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(from Tagg, 1994. Nonlin. Sci. Today)

History

• Rayleigh (1916): inviscid stability requires

that angular momentum increases away from

axis of rotation

• Taylor (1923): linear stability curve of

corresponding viscous problem asymptotes

to Rayleigh line in the limit of high Re

• Joseph and Hung (1971): nonlinear asymp-

totic stability of viscous problem shown for

near rigid body conditions

(nonlinear extension of Synge, 1938)



from:

Joseph, D. D. Stability of Fluid Motions.

Springer-Verlag, 1976



Definitions

• Parameters: η ≡
r1
r2

and µ ≡
Ω2

Ω1

• Equations nondimensionalized such that

r1 ≡ 1 Ω1 ≡ 1

r2 = η−1 Ω2 = µ

• Fluid velocity in cylindrical coordinates:

v = uêr + vêθ + wêz

Angular momentum: m ≡ rv

• State vector:

x(r, z, t) ≡ (u(r, z, t), m(r, z, t), w(r, z, t))T ,

• Couette (equilibrium) profile:

X(r) ≡ (0, M(r), 0)T



Nonlinear Stability of Couette Profile

We consider stability of Couette profile

M(r) = Ar2 + B

under axisymmetric perturbations. All steady

flows in corresponding viscous problem have

profile M(r). Here, we consider the inviscid

case as a model for high Re flow.

Constants A and B determined by no-slip

condition on surfaces of cylinders:

A =
µ − η2

1 − η2
, B =

1 − µ

1 − η2

Method based on conservation of

kinetic energy:

H =
∫ ∫

1
2|v|

2rdrdz

and all integrals of the form (Casimirs)

C =
∫ ∫

C(m)rdrdz

where C(m) is any differentiable function.



Choose function C(m) so that first variation of

combination H+C vanishes when evaluated at

equilibrium:

δ(H + C)|
X

= 0

(so that X is a critical point of H + C).

This is achieved if, for m ∈ range[M(r)],

C′(m) =
−Am

m − B

Outside of range[M(r)], we may extend C ′(m)

in any way, so long as it is continuous.

Define pseudoenergy as the departure of H+C

from its equilibrium value. We may write it in

the form

A(x,X) =

∫ ∫

1
2{u

2 + w2

+
1

r
[1 + r2C′′(m̃)](m − M)2}rdrdz

where m̃(r, z, t) ∈ [M(r), m(r, z, t)] .



Can claim stability of X if 0 < A(x,X) < ∞ ∀ X.

This follows from conservation of A, since

||∆x(t)||2 ≤ A(t) = A(0) ≤
λ+

λ−
||∆x(0)||2

which implies that ||∆x|| is bounded for all time

in terms of its initial value.

The norm is defined by

||∆x||2 ≡
∫ ∫

1
2[u

2 + w2 +
λ−

r2
(m − M)2]rdrdz,

and λ− and λ+ are the minimum and maximum

values of

F (m, r) ≡ 1 + r2C′′(m)

over all values of m and for all r ∈ [1, η−1].



To account for all possible perturbations, must

define C′′(m) for all values of m. A simple

choice is

C′′(m) =



















































B

A
m < 1

AB

(m − B)2
1 < m < µη−2

AB

(µη−2 − B)
m > µη−2

Notice that F (m, r) can only

be negative if AB < 0, in

which case the least value

of F (m, r) obtains when r is

maximized and C ′′(m) is

most negative.

Thus stability assured if

F (m = 1, r = η−1) =
[(η2 + 1) − µ](1 − η2)

η2(µ − η2)
> 0

i.e. if η2 < µ < η2 + 1. In dimensional form:

(

r1
r2

)2

<
Ω2

Ω1
<

(

r1
r2

)2

+ 1



Saturation of Disturbance Amplitude

Since, relative to every stable X, the pseudoen-

ergy of every state x is positive and conserved,

the energy released into the overturning flow

(e.g. Taylor vortex flow) from an unstable

basic state is bounded from above via

K(x(t)) ≡
∫ ∫

1
2[u

2 + w2]rdrdz ≤ A(x(0), X).

We consider unstable Couette equilibrium

profiles with µu < η2 and compute their

pseudoenergies relative to a range of stable

profiles (characterized by µ and, say, Ω1):
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and we plot the minimum value of all

pseudoenergies so obtained:
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Upper Bounds on Vertical-Radial Kinetic Energy
 for Weakly Supercritical Conditions
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• Upper bound on minA approaches zero as

ε ≡ 1 − µη2 approaches bifurcation point.

Hence, the amplitude to which an initially

small perturbation can grow is bounded near

zero near the critical value of ε

(characteristic of supercritical bifurcation).

• Landau theory (amplitude equations):

equilibrium amplitude ∼ ε1/2 ⇒ energy ∼ ε



Summary

• Considering only axisymmetric disturbances,

we demonstrate a nonlinear generalization

to Rayleigh’s centrifugal stability condition.

• Growth of small disturbances to weakly

supercritical equilibria are bound near zero,

consistent with the existence of the stable

axisymmetric Taylor vortex state, without

the influence of viscosity.

• Hopefully, result can be extended to

include viscosity; for example, showing that

A is bounded from above during the

evolution from a perturbed state (this might

complement asymptotic stability results of

Joseph and Hung, etc.)


