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Introduction

• Gravity wave breaking is an important process in driving atmospheric
circulations but its detailed dynamics are still not fully understood.

• Parameterizations are typically based on a Richardson number crite-
rion, and do not consider horizontal gradients.

• But even statically stable gravity waves can break and degenerate into
turbulence if perturbed by finite amplitude disturbances.

• Identification of the fastest growing disturbance (normal mode) and
of the disturbance whose energy grows most in a given time (singu-
lar vector) of a monochromatic plane gravity wave in the Boussinesq
equations are time-independent, two-dimensional, linear problems.

• Three-dimensionalization of the turbulent development can be studied
systematically using singular vector analysis of the equations linearized
about the evolving two-dimenstional state of the wave and a leading
primary perturbation (cf. [3, 5]).

Inertia-Gravity Waves

• We investigate the breakdown of
a plane inertia-gravity wave (IGW)
propagating in the xz-plane at an an-
gle Θ to the horizontal, with upward
vertical group velocity.
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• The IGW is a time-independent solution to the Boussinesq equations
in a reference frame propagating with the phase velocity of the wave:
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where b is buoyancy, f is the Coriolis parameter and N is the constant
Brunt-Väisälä frequency

• The IGW solution is the real part of
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• The IGW is normalized so that the point of minimum static stability
(grey oval) of a wave of amplitude a = 1 is neutrally statically stable.

• As Θ → 90◦, the horizontal velocity becomes circularly polarized and
the wave frequency approaches f (but slowly, since N ≫ f).

• We consider an IGW with Θ = 89.5 at latitude 70N , implying a wave
period of 2π/ω = 8 hours, and with wavelength 6 km. We consider
both a “statically stable” (a = 0.87) wave and a “statically unstable”
(a = 1.2) wave.

Normal Modes and
Singular Vectors

• Normal Modes (NM) are eigenvectors of the governing equations lin-
earized about a time-independent basic state (such as the IGW in the
co-moving reference frame)

– NM have fixed complex spatial structure and oscillate and/or grow
or decay exponentially with time.

– For long times, the normal mode with eigenvalue having the largest
real part (the growth rate) dominates the linear solution.

– NM are not well defined when the basic state is time dependent.

• Singular vectors (SV) are the initial perturbations to the equations
linearized about a (possibly time-dependent) solution whose energy
increases by the largest growth factor in a given optimization time τ .

– Their spatial structure changes with time and depends on τ

– SV with large growth factors can exist even in the absence of expo-
nentially growing normal modes

– Their calculation requires the adjoint of the tangent linear model
used – here developed using the TAMC [4].

Primary Instabilities

• The calculation of the leading perturbation to the IGW is one-
dimensional in Fourier space, with the IGW phase φ as spatial coordi-
nate and the horizontal wavevector of the perturbation as a parameter
(see [1]).

• The limiting cases are parallel and transverse with respect to the hor-
izontal wavevector of the IGW.

• For statically unstable IGW, we calculate leading normal modes and
for statically stable IGW the leading singular vectors with τ = 5 min.:
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• The leading perturbations are initially concentrated near the point of
minimum static stability, maximum shear in v, and minimum uξ.

• Shown is a nonlinear (2-D)
integration initialized with
a statically stable IGW and
the leading transverse sin-
gular vector with amplitude
such that the maximum SV
energy density equals the
IGW energy density (Fig.
from [2]).

• The initial growth is via a statically triggered Orr mechanism due
primarily to vertical shear in v.

• Later growth is due to a roll mechanism associated with vertical shear
in u above and below the point of initially weakest stability.

Secondary Instabilities

• Secondary instabilities are investigated using the equations linearized
about a nonlinear integration of the full equations initialized with the
IGW and a leading primary perturbation.

• The resulting tangent-linear model is two-dimensional with time-
dependent coefficients and admits singular-vector analysis with the
wavelength λ in the direction perpendiular to both the IGW and pri-
mary perturbation as a parameter.

• We calculate the leading SV with optimization time τ = 5 minutes for
both the unstable and stable perturbed IGW.

Statically unstable IGW

• The growth factor as a function of
λ for perturbations to the unstable
IGW plus leading transverse NM
is shown to the right. The initial
perturbation with maximum
growth factor has λ = 150 m.

• By comparison, the leading “par-
allel” primary normal mode has
wavelength 500 m.
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• Contours of perturbation ver-
tical velocity w′

φ for the lead-

ing secondary SV are shown
over the basic state buoyancy
field b at three times.

• Initially concentrated near
the maximum negative buoy-
ancy gradient, the perturba-
tion is advected by (v, wφ) of
the basic state velocity field
as it grows.

• The relative energy conversion
terms (instantaneous growth rate)
decomposed into contributions
from gradients in basic state show
the perturbation grows mainly
due to ∇b0.

• Shear in v0 becomes important
later in the development.
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Statically stable IGW

• The optimal perturbation to the
stable IGW plus leading transverse
SV with normalized amplitude
0.1 has wavelength λ = 215 m
compared to the leading parallel
primary singular vector, which
has wavelength 630 m.
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• Again, the leading secondary SV is concentrated near the point of
maximum buoyancy gradient, but here it is located near a node in the
(v, wφ) field and is therefore not advected.

• Furthermore, the perturbation is located at a point of strong vertical
shear in v0 and aligns itself perpendicular to ∇v0.
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• Initially, the perturbation grows
due to the buoyancy production
terms, but as it develops, it draws
energy mostly from the shear in v0.

• Since the perturbation varies in the
ξ direction but grows due to shear
in the perpendicular velocity com-
ponent v0, this is known as a (stat-
ically triggered) roll mechanism. 0 100 200 300
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• The secondary SV in the this case resembles the parallel primary sin-
gular vector of the IGW, but modified by the spatial structure of the
transverse primary SV.

• Perturbation energy growth is approximately exponential with time
and the growth factor increases exponentially with optimization time
between one and five minutes.

Outlook

• Further explore parameter space of primary perturbation amplitude
and secondary perturbation optimization time

• Three-dimensional nonlinear simulations initialized with IGW, pri-
mary SV/NM, and secondary SV – using a triply periodic domain
with sides equal to respective wavelengths

• Investigate secondary instabilities of a high-frequency gravity wave
(HGW), which has shallower propagation angle so that simple static
and dynamic stability criteria are less applicable due to horizontal gra-
dients in the wave.
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