Bridging the data/model divide:
calibration of a model of North
American
deglaciation in the context of
understanding the Younger Dryas
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Outline

motivation

INSIGHT and VALIDATION: Glacial Systems Model
(GSM) and model calibration

ICE: A few general results

THE CRITICAL LINK: Drainage results

Implications for climate dynamics



Inferred Greenland temperature
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Some side issues: observations and
physics

® High surface salinity for Gulf of St. Lawrence during YD
(de Vernal et al., Nature,1996)

® Absence of floodway for eastern drainage of Lake
Agassiz during YD onset (Lowell et al, EOS, 2005)

® Muddy water sinks: hyperpycnal plumes (Parsons et al.,
Sed., 2001; Aharon, EPSL, 2006)

® Baroclinic Gulf Stream



Deglacial drainage
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North American deglacial drainage




Glacial modelling challenges and issues
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Glacial Systems Model (GSM)

Climate: 2D EBM, 3D GCM, ???

Diagnostics: semi-Lagrangian
tracers, surface drainage, RSL

statistical snow fractlon

Glen flow law

3D thermodynamlcs

visco—plastic tlll deformatlon

calving=

f(buoyancy, T)

visco—elastic

earth rheology

GLACIAL SYSTEMS MODEL

Some GSM equations

e ice thickness (H(F,z)) evolution computed from verti-
cally integrated continuity equation for ice mass:

e / V() dz+ G, T)
ot %

o Ice velocity field V(¥,1) from Glen flow rheology

VE) = Vo—2(pig)” {Vi(h) - V4(k)}" V29, (R)
E / ) AT (VW h—-2)dd

e Ice temperature {7T'(¥,7)) from energy conservation

— (T {E)) V(X)) VT'(F) + Qu(F)

e Bedrock elevation R under load L from convolution with
Greens function I™:
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Climate forcing

¢ Last Glacial
Maximum (LGM)
precipitation and
temperature from 6
highest resolution
Paleo Model
Intercomparison

Project GCM runs
¢ Mean and EOF
fields

NN ® Present day
observed fields
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Climate forcing time-dependence

® glacial index weights

il o o i s interpolation between
present-day climatology
and LGM PMIP fields

® 4 ensemble parameters
control temperature
specification

® 16 ensemble parameters
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Lots of ensemble parameters

® 5 ice dynamical
® 16 regional precipitation
¢ LGM precipitation EOFs most significant !
4 ice calving
4 temperature
2 iIce margins
=31
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Need constraints -> DATA



Deglacial margin chronology

New margin chronology
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Relative sea-level (RSL) data

RSL data sites
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RSL site weighting
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VLBI and absolute gravity data

RSL data sites




Noisy data and non-linear system !!l!



Noisy data and non-linear system =>
need calibration and error bars



Criteria for calibration methodology

¢ Complicated under-constrained non-linear system with

threshold behavior
® effectively large number of poorly constrained model
parameters

® Large set of diverse noisy constraint data

® bumpy phase and likelihood spaces (shown below) further
rule out gradient-based approaches such as adjoint (eg.
4D var) methods

® SUGGESTS : a stochastic methodology

® accurate propagation of data uncertainties -> Bayesian
approach

¢ _> Markov Chain Monte Carlo



Bayesian calibration

SYSTEMS MODEL

3D thermo-mech. A W

coupled dynamical
ice—sheet model

RSL calculator
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INPUT PARAMETERS

climate forcing
ice calving
ice dynamics

INFERENTIAL

| CALCULATOR
MCMC

BAYESIAN CALIBRATION OF A
WISCONSIN DEGLACIATION MODEL

¢ Sample over posterior
probability distribution for
the ensemble parameters
given fits to observational
data using Markov Chain
Monte Carlo (MCMCQC)
methods

¢ Other constraints:

¢ Minimal margin forcing at

LGM

¢ LGM/-30kyr/-49kyr ice
volume bounds
mwp1-a magnitude
Hudson Bay glaciated at
-25Kyr

¢ o



Large ensemble Bayesian calibration

SYSTEMS MODEL

3D thermo-mech.
coupled dynamical
ice-sheet model

RSL calculator
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OBSERVATIONS

strandline elevation
basal uplift
Relative Sea Level

INFERENTIAL
CALCULATOR
MCMC

BAYESIAN CALIBRATION OF A
WISCONSIN DEGLACIATION MODEL

® Bayesian neural network
iIntegrates over weight
space
¢ Self-regularized
¢ Can handle local minima



Calibration details

e The expectation of the posterior distribution of possible
models (GSM) given constraint data set D is given by:

< GSM|D > f GSM(»)P(y|D)dy

| asMG)PDI)Z PGYdy

where P(y) is the prior probability distribution for the
ensemble parameter vector y. The normalization con-
stant Z is a function only of D and is therefore ignored.

e In MCMC sampling, this becomes

< GSM|D> ~ N > CoMLE
MCMC(P(y),P(D|y))

for N samples. However, given that P(D|y)neiworks €m-
ployed in the MCMC sampling is not entirely accurate,
and given that further observations (DML) are used to
score the final results, use:

<GSM|D> ~ N~' Y {GSM(y)
y(MCMC)

P(DMLly)GSMP(D|y)GSM/P(Dly)networks}




ANN versus GSM : forcing index

margin forcing ablation index
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ANN versus GSM : RSL

RSL comparison, S.E. Hudson Bay
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Complexity of parameter space

Logarithmic cost function for fast-flow control parameter
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It works!

Fit to 313 RSL calibration data points and geodetic data
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GSM versus neural network fit
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Issues and challenges

® Choice of ensemble parameters
® Parameter set ended up being extended with time as
troublesome regions were identified
® Challenge of identifying appropriate priors for each parameter

® Error model for RSL data

® Noisy and likely site biased
® Heavy-tailed error model to limit influence of outliers
® Neural network
® Non-trivial to find appropriate configuration
® Neural network for RSL was most complex: multi-layered and
separate clusters for site location and time
® Training takes a long time, predictions can be weak for
distant regions -> move to spatially sectored RSL networks
® MCMC sampling
¢ Can get stuck in local minima
¢ “Unphysical” solutions cropped up => added constraints



Some general ice results



old version LGM characteristics

nn9450 best fit model
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LGM comparisons
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A recent example result for LGM
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Maximum NW ice thickness
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Calibration favours fast flow

post-MCMC score versus fast flow parameter

fast flow parameter




Deglacial Drainage



Drainage topography

¢ Diagnostic down-slope
surface drainage and water
storage solver
® 100 year time-steps
¢ Challenge of accurate
coarse resolution drainage
calculation
¢ Solver and drainage
topography validated for
present day against
drainage basins of Hydro-1k
data-set

20 110°W 100 apew BO°W
1 » 0.5 resolution drainage topography




Deglacial eustatic sea-level chronology

Eustatic sea-level equivalent (m) for NA
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YD onset drainage basins

Gulf of St. Lawrence
drainage

broinoge basins ot t= 4:'1-‘I“2.8kyr




Where does the meltwater go?

YD marine elevation (km)

Bauch et al (2001):
evidence of a low
salinity event at or
before YD onset in
western Fram Strait

3 data-points from
two other cores
(PS2837, PS2887,
Norgaard-Pedersen
et al, Paleoc.,
2003) -> freshening
In Western Fram
Strait between 10.5



Science Summary

® Yellowknife uplift data -> Large Keewatin ice-dome
® Largest (1.2 to 2.2 dSv one sigma range over 100 years)

discharge into the NW Arctic Basin during YD onset
® Most of NW discharge is due to the reduction of the
Keewatin ice dome
® Trigger for Younger Dryas?

® Ensemble NA contributions to mwp-1a range from 7.2 to
11.4 m eustatic

¢ Calibration favours strong fast flow: a dynamic ice-sheet



Key points to walk away with

® Results suggests Arctic hydrology played a critical role in
millenial scale climate variations -> future?

® numerical model + calibration = data and physics
Integration



Issues: to do

¢ Meltwater chronology for other ice-sheets?
® —. repeat calibration process for other ice-sheets
® More proxy data,
® Repeating calibration with expanded constraint set
¢ Self-consistency of climate forcing?
¢ Snap-shot and asynchronous coupling with various EMICS
and GCMs
¢ Check against paleo-climate proxies
® Ocean response?
¢ High-resolution local basin modelling of ocean circulation



Arctic discharge robustness

Arctic discharge comparison
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NW routing for Lake Agassiz

weighted ensemble fraction for NW routing for Lake Agassiz
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Lake Agassiz choke point elevations

Agassiz choke point elevations (wrt PD)

1P Southern (RédRiver route) choke pt
1Y South (RedRiyer route) choke pt 11Y
‘ ~11Y Eastern choke pt. elev.
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European meltwater drainage
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Deglacial eustatic sea-level chronology
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Other and longer-term projects

® Further development and application of calibration
methodology to other models

® Higher order ice-sheet/stream/shelf model
¢ Get better constraints on Heinrich events

¢ Additions and improvement to components of GSM:
®  Field work : ice calving -> better model
¢ Sub-grid mass-balance parameterizations
¢ Sub-glacial hydrology
¢ Sediment transport

¢ Climate system modelling to understand what drives the
100,000 year glacial cycle

® |sotopic tracking : ground-water and existing ice-caps

¢ Use calibrated models to constrain future evolution of
present-dav ice sheets



