

OUTLET GLACIER RETREAT, THINNING AND ICEBERG CALVING

Helheim Glacier

Frontal Retreat

Thickness Change

Velocity

I. Howat et al., *GRL*, 2005

WHAT'S DRIVING THESE CHANGES?

- Two main hypotheses:
 - From the top increased or more widespread penetration of surface meltwater to the glacier bed enhances sliding
 - From the bottom –
 terminus destabilisation
 by flotation (due to rising
 sea level or thinning
 caused by increased
 surface or marine melt)
 reduces flow resistance
- But which is it? Hard to measure in Greenland

Study site: Belcher Glacier

Glaciodyn Canada Modelling Goals

1. Develop high order coupled model of outlet glacier dynamics

incorporate surface mass balance, glacier hydrology, ice flow and iceberg calving

2. Collect detailed field and remotely sensed data

Design, initialize, drive, and validate model

3. Run model

- Explore Belcher Glacier response to climate change
 - atmospheric and oceanic climate
 - amount and distribution of surface water inputs to glacier bed
 - Ice dynamics, terminus stability and iceberg calving
 - What are the important processes?

Methods: Modelling

- Surface mass balance model
- Whole ice cap flow model
- Coupled hydrology/ thermomechanical outlet glacier flow model
- Iceberg calving mechanics

Methods: Surface Processes & Properties

Mass balance

 radar, ice cores, AWS, stakes, remote sensing of summer melt

Hydrology & Drainage

remote sensing, time lapse photography, hydrometric measurements,

Topography

Kinematic GPS,
 Airborne laser
 altimetry,
 Photogrammetry

Thickness Changes 1960-2005

Methods: Sub-surface characteristics

- Subglacial topography
 - RES, GPS
- Bed properties and their temporal variability
 - seismic reflection and monitoring

RES Profile Parallel to Belcher Terminus

Methods: Offshore bathymetry and water column properties

RCGS Amundsen

Belcher Terminus 2006 EM3002 Bathymetry Landsat 7 2000

Key questions (1)

- On what timescale does Belcher Glacier respond to climate warming?
- How is glacier response regulated by changes in the rate and mechanism of ice flow? If so, what causes these changes?
- How do these changes amplify those caused by surface mass balance alone?

Key questions (2)

- Are changes in flow dynamics and iceberg calving related, and how?
- What controls the calving rate and its variation over time – is ocean climate important?

What scale do we work at?

- Large space/time scale, crude parameterizations?
- Or local scale, high data requirements, and detailed physics/ modelling?

What data is needed?

- Calving events: when, where, and magnitude
- Tide level, sea-ice cover
- Sub-glacial water pressure
- Crevasses(time): depth, water depth, width
- Strain rate field near terminus
- Ice thickness, topography and bathymetry at terminus
- Ocean temperature
- Submarine melt

Fieldwork

- Timelapse cameras:
 - Size and timing of calving events
 - Sea-ice cover
 - Sub-glacial sediment discharge
 - snow-cover
- Tides: model validated by observations
- Strain field: 1 continuous logger and repeat measurements at 26 sites
- Crevasses: depth and width measurements
- Subglacial discharge:
 - CTD off terminus and from water

Timelapse on a budget

- Pentax Optio W30
- New Model (W60) rated to -10C
- @ 300 shots/battery charge
- Problem: moraine was not stable

That looks like a calving event at the northern border of the picture. The ice-particles in the southern parts are not new.

- Often not easy to discern calving events
 - High and low cameras help

8.3985e+06 8.398e+06 8.3975e+06 8.397e+06 8 3965e+06 491500 492000 crevasses

Crevasses

- No clear pattern wrt crevasse depth given limited measurements
- Need more efficient and accurate method than drop lines and old laser range finder
- Key issue is water depth
- Large deep crevasses were dry

Velocity field

Need semi-continuous longer term logging, with enough coverage to extract strain field and compare to hydrology

Do Tides affect calving?

- Need more data
- But stronger events did correlate with higher tide

Tide phasing? (Tidal model matches observations)

Role of Surface Hydrology?

sedimentplume: thickness indicates activity (no activity, small or large) sea-ice break-up: 90% ice coverage left

Miscellaneous lessons

- If Belcher is generic, then terminus is not hard to navigate
 - Carpenter's chalk best trail marker aside from drilled in stakes
 - Extendable ladder would have increased accessibility
 - Much more comfortable to have camps on lateral moraines
 - Problem is getting to and from glacier
- Safety
 - Terminus is much safer wrt flooding: crevasses/moulins capture drainage
 - Seals offer protection: Well-fed polar bears may be curious but apparently humans are not a top choice

More miscellaneous lessons

- Equipment Miniaturization:
 - Eg Vemco logger, CTD
 - Should be able to do the same for GPS and GPR
- Kovachs Drill: use WD-40
- Shipping: Canada Post (longer time) or Fed-Ex
 (3 weeks) is much cheaper than air freight
- Need low and high timelapse cameras as cloud/fog often obscured high camera

What's needed to constrain stability of Arctic tide-water

glaciers?

- Continuous, multi-year data
 - GPS: need strain rate field
 - Timelapse, multiple levels
 - Subglacial input and discharge or pressure: How???
 - CTD, robotic rubber duckies, dye tracing, vertical motion, sediment plumes,
- Multiple sites
 - Need global data-base
- Modelling
 - Need topo/ice thickness data right up to terminus

Personal Learning

Hydrology matters

Remaining Questions: Who's is this? And how to keep feet dry?

Thanks to Martin, Luke, and Brad for organizing the proposal, equipment, data and guidance

massbalance

Funding

- NSERC
 - IPY SRO
 - Discovery Grant
- CFI
- AceNet
- ArcticNet
- PCSP

