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1. SYMMETRIC STABILITY

• Refers to the stability of an equilibrium which is symmetric in one

direction under disturbances which have the same symmetry.

• In this case, we consider stability of zonally symmetric solutions to

adiabatic Euler Equations in atmosphere to zonally symmetric

disturbances

• System is 2 dimensional: (φ, r), with 2 material invariants:

– Absolute angular momentum m ≡ Ωr2 cos2 φ + ur cos φ

(because of zonal symmetry)

– Potential temperature θ (or entropy)

(because flow is adiabatic)

• and 2 forces acting on air parcels: gravity and the Coriolis force
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• Most geophysical applications use the Primitive Equations, in

which the Coriolis force is strictly horizontal (⊥ gravity).

⇒ In that case, m is to displacement in latitude as

θ is to displacement in height.

• The conditions for symmetric stability are:

* θ increases with height (static stability)

* m increases towards the equator at constant altitude

(Rayleigh centrifugal stability theorem)

* Potential vorticity has the same sign as latitude

• If Coriolis force is not orthogonal to gravity, conditions do not

decouple so neatly, but potential vorticity condition generalizes.
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Dunkerton problem

• Meridional velocity shear U = λy

at the equator violates Rayleigh

stability condition in interval

0 < y < λ/β

• Dunkerton (1981) solved linearized,

hydrostatic equations on β-plane

• Solution exhibits

– “Taylor Vortices” in

unstable region

– zonal jets over equator

– pancake structures in

temperature perturbation field
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Geophysical Context

• Under solstice conditions radiative equilibrium temperature has

meridional gradient at equator

⇒ can only balance with cross equatorial flow

⇒ advects angular momentum maximum (and zero potential

vorticity line) across equator

⇒ drives system towards inertially unstable state

• presumably, undetectable adjustment continuously taking place

⇒ flattens temperature and angular momentum across

equatorial region

• In models and satellite data, see evidence of inertial adjustment

having taken place (pancake structures in temperature field,

stacked rolls and jets in velocity field)
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• Zonal mean temperature for December, averaged over 16 year

period (from NCEP)

• Notice temperature gradients flatten over equatorial region.
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• Angular momentum gradient in winter hemisphere weakens due to

cross equatorial flow

• Effect most pronounced at stratopause because of maximum ozone

heating (and hence maximum gradient in Trad) and low density.
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2. NON-HYDROSTATIC CORIOLIS TERMS

• Vertical pressure gradient very nearly balances gravity so vertical

momentum equation is often replaced by hydrostatic balance

• Neglecting nonhydrostatic terms upsets conservation of energy

and angular momentum principles unless more changes are made:

– Shallow atmosphere: r → a

– Vertical velocity w dropped from kinetic energy

– Neglect metric terms involving w

– Neglect Coriolis force terms proportional to cos φ

i.e.:
Dw

Dt
= −

1

ρ

∂p

∂r
− g +

u2

r
+

v2

r
+ 2Ωu cos φ

Du

Dt
=

uv

a
tanφ−

uw

r
− 2Ωw cos φ + 2Ωv sinφ −

1

ρ a cos φ

∂p

∂λ
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- Neglecting cos φ terms

is equivalent to neglecting

the component of Ω

parallel to the surface.

- Most significant near equator

• Near equator, one might use (extended) equatorial β-plane

Let β ≡
2Ω

a
and γ ≡ 2Ω

Then Ω = 2Ω cos φ êφ + 2Ω sinφ êr ≈ γ êy + βy êz



2. NON-HYDROSTATIC CORIOLIS TERMS NON-HYDROSTATIC SYMMETRIC STABILITY

• On (extended) β-plane, absolute angular momentum is

m ≡ u − 1
2βy2 + γz

• Non-hydrostatic terms make significant difference near equator -

behold contours of “planetary angular momentum”
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• Dashed lines are contours for hydrostatic case

• And symmetric stability is linked with gradients of angular

momentum, so
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3. STABILITY CONDITIONS

• Seek conditions for stability under small amplitude disturbances.

• Task is to derive conditions on a zonally symmetric equilibrium

solution

· u = U(y, z) (m = M(y, z))

· v = w = 0

· θ = Θ(y, z) and p = P (y, z)

(temperature T (y, z), density D(y, z))

to the zonally symmetric equations of motion such that small

amplitude disturbances do not grow.

• Use two complementary approaches:

– Energy method

– Parcel displacement method
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Energy method

• Construct energy-like functional AL(u, v, w, ρ, θ; U, D,Θ)

(“pseudoenergy”) of the dependent variables and their equilibrium

values such that AL:

· is conserved

· vanishes when evaluated at the equilibrium

· has a critical point at the equilibrium

• If AL is positive for all states, then equilibrium is stable

(sufficient condition).

• Usually a method for finite amplitude stability, but in this case,

only applies to linear equations (large amplitude perturbations to

density field can make pseudoenergy negative)
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Parcel displacement method

x

y

z

P1

P1

P2

P2

U1

u2

D1

ρ2

∆x

P2 < P1

M2 > M1

- Tube/ring displaced by

∆x ≡ (∆y, ∆z).

- Expands and accelerates,

conserves θ and m.

- Does not disturb

pressure field.

• Project acceleration onto ∆x:

[

Dv2

Dt
,
Dw2

Dt

]

· ∆x = ∆x
T S ∆x

⇒ If negative ∀∆x ( ⇐⇒ S is negative definite), force on displaced

tube is restoring and steady state is stable.
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• The two methods give equivalent results.

• Notation: ∂(F, G) ≡
∂F

∂y

∂G

∂z
−

∂F

∂z

∂G

∂y

• Sign of ∂(F, G) is given by right hand rule applied to ∇F and ∇G:

∂(F, G) > 0 if ∇F is “clockwise” of ∇G

• Conditions for stability are

·
1

Q
∂(M, P ) > 0 (inertial stability)

·
1

Q
∂(Θ, M (p)) > 0 (static stability)

· yDQ ≡ y∂(Θ, M) > 0 (symmetric stability)
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“Inertial Stability”
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• Contours are curves of constant pressure.

• ∇M must be in coloured semicircle for static stability.

• Condition very close to hydrostatic condition yMy < 0.
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“Static Stability”
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• Contours are curves of constant M (p) ≡ − 1
2βy2 + γz,

tangent to local rotation vector Ω ≡ γêy + βyêz.

• ∇Θ must be in coloured semicircle for static stability.
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A symmetrically unstable case:

• It is possible to satisfy the inertial and static stability conditions

but to fail the “symmetric” stability condition.

• This occurs if the Θ surfaces tilt up (enough, but not overturning)

and the M surfaces tilt down (enough, but not overturning) so

that Q is of the wrong sign.
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A symmetrically unstable case:
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• Dotted lines are lines of constant pressure
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A symmetrically unstable case:
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• Dotted lines are lines of constant pressure

• ∇M must be “clockwise” of ∇P in N. hemisphere for stability.
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A symmetrically unstable case:
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• Dashed lines are lines of constant planetary angular momentum.
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A symmetrically unstable case:
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• Dashed lines are lines of constant planetary angular momentum.

• ∇Θ must be clockwise of ∇M (p) in N. hemisphere for stability.
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A symmetrically unstable case:
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• But ∇Θ must be clockwise of ∇M for stability

⇒ This state is unstable!.
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4. EXAMPLES

• Not every combination of U , Θ and P is possible for an

equilibrium - must satisfy (D = Density)

−βyU −
1

D
Py = 0

γU − g −
1

D
Pz = 0

• Exact solutions to balance equations can be calculated for simple

cases - e.g. specifying velocity and temperature and

solving for pressure.

• In each example, it is assumed that the atmosphere is

an ideal gas; i.e. p = ρRT .
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E1. Isothermal, solid-body rotation

• Uniform temperature: T = T00

• Uniform zonal velocity: U = U00

• If P00 is the pressure at the origin,

P (y, z) = P00 exp

[

−
1

2

(

βU00

RT00

)

y2 −

(

g − γU00

RT00

)

z

]

• Can write Θ = Θ(P, T ), and since ∇T = 0 ∇Θ || − ∇P

• The potential vorticity Q satsifies

DQ =

(

βg

T00

)

y

⇒ Symmetrically stable!
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E2. Linear horizontal velocity shear

• Zonal velocity: U = λy

• Assume constant temperature over equator. Then pressure is

P (y, z) = P00

(

1 −
γλ

g
y

)

(

g
RT00

)

( β
γ )( g

γλ )
2

× exp

{

−
g

RT00

[

z +
β

γ

(

g

γλ
y −

1

2
y2

)]}

.

• Potential vorticity:

Q =
βg

DT

[(

1 +
γλ2

βg

)

y −
λ

β

(

1 +
γ2

g2
cpT00

)]

⇒ Unstable in 0 < y .
λ

β
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E3. Vertical temperature gradient

• Let T (0, z) = T00(1 + σz) and U(y) = 1
2β′y2. Pressure is:

P (y, z) = P00

{

1 + σ

[

z −
βg

β′γ2

(

ln
(

1 −
β′γ

2g
y2

)

+
β′γ

2g
y2

)]}−
g

RT00σ

• and potential vorticity

Q =
1

DT

{[

(g + σcpT00)(β − β′) − β′γ2

(

cpT00

g

)

(1 + σz)

]

y

+
1

2

[

γβ′2 + σγβ′

(

cpT00

g

)

(β + β′)

]

y3 + [σβcpT00] y ln

(

1 −
β′γ

2g
y2

)}

⇒ Stable if β′ <







g + σcpT00

g + cpT00

[

σ + γ2

g
(1 + σH)

]







β ≈ β
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E4. |y|k angular momentum profile

• Let M = −α|y|k + γz and T (0, z) = T00

Q =
1

DT

{

−βγ2

(

cpT00

g

)

y +
1

2
β2γy3 + kα

[

g + γ2

(

cpT00

g

)]

|y|k

y

− βγα

(

1 +
k

2

)

y|y|k + γkα2 |y|
2k

y

}

• For 1 < k < 2, state is stable.

• For k > 2, state is symmetrically unstable in a very small interval

about the equator (but satisfies separate inertial and static

stability conditions).

– At equator ∇M, ∇Θ || êz

– As y increases, ∇Θ tips towards equator faster than ∇M .
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5. ANELASTIC MODEL

• Certain results from hydrostatic case can be achieved in

nonhydrostatic case using anelastic equations

• Assumes that fastest time scale is that of gravity waves (filters

sound wave modes) and that θ departs relatively little from

prescribed reference profile θ0(z) (c.f. Boussinesq system).

• Only 4 prognostic variables - (u, v, w) and θ instead of the 5 in

Euler equations (ρ given by continuity equation)

• Can extend small amplitude result to finite amplitude for certain

basic states

• Can solve linear equations exactly for Dunkerton problem in the

case of θ0(z) = constant
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SUMMARY

• Symmetric instability plays a role in solstice season dynamics in

equatorial middle atmosphere.

• Hydrostatic primitive equations neglect cos φ Coriolis terms, which

are significant near equator.

• Stability of a steady solution to Euler equations depends on

directions of ∇M and ∇Θ relative to each other, ∇P and Ω.

• Examples: - Isothermal atmosphere is stable

- Meridional velocity shear at equator is unstable

- Vertical temperature gradient does not significantly

affect symmetric stability conditions

- Shallower than quadratic M is unstable at equator

• Can find finite amplitude result and exact linear solution to

Dunkerton problem using anelastic equations
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