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1. SYMMETRIC STABILITY

• Refers to the stability of an equilibrium which is symmetric in one

direction under disturbances which have the same symmetry.

• In this case, we consider stability of zonally symmetric solutions to

adiabatic Euler/Anelastic Equations in atmosphere to zonally

symmetric disturbances

• System is 2 dimensional: (φ, r), with 2 material invariants:

– Absolute angular momentum m ≡ Ωr2 cos2 φ + ur cos φ

(because of zonal symmetry)

– Potential temperature θ (or entropy)

(because flow is adiabatic)

• and 2 forces acting on air parcels: gravity and the Coriolis force
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• Most geophysical applications use the Primitive Equations, in

which the Coriolis force is strictly horizontal (⊥ gravity).

⇒ In that case, m is to displacement along pressure surfaces as

θ is to displacement in height.

• The (Primitive Equations) conditions for symmetric stability are:

* θ increases with height (static stability)

* m increases towards the equator at constant pressure

(Rayleigh centrifugal stability theorem)

* Potential vorticity has the same sign as latitude
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Nonhydrostatic Terms

• Pressure contours are

approximately spheres.

• Centrifugal force contours are

approximately cylinders

(solid-body rotation)

• Near equator, they are actually

parallel.

Pressure
   Contours

   Force Contours 
Centrifugal

N

• Nonhydrostatic terms are neglected in Primitive Equations in order

to retain conservation of energy and angular momentum principles

• Near equator, terms not negligible (error of ∼ 10%)
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• We use generalized equatorial β-plane

• Expand Ω to second order in latitude about equator:

2Ω = 2Ω cos φ êφ + 2Ω sinφ êr ≈ γ êy + βy êz

• Approximation to absolute angular momentum is proportional to

m ≡ u − 1
2βy2 + γz

• Planetary angular momentum contours
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Dunkerton problem

• Meridional velocity shear U = λy

at the equator violates Rayleigh

stability condition in interval

0 < y < λ/β

• Dunkerton (1981) solved linearized,

hydrostatic equations on β-plane

• Solution exhibits

– “Taylor Vortices” in

unstable region

– zonal jets over equator

– pancake structures in

temperature perturbation field
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Geophysical Context

• Under solstice conditions radiative equilibrium temperature has

meridional gradient at equator

⇒ can only balance with cross equatorial flow

⇒ advects angular momentum maximum (and zero potential

vorticity line) across equator

⇒ drives system towards inertially unstable state

• presumably, undetectable adjustment continuously taking place

⇒ flattens temperature and angular momentum across

equatorial region

• In models and satellite data, see evidence of inertial adjustment

having taken place (pancake structures in temperature field,

stacked rolls and jets in velocity field)
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• Zonal mean temperature for December, averaged over 16 year

period (from NCEP)

• Notice temperature gradients flatten over equatorial region.
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from Semeniuk and Shepherd, 200?

• Angular momentum gradient in winter hemisphere weakens due to

cross equatorial flow

• Effect most pronounced at stratopause because of maximum ozone

heating (and hence maximum gradient in Trad) and low density.
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2. ENERGY AND STABILITY

• State of the system represented by a point in phase space

(e.g. position and momentum of a particle)

• Evolution of system in time corresponds to phase curve

• Phase space of fluid system is infinite dimensional

• Hamiltonian systems conserve (at least) Hamiltonian

function/functional (energy)

• Steady solutions (equilibria) are called fixed points in phase space,

and correspond to critical points of a conserved functional

• Stability of equilibrium related to geometry of the conserved

functional near the fixed point
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Stability Definition (Lyapunov)

Equilibrium X is stable with respect to the norm ||x − X||

if for every ε, there is a δ such that if ||x(t = 0) − X|| < δ,

then ||x(t) − X|| < ε for all times t.

ε

δ

• Black line is trajectory of system

through phase space

• In finite dimensions, norm might be

Euclidean (distance) norm

||x − X|| =

√

∑

i

(xi − Xi)2

(← these balls are at least

3-dimensional)
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Finite Dimensional Systems

• In finite dimensions, there are only two geometries near fixed point:

E = (x − X)2 + (y − Y )2 E = −(x − X)2 + (y − Y )2

“bowl” “saddle”

(X, Y ) is stable (X, Y ) is unstable
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Infinite Dimensional Systems

• Infinite dimensional systems are more subtle

(and impossible to visualize!)

• Stability depends on the particular norm being used

• Small amplitude stability results

(i.e. stability of linearized equations - hence “linear stability”)

can sometimes be obtained using variational calculus

• Hamiltonian fluid systems described by Eulerian variables are

noncanonical

⇒ fixed points are critical points of pseudoenergy: a combination

of the Hamiltonian and a Casimir invariant

• In symmetric stability problem, Casimirs depend on m and θ
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3. LINEAR STABILITY CONDITIONS

• Linearize equations about steady solution

X = (U(y, z), v = 0, w = 0, ρ = D(y, z), θ = Θ(y, z))

satisfying

−βyU −
1

D
Py = 0

γU − g −
1

D
Pz = 0

• Conserved functional for the linearized equations is of the form

AL(x;X) =

∫ ∫

SH

(x − X)T ΛSH(X)(x − X) dy dz

+

∫ ∫

NH

(x − X)T ΛNH(X)(x − X) dy dz,
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• X is stable if matrices ΛSH(X) and ΛNH(X) are positive definite

⇒ AL is “shaped” like a bowl near X

• Define family of norms:

||x−X||2λ =

∫ ∫

D

{

λ

[

(

ρ − D

D0

)2

+

(

θ − Θ

Θ0

)2

+

(

u − U

U0

)2
]

+ v
2 + w

2

}

dy dz

• Let λ− and λ+ be the minimum and maximum eigenvalues of the

Λ(X) matrices. Then for all time,

||x − X||2λ−

≤ AL ≤ ||x − X||2λ+

• Stability follows from conservation of AL

||x(t) − X||2λ
−
≤ AL(t) = AL(0) ≤ ||x(0) − X||2λ+

≤
λ+

λ−

||x(0) − X||2λ
−
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• Notation: ∂(F, G) ≡
∂F

∂y

∂G

∂z
−

∂F

∂z

∂G

∂y

• Sign of ∂(F, G) is given by right hand rule applied to ∇F and ∇G:

∂(F, G) > 0 if ∇F is “clockwise” of ∇G

• Conditions for linear stability are

1

Q
∂(M, P ) > 0 (inertial stability)

1

Q
∂(Θ, M (p)) > 0 (static stability)

yDQ ≡ y∂(Θ, M) > 0 (symmetric stability)



3. LINEAR STABILITY CONDITIONS LINEAR AND NONLINEAR SYMMETRIC STABILITY

“Inertial Stability”
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• Contours are curves of constant pressure.

• ∇M must be in coloured semicircle for static stability.

• Condition identical to hydrostatic condition y My |p < 0.
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“Static Stability”
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• Contours are curves of constant M (p) ≡ − 1
2βy2 + γz,

tangent to local rotation vector Ω ≡ γêy + βyêz.

• ∇Θ must be in coloured semicircle for static stability.
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A symmetrically unstable case:
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• But ∇Θ must be clockwise of ∇M for stability

⇒ This state is unstable!.
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4. ANELASTIC SYSTEM
and NONLINEAR STABILITY

• Certain results from hydrostatic case can be achieved in

nonhydrostatic case using anelastic equations

• Assumes that fastest time scale is that of gravity waves (filters

sound wave modes) and that θ departs relatively little from

prescribed reference profile θ0(z) (c.f. Boussinesq system).

• Only 4 prognostic variables - (u, v, w) and θ (3 independent),

instead of the 5 in Euler equations

• Can extend small amplitude result to finite amplitude for certain

basic states

• Can solve linear equations exactly for Dunkerton problem in the

case of θ0(z) = constant

(talk to CONSTANTINE about Anelastic Equations)
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• Conserved functional for the nonlinear anelastic equations is

(K⊥ is kinetic energy in (u, v) components):

A(x;X) = K⊥ +

∫ ∫

ρ0

[

( 1

2
βδy

2 − γαz)(m − M) + 1

ǫB
π0(θ − Θ)

]

dy dz

+

∫ ∫

q<0

ρ0

[

C
−(m, θ) − C

−(M, Θ)
]

dy dz

+

∫ ∫

q>0

ρ0

[

C
+(m, θ) − C

+(M, Θ)
]

dy dz

• Notice that the domains of the last two integrals change with time

as the sign of potential vorticity q changes

• Define the norm

||x − X||2λ = K⊥ +

∫ ∫

{

λ
ρ0

2

[

(m − M)2 + (θ − Θ)2
]

}

dy dz
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• Steady states which are even functions of y

(so that C− = C+ ≡ C) and satisfy the linear conditions

(similar to the Euler equations case)

are candidates for nonlinearly stability

• Must test that C(m, θ) and C+(m, θ) functions can be

constructed such that A has a global minimum at X

• Simplest example of stable state is:

M(y, z) = M0 −
1
2by2

Θ(y, z) = Θ0 + (ǫγα)( 1
2by2) + ǫΓz

• The required C(m, θ) is a quadratic function of m and θ
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• Steady states which are not even functions of latitude cannot be

Lyapunov stable (in our norm)

• Consider the perturbation below:

– red curve is m(y) and black curve is M(y)

– red curve has q < 0 everywhere

– as steps → 0, dominant term in A is C−(m, θ) − C+(M, Θ) < 0

0

0

y

m

• But isn’t that small amplitude? No, look at
∂m

∂y
−

∂M

∂y
but it does satisfy ||x − X|| → 0
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Anelastic Dunkerton Problem

• Consider again the unstable equilibrium XU (y, z):

MU (y, z) = − 1
2bUy2 + λUy

ΘU (y, z) = (ǫγα)( 1
2bUy2 − λUy) + ǫΓUz y

z

EQ
unstable

MU

• Can solve anelastic equations linearized about XU (y, z):
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- Taylor Vortices

- v increases with z

depending on slope

of ρ0(z)
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5. SATURATION BOUNDS

• Recall that when X is nonlinearly stable, A(x;X) is the sum of

two positive terms: the kinetic energy term K⊥(x) and what we

might call the available potential energy term APE(x;X)

• Since A is conserved, its initial value is a rigorous upper bound on

K⊥(x(t))

• Given x(0) close to an unstable equilibrium XU , seek the smallest

A(XU ;X) among all nonlinearly stable X

• This is a measure of how large the instability can grow before it

saturates. A is called a saturation bound.

• Can be used as part of a parameterization scheme for subgridscale

adjustment in numerical models
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• Again, consider Dunkerton state XU :

MU (y, z) = − 1
2bUy2 + λUy

ΘU (y, z) = (ǫγα)( 1
2bUy2 − λUy) + ǫΓUz

• Minimize A(XU ;X) over the class of nonlinearly stable states of

the form

M(y, z) = M0 −
1
2by2

Θ(y, z) = Θ0 + (ǫγα)( 1
2by2) + ǫΓz

• i.e. find M0, b, Θ0, Γ which minimize A
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Example 1 - Inertial Instability

• Consider statically stable (ΓU > 0), inertially unstable (λU > 0)

• minimizing X has:

Γmin = ΓU , bmin = |bU |

√

1 + 15
(

λU

bU

)2

(M0)min = 1

6
(bmin − bU ), (Θ0)min = 1

6
(ǫγα)(bmin − bU )

−1

 0

−1  0  1

M∗(y)

MU (y)

linear

quadratic

 0

 0.01

 0.02

 0.03

 0.04

 0  0.1  0.2  0.3  0.4

λU

A
m

in

Stable M(y) (blue) which

minimizes A

Minimum A as function of λU

Notice Amin → 0 as λU → 0
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Example 2 - Static Instability

• Consider statically unstable (ΓU < 0), inertially stable (λU = 0)

• minimizing X has:

Γmin = −|ΓU |, bmin = bU

(M0)min = 0, (Θ0)min = −2
I1

I0

ǫ|ΓU |

 0

 1

−1  0  1

ΘU (0, z)

Θ∗(0, z)

Minimizing Θ(0, z) (blue) (z is vertical axis)

• Saturation bound is Amin = 4
I0

(I0I2 − I2
1 )|ΓU |
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SUMMARY

• Symmetric instability plays a role in solstice season dynamics in

equatorial middle atmosphere

• Nonhydrostatic Coriolis terms are significant near equator and

classical symmetric stability results (e.g. Dunkerton, 1981) can be

generalized to incorporate them

• Linear stability of a steady solution to Euler equations depends on

directions of ∇M and ∇Θ relative to each other, ∇P and Ω

• Can find finite amplitude stability result and exact linear solution

to Dunkerton problem using anelastic equations

• Finite amplitude stability result can be used to find saturation

bounds on energy conversion during inertial/convective adjustment


