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Hamilton’s Equations

(for conservative systems)

• State of system specified by:

– generalized coordinates qi

– generalized momenta pi

• Dynamics governed by Hamilton’s

Equations:

dqi
dt

=
∂H

∂p
,

dpi

dt
= −

∂H

∂q

where H(qi, pi) is a conserved function called

the Hamiltonian

• Example: Plane pendulum

q = θ, p = ml
dθ

dt
Hamiltonian is just the total energy:

H(q, p) =
p2

2m
−mgl cos(q)



• Equations can be written in symplectic form:

dx

dt
= J ∇H

where

x = [q1, q2, ..., qN , p1, p2, ..., pN ]
T

is a point in the 2N-dimensional phase space,

and

J =





0N×N IN×N

−IN×N 0N×N





⇒ Fixed points (points at which dx
dt = 0) are

critical points of the Hamiltonian.

• The stability of a fixed point is related to

the geometry of H in the neighbourhood of

the fixed point.

– bowl shaped ⇐⇒ stable

– saddle shaped ⇐⇒ unstable



Noether’s Theorem

• A symmetry of the system is (roughly) a

transformation of the coordinates that takes

solutions to solutions.

• Noether’s theorem says that every distinct

symmetry corresponds to a distinct

conserved quantity.

• Example: if solutions are invariant under

translations in the x direction, the system

conserves the component of momentum in

the x direction.

• Example: planetary motion conserves the

component of angular momentum normal

to the plane of motion. This corresponds

to invariance under translations in the

angle swept out by the orbit of the planet.



Noncanonical Representations

• Sometimes, a reduced set of Hamilton’s

equations can be found that govern the

behaviour of a subset of the generalized

coordinates independently of the others.

• The equations can still be written in the

symplectic form

dx

dt
= J ∇H

but now x has fewer components than

before, and J is different from the

canonical version.

• In particular, J is not invertible.

⇒ fixed points no longer correspond to

critical points of the Hamiltonian.

• There exists a new type of conserved

function called a Casimir, which does not

correspond to an explicit symmetry of the

system (as in Noether’s theorem).



• What are Casimirs, then?

– correspond to symmetries associated with

coordinates that have been reduced from

the system

– gradients of Casimirs are vectors

(sorry Simal) in the nullspace of J

(i.e. they satisfy J ∇C = 0)

– If C(x) is a Casimir, evolution of system

is confined to surfaces of constant C

(“symplectic leaves”)

• Also interesting:

– gradient of H evaluated at a fixed point

is equal to the gradient of a Casimir −C.

– A fixed point is therefore a critical point

of the combined invariant (H + C)(x).

– etc.



EXAMPLE:

Free Rotations of a Rigid Body

• Canonical version:

– 6 generalized coordinates representing
the orientation (3 Euler angles) and the
angular momentum about each of the
“principal axes” (3 component vector)

– invariance under rotations about princi-
pal axes leads to conservation of total
angular momentum

• Noncanonical version:

– time evolution of angular momenta cal-
culated independently of Euler angles
via a noncanonical set of equations

– time evolution of Euler angles calculated
separately using solutions for angular mo-
menta

– total angular momentum becomes a
Casimir



• For the record:

d

dt











L1

L2

L3











=











0 −L3 L2

L3 0 −L1

−L2 L1 0





















∂H/∂L1

∂H/∂L2

∂H/∂L3











where the Hamiltonian is

H(L1, L2, L3) =
1

2

(

L2
1

I1
+

L2
2

I2
+

L2
3

I3

)

(an ellipsoid in (L1, L2, L3) space)

and the Casimir is

C(L1, L2, L3) = L2
1 + L2

2 + L2
3

(a sphere in (L1, L2, L3) space)

... so system is “completely integrable” - phase

curves are the intersections of the sphere with

the ellipsoid



Hamiltonian Fluid Systems

• governed by partial differential equations,

so the phase space is “infinite-dimensional”

• properties of Hamiltonian systems

generalize with a few modifications:

– independent variables become functions

of space

– Hamiltonian and Casimirs (if any)

become conserved “functionals” of the

independent variables

– gradients become “functional derivatives”

– J becomes a linear operator (involving

partial derivatives, for example)

• Fluid systems written in terms of Eulerian

variables (the usual way) are necessarily

noncanonical because of the particle

relabelling symmetry.



Symmetric, Hydrostatic, Adiabatic,

β-plane ... Equations

• approximation for low latitude

axisymmetric dynamics in a spherical

shell

• neglects complications of curvature of earth,

but retains variation of the Coriolis param-

eter with latitude

For the record:

ut = −vuy − ωup + βyv

vt = −vvy − ωvp − βyu+Φy

θt = −vθy − ωθp

0 = vy + ωp,

where pressure coordinates (x, y, p) have been

used, (u, v, ω) is the velocity, and θ is potential

temperature.



Hamiltonian Form of Equations

By changing variables from (u, v, ω, θ,Φ) to

(ζ,m, θ), where

ζ =
∂v

∂p
, m = u−

1
2βy

2

the equations can be written in the

Hamiltonian form

∂

∂t











ζ

m

θ











=











∂(ζ, ·) ∂(m, ·) ∂(θ, ·)

∂(m, ·) 0 0

∂(θ, ·) 0 0





















δH/δζ

δH/δm

δH/δθ











with Hamiltonian

H(ζ,m, θ) =
∫ ∫

{

1
2v

2 + 1
2βy

2m

+E(ρ, θ) + p/ρ2
}

dydp

and Casimirs

C(m, θ) =
∫ ∫

C(m, θ)dydp



Stability of Equilibria

• Fixed points of the equations satisfy the

thermal wind balance

βy

(

∂m

∂p

)

y

=
1

ρθ

(

∂θ

∂y

)

p

• to determine stability criteria

– determine Casimirs such that

δH

δx
= −

δC

δx

at equilibrium

– further restrict C such that H + C is

“bowl-shaped” at equilibrium

– check for finite amplitude stability



We find the stability conditions

• static stability
(

∂θ

∂p

)

y

< 0

(i.e. parcels displaced upwards must be

colder than surroundings so that they fall

back, etc.)

• inertial stability

y

(

∂m

∂y

)

p

< 0

(i.e. angular momentum must be maxi-

mum at the equator and decrease towards

the poles)



Summary

• Hamilton’s equations provide an elegant

geometric way of looking at the stability of

fixed points in conservative systems

• some systems can be written in a reduced,

but “non-canonical” Hamiltonian form (in

particular, conservative fluid systems)

• stability analysis can be adapted to

noncanonical systems with the use of

Casimir invariants

• Example: static and inertial stability of

equilibria in symmetric, equatorial β-plane

system.


