M −M0) +
γ

εΓ
(Θ−Θ0)

Cθ(M,Θ) = −
1

εB
+

1

ε2Γ
(Θ−Θ0) +

γ

εΓ
(M −M0)

• Therefore,

Cmm =
γ2

Γ
+
β

b
, Cθθ =

1

ε2Γ
, Cmθ =

γ

εΓ

CmmCθθ − C2
mθ =

β

ε2Γb

⇒ Stable if: Γ > 0 (static stability), and

b > 0 (inertial stability).



• An example of an UNSTABLE equilibrium:

M(y, z) = M0 −
1
2
by2 + λy

Θ(y, z) = Θ0 + (εγ)(
1
2
by2 + λy) + εΓz

• State is relevant to middle atmosphere solstice dynamics

• Problem considered by Dunkerton (1981)

• Can solve anelastic equations linearized about this state

- get something like Dunkerton result . . .



Dunkerton problem

• Meridional velocity shear U = λy

at the equator violates Rayleigh

stability condition in interval

0 < y < λ/β

• Dunkerton (1981) solved linearized,

hydrostatic equations on β-plane

• Solution exhibits

– “Taylor Vortices” in

unstable region

– zonal jets over equator

– pancake structures in

temperature perturbation field
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2. SATURATION BOUNDS

• Recall: for a stable state X, A(x;X) > 0 for all x 6= X.

• A is conserved, and can be written as

A = K⊥ +APE

where K⊥ is the kinetic energy in the (v, w) components

and APE is available potential energy.

• Consider an unstable equilibrium zonal flow XU .

– An infinitessimal disturbance will lead to the

conversion of APE into K⊥.

– K⊥ is always bounded by A

– Hence A(XU ;X), where X is any stable state is a

rigorous upper bound on K⊥



• We seek a stable state which gives as tight a

“saturation bound” on K⊥ as possible.

• Consider again the Dunkerton state:

MU(y, z) = −1
2
b′y2 + λ′y

ΘU(y, z) = (εγ)( 1
2
b′y2 + λ′y) + εΓ′z

and the class of stable states

M(y, z) = M0 −
1
2
by2

Θ(y, z) = Θ0 + (εγ)(
1
2
by2) + εΓz

• Seek M0, Θ0, b and Γ which minimizes A(XU ;X).



• One can write

A(XU ;X) =

1
∫

0

1
∫

−1

ρ0(z)
[

1
2
Cmm(MU −M)2

+ Cmθ(MU −M)(ΘU −Θ) +
1
2
Cθθ(ΘU −Θ)

2
]

dy dz

• Using earlier results, this is

A =
2βI0
b

{

1

40
(b′ − b)2 +

1

6

[

λ′2 +M0(b
′ − b)

]

+
1

2
M2

0

}

+
I0

Γ

(

γM0 +
1

ε
Θ0

)2

− 2I1

(

γM0 +
1

ε
Θ0

)(

Γ′ − Γ

Γ

)

+ I2
(Γ′ − Γ)2

Γ



. . . where Ik ≡

1
∫

0

zkρ0(z)dz

• Minimize A with respect to:

M0, b, Γ, and T0 ≡ γM0 +
1

ε
Θ0

• Solve system:
∂A

∂M0

=
∂A

∂b
=
∂A

∂Γ
=
∂A

∂T0

= 0

(and test if solution is a minimum of A).

• Solution is . . .



Γmin = |Γ′|

bmin = |b′|

√

1 + 15

(

λ′

b′

)2

(M0)min =
1

6
(bmin − b′)

(T0)min = −
I1

I0
(Γmin − Γ

′)

• XU can be made inertially unstable (λ 6= 0 and/or

b′ < 0) or convectively unstable (Γ′ < 0), or both.

• As XU approaches a stable state (λ→ 0 or Γ′ → 0−),

Amin approaches 0 from above.



-0.8

-0.6

-0.4

-0.2

0

0.2

-1 -0.5 0 0.5 1

f(x)
g(x)

0


