Bridging the data/model divide:
calibration of a model of North
American
deglaciation in the context of
understanding the Younger Dryas

Outline

- motivation
- INSIGHT and VALIDATION: Glacial Systems Model (GSM) and model calibration
- ICE: A few general results
- THE CRITICAL LINK: Drainage results
- Implications for climate dynamics

Inferred Greenland temperature

Barbados sea-level record

Some side issues: observations and physics

- High surface salinity for Gulf of St. Lawrence during YD (de Vernal et al., Nature, 1996)
- Absence of floodway for eastern drainage of Lake Agassiz during YD onset (Lowell et al, EOS, 2005)
- Muddy water sinks: hyperpycnal plumes (Parsons et al., Sed., 2001; Aharon, EPSL, 2006)
- Baroclinic Gulf Stream

Deglacial drainage

Glacial modelling challenges and issues

Glacial Systems Model (GSM)

Some GSM equations

• ice thickness $(H(\vec{\mathbf{r}},t))$ evolution computed from vertically integrated continuity equation for ice mass:

$$\frac{\partial H}{\partial t} = -\nabla_h \cdot \int_{z_h}^h \vec{\mathbf{V}}(z) \, dz + G(\vec{\mathbf{r}}, T) \tag{1}$$

• Ice velocity field $\vec{\mathbf{V}}(\vec{\mathbf{r}},t)$ from Glen flow rheology

$$\vec{\mathbf{V}}(\vec{\mathbf{r}}) = \vec{\mathbf{V}}_b - 2(\rho_i g)^n \left\{ \nabla_h(h) \cdot \nabla_h(h) \right\}^{(n-1)/2} \nabla_h(h)$$

$$\cdot E \int_{z_b}^z A(T^*(z')) (h - z')^n dz'$$

• Ice temperature $(T(\vec{\mathbf{r}},t))$ from energy conservation

$$\rho_{i}c_{i}(T(\vec{\mathbf{r}}))\frac{\partial T(\vec{\mathbf{r}})}{\partial t} = \frac{\partial}{\partial z}\left\{k_{i}(T(\vec{\mathbf{r}}))\frac{dT(\vec{\mathbf{r}})}{dz}\right\} - \rho_{i}c_{i}(T(\vec{\mathbf{r}}))\mathbf{V}(\vec{\mathbf{r}})\cdot\nabla T(\vec{\mathbf{r}}) + Q_{d}(\vec{\mathbf{r}})$$

• Bedrock elevation R under load L from convolution with Greens function Γ :

$$R(\theta, \psi, t) = \int_{-\infty}^{t} \int \int_{\Omega} L(\theta', \psi', t') \Gamma(\gamma, t - t') d\Omega' dt'$$

Climate forcing

- Last Glacial
 Maximum (LGM)
 precipitation and
 temperature from 6
 highest resolution
 Paleo Model
 Intercomparison
 Project GCM runs
 - Mean and EOF fields
- Present day observed fields

Climate forcing time-dependence

- glacial index weights interpolation between present-day climatology and LGM PMIP fields
- 4 ensemble parameters control temperature specification
- 16 ensemble parameters control precipitation

Lots of ensemble parameters

- 5 ice dynamical
- 16 regional precipitation
 - LGM precipitation EOFs most significant!
- 4 ice calving
- 4 temperature
- 2 ice margins
- **♦** = 31

Need constraints -> DATA

Deglacial margin chronology

- (Dyke, 2003)
- 36 time-slices
- +/- 50 kmuncertainty
- Margin buffer
- 2 ensemble parameters

Relative sea-level (RSL) data

RSL site weighting

VLBI and absolute gravity data

Noisy data and non-linear system !!!!

Noisy data and non-linear system => need calibration and error bars

Criteria for calibration methodology

- Complicated under-constrained non-linear system with threshold behavior
 - effectively large number of poorly constrained model parameters
- Large set of diverse noisy constraint data
- bumpy phase and likelihood spaces (shown below) further rule out gradient-based approaches such as adjoint (eg. 4D var) methods
- SUGGESTS: a stochastic methodology
- accurate propagation of data uncertainties -> Bayesian approach
- => Markov Chain Monte Carlo

Bayesian calibration

- Sample over posterior probability distribution for the ensemble parameters given fits to observational data using Markov Chain Monte Carlo (MCMC) methods
- Other constraints:
 - Minimal margin forcing at LGM
 - LGM/-30kyr/-49kyr ice volume bounds
 - mwp1-a magnitude
 - Hudson Bay glaciated at -25kyr

Large ensemble Bayesian calibration

- Bayesian neural network integrates over weight space
 - Self-regularized
 - Can handle local minima

Calibration details

• The expectation of the posterior distribution of possible models (GSM) given constraint data set D is given by:

$$< GSM|D> = \int GSM(y)P(y|D)dy$$

= $\int GSM(y)P(D|y)Z^{-1}P(y)dy$,

where P(y) is the prior probability distribution for the ensemble parameter vector y. The normalization constant Z is a function only of D and is therefore ignored.

• In MCMC sampling, this becomes

$$\langle GSM|D \rangle \simeq N^{-1} \sum_{MCMC(P(y),P(D|y))} GSM(y)$$
,

for N samples. However, given that $P(D|y)_{\text{networks}}$ employed in the MCMC sampling is not entirely accurate, and given that further observations (DML) are used to score the final results, use:

$$< GSM|D> \simeq N^{-1} \sum_{y(MCMC)} \{GSM(y)$$

 $\cdot P(DML|y)_{GSM} P(D|y)_{GSM} / P(D|y)_{networks} \}$

ANN versus GSM : forcing index

ANN versus GSM: RSL

Complexity of parameter space

It works!

GSM versus neural network fit predictions

RSL results, some best fit models

Issues and challenges

- Choice of ensemble parameters
 - Parameter set ended up being extended with time as troublesome regions were identified
 - Challenge of identifying appropriate priors for each parameter
- Error model for RSL data
 - Noisy and likely site biased
 - Heavy-tailed error model to limit influence of outliers
- Neural network
 - Non-trivial to find appropriate configuration
 - Neural network for RSL was most complex: multi-layered and separate clusters for site location and time
 - Training takes a long time, predictions can be weak for distant regions -> move to spatially sectored RSL networks
- MCMC sampling
 - Can get stuck in local minima
 - "Unphysical" solutions cropped up => added constraints

Some general ice results

old version LGM characteristics

LGM comparisons

(Dyke and Prest, 1987)

A recent example result for LGM

Maximum NW ice thickness

Green runs fail
constraints
Blue runs pass
constraints
Red runs are top 20%
of blue runs

Calibration favours fast flow

Deglacial Drainage

Drainage topography

- Diagnostic down-slope surface drainage and water storage solver
 - 100 year time-steps
- Challenge of accurate coarse resolution drainage calculation
 - Solver and drainage topography validated for present day against drainage basins of Hydro-1k data-set

Deglacial eustatic sea-level chronology

Gulf of Mexico —— Upper bound ······· Discharge (dSv) mwp1-a 2 mid-Atlantic "", Upper bound mid-Atlantic +Labrador Sea Discharge (dSv) mwp1-a 2 Arctic Upper bound (c) Proposed YD t<u>rigg</u>er Discharge (dSv) mwp1-a **ပြ** -5 -10 Temperature change GRIP chronology GISPII chronology -15 -20 -15 -14 -13 -12 -11 -10 -9 Time (kyr)

(Tarasov and Peltier, Nature 2005)

Climate and meltwater phasing

YD onset drainage basins

Mississippi drainage
NW Arctic drainage
Labrador Sea drainage
Gulf of St. Lawrence
drainage
Hudson River drainage

Where does the meltwater go?

Bauch et al (2001): evidence of a low salinity event at or before YD onset in western Fram Strait

3 data-points from two other cores (PS2837, PS2887, Norgaard-Pedersen et al, Paleoc., 2003) -> freshening in Western Fram Strait between 10.5

Science Summary

- Yellowknife uplift data -> Large Keewatin ice-dome
- Largest (1.2 to 2.2 dSv one sigma range over 100 years)
 discharge into the NW Arctic Basin during YD onset
 - Most of NW discharge is due to the reduction of the Keewatin ice dome
 - Trigger for Younger Dryas?
- Ensemble NA contributions to mwp-1a range from 7.2 to 11.4 m eustatic
- Calibration favours strong fast flow: a dynamic ice-sheet

Key points to walk away with

- Results suggests Arctic hydrology played a critical role in millenial scale climate variations -> future?
- numerical model + calibration = data and physics integration

Issues: to do

- Meltwater chronology for other ice-sheets?
 - => repeat calibration process for other ice-sheets
- More proxy data,
 - Repeating calibration with expanded constraint set
- Self-consistency of climate forcing?
 - Snap-shot and asynchronous coupling with various EMICS and GCMs
 - Check against paleo-climate proxies
- Ocean response?
 - High-resolution local basin modelling of ocean circulation

Arctic discharge robustness

NW routing for Lake Agassiz

weighted ensemble fraction for NW routing for Lake Agassiz

Lake Agassiz choke point elevations

European meltwater drainage

Deglacial eustatic sea-level chronology

Other and longer-term projects

- Further development and application of calibration methodology to other models
- Higher order ice-sheet/stream/shelf model
 - Get better constraints on Heinrich events
- Additions and improvement to components of GSM:
 - Field work : ice calving -> better model
 - Sub-grid mass-balance parameterizations
 - Sub-glacial hydrology
 - Sediment transport
- Climate system modelling to understand what drives the 100,000 year glacial cycle
- Isotopic tracking : ground-water and existing ice-caps
- Use calibrated models to constrain future evolution of present-day ice sheets