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(from Tagg, 1994. Nonlin. Sci. Today)

History

e Rayleigh (1916): inviscid stability requires
that angular momentum increases away from
axis of rotation

e Taylor (1923): linear stability curve of
corresponding viscous problem asymptotes
to Rayleigh line in the limit of high Re

e Joseph and Hung (1971): nonlinear asymp-
totic stability of viscous problem shown for
near rigid body conditions
(nonlinear extension of Synge, 1938)



from:
Joseph, D. D. Stability of Fluid Motions.

Springer-Verlag, 1976
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Fig. 37.1.a: Stability regions for Couette flow between rotating cylinders. The circles and (riangles
are observed points of instability in the experiments of D). Coles (1965) (Joseph and Hung. 1971)
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Fig. 37.1.h: Stability regions for Couette flow between rotating cvlinders (Joseph and Hung. 1971)



Definitions

e Parameters: = —| and = =

e Equations nondimensionalized such that

?“151 QlEl

ro=n"1 Q=up

e Fluid velocity in cylindrical coordinates:

V = u€r + v€y + wey

Angular momentum: |m = rv

e State vector:

x(r,z,t) = (u(r, z,t), m(r, z,t), w(r, z, t))T,

e Couette (equilibrium) profile:

X (r) = (0, M(r),0)"



Nonlinear Stability of Couette Profile

We consider stability of Couette profile

M(r) = Ar?+ B

under axisymmetric perturbations. All steady
flows in corresponding viscous problem have
profile M(r). Here, we consider the inviscid
case as a model for high Re flow.

Constants A and B determined by no-slip
condition on surfaces of cylinders:

Method based on conservation of
Kinetic energy:

H = //%]V|2rdrdz

and all integrals of the form (Casimirs)
C=/ C(m)rdrdz

where C'(m) is any differentiable function.



Choose function C'(m) so that first variation of
combination H + C vanishes when evaluated at
equilibrium:

S(H+C)|x =0
(so that X is a critical point of H + C).

This is achieved if, for m € range[M (r)],

—Am
m — B

C'(m) =

Outside of range[M (r)], we may extend C’(m)
in any way, so long as it is continuous.

Define pseudoenergy as the departure of H+C
from its equilibrium value. We may write it in
the form

AxX) = [ [ 3u? +w?

-+ %[1 + 20" ()] (m — M)Q}rdrdz

where [m(r,z,t) € [M(r), m(r,z,t)]|.




Can claim stability of X if 0 < A(x,X) < co V X.

This follows from conservation of A, since

which implies that ||Ax|| is bounded for all time
in terms of its initial value.

The norm is defined by

A
|Ax|]? = // %[u2 + w? + T—Q(m — M)?|rdrdz,

and \A_ and >\+ are the minimum and maximum
values of

F(m,r) =14+ r2C"(m)

over all values of m and for all r» € [1,n1].



To account for all possible perturbations, must
define C”(m) for all values of m. A simple
choice is

4 B < 1

— m

A

AB _
C"(m) = (m — B)2 1<m< pun=?
AB 2
m

| (un=2 — B) i

Notice that F'(m,r) can only
be negative if AB < 0, in
which case the least value | “ 1 2
of I'(m,r) obtains when r is i : m
I
|

maximized and C”(m) is
most negative. | (4B <0)

T hus stability assured if

(7% + 1) — p](1 —n?)
n?(u —n?)

>0

Fim=1,r=n"1)=

i.e. if 2 < u<n?+ 1. In dimensional form:

2 2
Q2
<T_1> < _2 < <T_1> _|_ ]_
T2 €27 T2




Saturation of Disturbance Amplitude

Since, relative to every stable X, the pseudoen-
ergy of every state x is positive and conserved,
the energy released into the overturning flow
(e.g. Taylor vortex flow) from an unstable
basic state is bounded from above via

Kx() = [ [ 31u? + wlrdrdz < A(x(0),X).

We consider unstable Couette equilibrium
profiles with p, < 772 and compute their
pseudoenergies relative to a range of stable
profiles (characterized by p and, say, 21):
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and we plot the minimum value of all
pseudoenergies so obtained:

Upper Bounds on Vertical-Radial Kinetic Energy
for Weakly Supercritical Conditions
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e Upper bound on min A approaches zero as
e = 1 — un? approaches bifurcation point.
Hence, the amplitude to which an initially
small perturbation can grow is bounded near
zero near the critical value of ¢
(characteristic of supercritical bifurcation).

e Landau theory (amplitude equations):
equilibrium amplitude ~ ¢/2 = energy ~ ¢



Summary

e Considering only axisymmetric disturbances,
we demonstrate a nonlinear generalization
to Rayleigh’s centrifugal stability condition.

e Growth of small disturbances to weakly
supercritical equilibria are bound near zero,
consistent with the existence of the stable
axisymmetric Taylor vortex state, without
the influence of viscosity.

e Hopefully, result can be extended to
include viscosity; for example, showing that
A is bounded from above during the
evolution from a perturbed state (this might
complement asymptotic stability results of
Joseph and Hung, etc.)



