
ROBUST STRATEGIES FOR ABATING CLIMATE CHANGE

An Editorial Essay

People are of two minds about uncertainty. On the one hand, we crave predictions
about the future. Virtually every newspaper, magazine, and trade publication has
articles predicting some aspect of the future, and many people make good livings
foretelling what the future will bring. The quest for prediction probably fills some
deep human need. Even though the accuracy of most predictions has proven to
be poor (Sherden, 1998), the future becomes less scary once given a name and a
shape.

On the other hand, we usually recognize that predictions are inherently unreli-
able and have been extraordinarily creative in managing our affairs without them.
From the folkways of farmers, to the basic tenets of most religions, to the rules
of thumb that we use to navigate late 20th-century life, few provide predictions
and most are designed to help the individual achieve some measure of success and
fulfillment no matter what the future brings. The currently triumphant forms of
social organization, democracy and the free market, are both explicitly designed
to be self-correcting of errors and robust against unforeseen circumstances. Both
assume people cannot predict the future and will make mistakes. Both probably
owe much of their success to the truth of this view.

In recent years, researchers examining alternative policies to address the threat
of climate change have become increasingly concerned about uncertainty. This is
clearly appropriate, for few policy problems are dependent on such significant
unknowns. Ascertaining the potential impacts of human activities on the im-
mensely complex climate system and its related ecosystems is daunting enough.
But climate-change policy must also concern itself with the state of society fifty and
a hundred years hence. Will innovation drive the cost of non-emitting energy tech-
nologies below that of fossil fuels? Will new means of extraction and processing
make coal the low-cost fuel of the future? Will society treasure the preservation
of the present state of nature, or will our descendants1 prefer the worlds that they
themselves create? If we knew the answers to such questions, they would shape
our choices about climate-change policy today.

The traditional framework for assessing alternative climate-change policies,
which influences much climate-change-policy research and informs the thinking
of many of the most sophisticated policy-makers, rests on the assumption that we
can predict the future. In this framework, we begin with a set of alternative actions
we might take; a model, often described mathematically, that allows us to describe
the consequences of each action; and some metric, such as monetary units, that
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allows us to rank our relative preferences for various consequences. Analysts use
this framework to predict the consequences of each action, and thus recommend the
‘optimum’ response, that is, the action that is better than all the alternatives. This
framework treats uncertainty, when it is treated at all, by estimating the likelihood
that different futures will come to pass. Rather than predict a specific outcome
of any action, we summarize all the possible consequences of an action with an
average (expected) value. The optimum policy becomes that alternative which, on
average, performs better than all the others.2

This approach has numerous virtues. It has been used successfully for decades
to solve a wide range of decision problems. It is supported by a deep body of theory
and an elegant toolbox of mathematical techniques. But for many problems, such
as those posed by climate change, such prediction-based policy analysis can be
misleading, because its underlying premise of what we know about the future is
not true. Perhaps more importantly, viable alternatives to this approach are now
available. Rather than find the optimum strategy based on predictions, researchers
using modern computer technology can now systematically and analytically eval-
uate alternative policies against a wide range of plausible scenarios and, thereby,
directly address the real task that faces climate-change decision-makers – crafting
strategies that are robust in the face of an unpredictable future.

1. The Problem with Prediction-Based Policy Analysis

Many research groups have recently attempted to forecast the cost to the United
States of meeting its commitments under the Framework Convention on Climate
Change, negotiated in Kyoto in December 1997. Some have argued that compli-
ance with the treaty, which requires the U.S. to reduce its emissions of greenhouse
gases by 7% below 1990 levels for the period 2008 to 2012, could cost up to 3%
of GDP. Others have calculated that emissions reductions could improve GDP by
a fraction of a percent (see, for instance, Repetto and Austin (1997), for a review
of various estimates of the costs of greenhouse-gas abatement and the reasons why
they differ). While some studies are better than others, these different projections
largely reflect different, plausible assumptions about the future. In fact, we do not
know what the Kyoto commitments will cost. The outcome depends on numerous
factors – from the cost of various fossil fuels, the health of the economy, the pro-
gress of new technologies, to the efficiency with which government programs are
put into place. We can predict none of these with any accuracy.

Estimating Kyoto-compliance costs is one of the easiest of the climate-change
forecasts to make since the time horizon is only a little more than ten years hence.
To predict the overall impacts of climate change requires not only forecasts of
the behavior of the climate system itself, but also the evolution of ecosystems and
social, technological, and economic systems decades into the future. People are
often wildly wrong in predicting such social, technological, and economic change.
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Technology forecasters, for instance, almost always miss the discontinuous techno-
logy changes, such as the advent of the passenger jet or the World Wide Web. Even
the best market forecasters miss major shifts in consumer preferences. And the
world’s experts frequently fail to predict significant political and economic events,
from the fall of the Soviet Union to the recent crash of Asian economies.

Any single scenario of the future is almost sure to be wrong. Prediction-based
policy analysis attempts to preserve the idea of an optimum policy in the face of
multiple, plausible scenarios by estimating the likelihood of each alternative future.
Often this is done by specifying probability distributions for each of a number of in-
put parameters to a model and propagating these probabilities through the model to
estimate the probability of various future scenarios. For instance, researchers might
estimate a 50% probability that the climate sensitivity is 2.5◦C and a 25% prob-
ability that it is 1.5◦C or 4.5◦C and, combined with estimates of the probability
that future greenhouse-gas emissions will be high or low, calculate the likelihood
of significant climate change over the next century. (The climate sensitivity is the
equilibrium warming per unit of radiative forcing due, for example, to a doubling
of carbon dioxide concentration in the atmosphere.) The optimum policy is then
calculated based on these probabilities.

This approach can adequately address the problem of decision-making under
uncertainty if the estimated probabilities are in some sense a ‘correct’ repre-
sentation of the future. But often they are not. In order to estimate the probable
outcomes of science that is not yet completed or future events that have not yet
occurred, analysts often elicit the views of experts in relevant fields. For instance,
policy researchers might ask climate scientists to estimate the likelihood that the
climate sensitivity takes on certain values (Morgan and Keith, 1995). Or, they might
consult the many technology experts who forecast the likelihood that coal or some
set of non-greenhouse-gas-emitting alternatives will meet the energy needs of the
21st century (see, for example, Johansson et al. (1993) for a variety of projections
for renewable energy sources). These elicitations are an excellent source of in-
formation. But there is real danger in regarding the resulting probabilities (called
subjective probabilities) as a good foundation for defining optimum policies.
People have many well-documented biases and failures in making such estimates.
Moreover, there is often little information other than expert judgment on which
to base such expectations. Some statisticians argue that subjective probabilities
are always inappropriate because the concept of probability loses all meaning for
future events that will happen only once. This is not our criticism. We acknowledge
the alternative Bayesian view that meaningful subjective probabilities are possible,
and in some cases, represents the best means to adjudicate among different policy
options. But, we argue that using these probabilities to define optimum policies can
lead to two critical mistakes in the assessment of climate-change policies.3

First, the concept of an optimum policy assumes a single, rational decision-
maker whose expectations about the future are well-approximated by a single set
of probabilities. But society contains a multitude of actors, each with their own
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expectations about the future. Thus, no optimum policy so based is likely to support
the consensus needed for political action. Many different stakeholders are affected
by the climate-change problem, and they hold very different views about the
climate-change future. In part, such differences are due to different interpretations
of the available scientific evidence. But, to a significant extent, they are also due
to differing interests. Decision-makers and other political actors often understand
that particular expectations support particular policies and that the available science
supports a wide range of plausible futures. Contending stakeholders will do their
best to choose divergent subjective probabilities that support the particular position
they wish to hold on ideological, financial, or other grounds.4

Second, optimum policies can be brittle in the face of catastrophes, pleasant sur-
prises, or other high-consequence, low-probability events. The decision-analysis
literature often distinguishes among those cases (Morgan and Henrion, 1990;
IPCC, 1996; NRC, 1997) in which we know the underlying system model, the
loss function, and the subjective probability distributions of key, uncertain model
parameters and those cases where the system model, loss function, and/or prob-
ability distributions are in doubt. In the former case, it can make sense to speak
of an optimum response to the uncertainty. But in the latter, the case of deep
uncertainty, such an optimal strategy may be misleading. For instance, many
climate-change-policy studies advocate optimum hedging strategies with slight
increases in near-term emissions reductions or slight increases in carbon taxes as
a response to low-probability catastrophes. But such results do not inspire great
confidence, because they often depend sensitively on assumptions about things we
know very little about, such as the magnitude of potential catastrophes and their
likelihood.

Real-world decision-makers often think about hedging quite differently from
the way envisioned by the prediction-based policy-analysis framework. They view
hedges as actions that reduce vulnerability and enhance the flexibility to respond if
the unexpected occurs.5 Thus, for example, manufacturers might invest in flexible
production facilities that can be profitable across a range of production volumes
to compensate for unpredictable demand; military commanders might insist on
overwhelming numerical superiority in order to compensate for the fog of war.
Similarly, there may be many actions that reduce vulnerability to climate change
or enhance society’s ability to respond. However, such hedges will often be sub-
optimal for any given set of expectations about the future and hard to find in an
analysis, and within a mindset, designed to produce optimum policies.6

Thus, an optimum policy is a poor foundation on which to build climate-
change policy. Any such policy recommendation is vulnerable to attack from
others who hold, or choose to hold, alternative expectations of the future. Even
if forceful leadership combined with dramatic external events impel acceptance
of one climate-change policy, any optimum policy could still be inadequate if the
unexpected occurs, as it usually does.
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2. A Method for Finding Robust Strategies

The key step in solving a complex problem is often asking the right question.
Prediction-based policy analysis requires that we ask ‘what is likely to happen
in the future?’ We believe that the proper question is ‘what actions should we take,
given that we cannot predict the future?’ The answer we propose is that society
should seek strategies that are robust against a wide range of plausible climate-
change futures. By definition, robust strategies are insensitive to uncertainty about
the future. For risk-averse policy-makers, such strategies would perform reason-
ably well, at least compared to the alternatives, even if confronted with surprises or
catastrophes. Robust strategies may also provide a more solid basis for consensus
on political action among stakeholders with different views of the future, because
it would provide reasonable outcomes no matter whose view proved correct.

Clearly, robust strategies are desirable. The question is, do such strategies exist
and, if so, do we have the means to find and assess them?

Over the last several years, we have developed a set of computational meth-
ods for decision-making under conditions of deep uncertainty that are well-suited
to find and assess robust strategies for climate change (Lempert et al., 1996,
henceforth LSB; Lempert et al., 2000, henceforth, LSBA; Robalino and Lem-
pert, forthcoming, henceforth RL). These methods, called exploratory modeling
(Bankes, 1993; Bankes and Gillogly, 1994), are designed to exploit the qualitatively
new capabilities of modern computers, in particular, large quantities of inexpensive
memory; fast, networked processors; and powerful visualization tools. The basic
idea is to use simulation models to create a large ensemble of plausible future
scenarios, where each member of the ensemble represents one guess about how
the world works and one choice among many alternative strategies we might adopt
to influence the world. We then use search and visualization techniques to extract
from this ensemble of scenarios information that is useful in distinguishing among
policy choices.

These methods are consistent with the traditional, probability-based approaches
to uncertainty analysis because when credible distributions are available, one
can lay them across the scenarios and thus calculate expected values for various
strategies, value of information, and the like. In the past, the practical limita-
tions imposed by relatively scarce computer cycles and memory forced analysts
to rely on a single system model, a single set of subjective probabilities, and a
single loss function as the sole representation of the future, whether or not such
best-estimates were a good summary of our knowledge. The qualitatively new
capabilities of modern computers now enables us to run the traditional analytic
machinery of prediction-based policy analysis numerous times. We can utilize this
information by compiling the expectedregret of alternative strategies, defined as
the difference between the expected performance of the strategy calculated with
a particular set of priors and the performance of the optimal policy under perfect
information (for a particular loss function). We then use computer search routines
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to look for: (i) strategies that are robust across the alternative models, priors, and
loss functions (that is, their expected regret is never large compared to the alternat-
ives); and (ii) key tradeoffs among strategies and assumptions that drive the choice
among strategies. Often these searches are configured to alternatively help suggest
and then to test hypothesis about robust strategies. For instance, recognizing that
strategy A outperforms strategy B in some plausible futures but does poorly in
others, an analyst might guess that a particular mixture of A and B might perform
reasonably well across all futures, and could test this hypothesis by running the
new strategy against the set of plausible futures.

The exploratory-modeling approach thus uses new technology to better im-
plement several classic ideas for addressing deep uncertainty. As applied to the
climate-change problem, we use exploratory modeling to work in a cost-benefit,
Bayesian-decision-analysis framework, similarly to many of the classic treatments
of climate-change policy (Nordhaus, 1994; Manne and Richels, 1992). However,
we assume that there is deep uncertainty about the costs and benefits because the
likelihood of some key outcomes is unknown and/or there are disagreements about
how to value outcomes. Acknowledging this deep uncertainty allows us to address
many of the critiques of the cost-benefit approach posed by advocates of alter-
native, often constraint-based methods such as the Tolerable Windows Approach
(Toth, 1998). The concept of robust strategies is closely related to Simon’s sat-
isficing strategies (that is, strategies that do well-enough) and to Savage’s (1950)
idea of minimizing the maximum regret. In recent years, researchers have proposed
formal treatments of some of these ideas, using Bayesian analysis (Berger, 1985)
and robust control theory (Zhou et al., 1996), but these formalisms are difficult to
apply in practice to the types of models often used in the analysis of climate-change
policy. Stochastic optimization methods can also be useful (e.g., Gritsevskyi and
Nakicenovic, 1999; Kelly and Kolstad, 1996), but are also challenging to employ.
Our approach provides a systematic method, supported by numerical engines based
on search algorithms, that simplifies the process of finding robust strategies for
arbitrary models and priors. Generally, we report results by tracing tradeoff curves
and by identifying the regions of parameter or probability space implicit in altern-
ative decisions, consistent with the policy-region analysis of Watson and Buede
(1987). Our contribution is to simplify the problem of inverting a Bayesian analysis
by running search engines back across the inputs of computer simulations designed
to do the forward problem.7

One advantage of the exploratory modeling approach is that it allows great
flexibility in the mathematical models we can use to consider potential robust
strategies. Most traditional optimization techniques limit the types of feedbacks
that can be included in the underlying model. Since promising candidates for robust
strategies often employ complex information feedbacks, this reduces the strategies
that such optimization methods can consider. Alternatively, other simulation ap-
proaches often treat such complex feedbacks by employing a ‘flight simulator’
approach (Holland, 1995) in which the analyst personally examines a small number
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of potential paths into the future and reports on those that seem most interesting.
Such analyses offer scant basis on which to extrapolate insights to the cases not
considered. In contrast, exploratory modeling makes systematic arguments from
simulation models, but imposes few analytic constraints on the types of models
and data used in the analysis. By treating the output of simulation models as a
large, multi-dimensional ensemble of scenarios, we decouple the running of the
models from the analytic techniques used to explore the models’ implications.

Another important benefit of our approach is that we can easily use the
language of scenario-based planning within a computational framework. The
scenario-planning framework is a useful one for climate-change policy because it
encourages people to grapple with the unexpected, ranging from potential cata-
strophes to unexpected good fortune (see, for instance, McKibbon (1998) and
Schwartz (1997) for a popular press example of each). Scenario planning, along
with the ‘constructivist’ literature on risk, also stresses the importance of multiple
views in transmitting and receiving information about risk to decision-makers and
stakeholders (van Asselt and Rotmans, 1997) and provides a language for com-
municating to decision-makers both the idea and design of robust strategies (van
der Heijden, 1996). In a world of extreme uncertainty, scenario planning speaks of
robust strategies comprised ofshaping actionsintended to influence the future that
comes to pass,hedging actionsintended to reduce vulnerability if adverse futures
come to pass, andsignposts, which are observations that warn of the need to change
strategies (Dewar et al., 1993).

Accordingly, our approach is one member of the emerging school of what we
might call computational, scenario-based approaches (Morgan and Dowlatabadi,
1996; Rotmans and de Vries, 1997), in which analysts use simulation models to
construct different scenarios and, rather than aggregate the results using a probab-
ilistic weighting, argue from comparisons of fundamentally different, alternative
cases. For instance, Morgan and Dowlatabadi (1996) show that climate-change
strategies can be robust against the different values and objective functions held by
different stakeholders. They use a small number of runs of their ICAM-2 model to
demonstrate that different regional decision-makers can agree on a climate-policy
choice without agreeing on the decision rules which produce that choice. Yohe and
Wallace (1996) have similarly found near-term strategies in a sequential-decision
framework that are robust against different expectations about the climate-change
future.

Van Asselt and Rotmans (1997) pursue a view of scenario-based uncertainty
similar to ours. They define three different perspectives – egalitarian, hierarchist,
and individualist – that reflect different expectations about the future of climate
change and three different sets of preferred strategies for addressing the climate-
change challenge. Using their TARGETS model, these researchers compare the
three different strategies against the three different world views and examine in
depth the three ‘utopias’ that result when the expectations match the strategies and
the six ‘dystopias’ that result when they don’t.
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Kalagnanam et al. (1998) in contrast, exploit the methodological idea of placing
model outputs in a database to facilitate subsequent exploration. Specifically, they
create a large database of model outputs chosen by Monte Carlo sampling and then
employ a reweighting scheme to recalculate expected values of various outcomes
with new probability distributions without having to recalculate the model.8 Cas-
man et al. (1999) have also recently suggested using multiple models and elicited
priors as ‘test beds’ for examining the relative robustness of alternative strategies.

Each of these approaches, in varying degrees, recognizes that there is no op-
timum policy that can adequately capture society’s collective knowledge and views
about climate change. Each addresses this fact by comparing policies against
multiple views of the future.

3. Are Robust Strategies Possible?

The analytic ability to find robust strategies does not, of course, guarantee that
they exist. Our exploratory modeling work on robust strategies argues, however,
that adaptive decision-strategies can be a robust response to climate change. Such
strategies are designed with the expectation that they will be adjusted in the future
based on observations of changes in the climate and economic systems. In LSB
we compared the performance of a very simple adaptive-decision strategy with
that of two, commonly proposed, static alternatives, ‘Do-a-Little’ and ‘Emissions-
Stabilization’. As the names imply, the ‘Do-a-Little’ policy has no near-term
emissions reductions and is similar to that advocated by many opponents of the
commitments negotiated at the Conference of Parties in Kyoto in December 1997.
The ‘Emissions-Stabilization’ policy returns and holds global emissions close to
their 1990 levels through the mid-21st century. It is similar to the policies proposed
by many advocates of the Kyoto agreement. The simple adaptive-decision strategy
begins with a near-term emissions reductions intermediate between ‘Do-a-Little’
and ‘Emissions-Stabilization’, and can subsequently switch to a rate equivalent to
or faster than ‘Emissions-Stabilization’ if damages rise or abatement costs drop
sufficiently quickly.9

We compared the performance of these three strategies, using the present value
of net costs and benefits as the measure, against a broad range of plausible futures,
including those in which damages due to climate change turn out to be very large,
those in which damages are very small, those in which technological innovation
radically reduces the cost of greenhouse-gas-emissions abatement, and those in
which it does not. We compared the expected value of these strategies for a wide
range of expectations about the likelihood of these alternative futures, and found
that even a very simple adaptive-decision strategy on average significantly outper-
forms either of the best-estimate policies unless our predictions of the future are
highly accurate – on the order of 95%.
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This result is not particularly surprising. The ‘Do-a-Little’ and ‘Emissions-
Stabilization’ policies perform well if their underlying assumptions turn out to be
valid, but they fail severely in those cases where their assumptions turn out to be
wrong. The adaptive-decision strategy can make midcourse corrections and avoid
significant errors. The proponents of prediction-based policy analysis might object
that, in practice, most policies are adaptive and that analysts can mimic this by
re-estimating their optimum policies every few years as new data comes in and
as people reevaluate their subjective probabilities. But this begs the question. Our
analytic tools ought to focus to the extent possible on the decision-makers’ real
challenge – how to begin and manage a long-term process for responding to a
difficult and highly uncertain threat.

Nominally, the focus of the international political process addressing cli-
mate change is on binding targets and timetables for the reduction of near-term
greenhouse-gas emissions. Prediction-based policy analysis, with its intrinsic as-
sumption that there is some optimum level of near-term reductions, is naturally
supportive of this emphasis. However, the actual political activity in this area more
closely resembles an evolving set of actions designed to shape the future political
landscape and influence private-sector investments, rather than any firm consensus
about the optimum level of emissions reductions. International negotiators often
appear to regard the continuation of the process as more important than the par-
ticular results at each stage. An incremental approach is probably quite sensible
given the political constraints, but it raises the broader question of whether or
not the current potpourri of actions is sufficiently robust. That is, are the world’s
nations taking a combination of actions that will avoid major failures no matter
what future comes our way? Given that policy actions will change over time, is
society currently placing too little effort in some areas and too much in others?
And given that there is at present no way to determine the correct level of emissions
reductions, what ought to be the goals of climate-change policy?

An analytic approach that searches for robust, adaptive-decision strategies of-
fers a framework to address such questions. As a first step, our work suggests
that climate change ought to be viewed more as a contingency problem than an
optimization problem. Either society will have to make very large reductions in
greenhouse-gas emissions over the course of the next century, or it will not. Since
society does not yet know which future will happen, it needs to prepare for both.
Thus, the most important near-term goals of climate-change policy may be to: (i)
reach consensus on the observations that will indicate a need for drastic action
to curtail greenhouse-gas emissions, (ii) take actions that will make large future
reductions more feasible and less costly if, in fact, they are needed, and (iii) do this
in such a way as to avoid over-allocating resources to a problem that turns out to be
minor or preparing insufficiently for what we discover is an emerging catastrophe.

In our recent work we have made initial forays into addressing these issues. In
LSBA we examine the performance of adaptive-decision strategies in the face of
climate variability. This is a key question because variability may mask adverse
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trends until it is too late to act or, conversely, mislead society into taking actions
that are too strong. We find that in most cases adaptive-decision strategies are still
robust even with quite large levels of climate variability. We have also examined
the proper mix of carrots, in the form of technology incentives, as well as sticks, in
the form of carbon taxes, that ought to make up an adaptive decision-strategy (RL).
Much of the theoretical climate-change-policy literature suggests that carbon taxes
and/or emissions trading are the most efficient climate-change policies. We find
that if decision-makers hold only moderate expectations that future cost reductions
due to increasing returns to scale and that heterogeneity in technology prefer-
ences among economic actors will be important, technology incentives should be
a component of a robust climate-change strategy.

An important argument emerges from this very preliminary work – that policy-
makers may have more flexibility in designing a robust, adaptive-decision strategy
for climate change than they have in choosing policies aimed at meeting some fixed
emissions-reduction target. In our work on climate variability (LSBA), we consider
a large number of alternative adaptive-decision strategies that differ in the rate of
near-term emissions reductions, the confidence they demand that observed dam-
age trends are real before responding to them, and the aggressiveness with which
they respond to potential innovations that could reduce the cost of greenhouse-gas
reductions. We find a set of robust, adaptive-decision strategies as a function of
expectations about the future of climate change. For each set of expectations of the
future, we find the adaptive-decision strategy that is close to the optimum for that
set of expectations and also performs well over a wide variety of other expectations.

Two interesting patterns emerge as one examines this set of robust strategies
as a function of expectations about the future. First, there is a tradeoff between
the rate of near-term emissions reductions and the confidence one should require
in observations of damage trends before acting on them. That is, in the face of
variability in the climate system, policy-makers can choose a response threshold for
observed damages that can compensate, to a greater or lesser extent, for any choice
of near-term emissions-reduction target. Second, the rate of near-term emissions
reductions depends most sensitively on expectations about the future, while the
aggressiveness with which society ought to respond to innovations are the least
sensitive. That is, the policy choice at the focal point of the current negotiations
may be the most controversial component of a robust strategy, in part because
stakeholders with different expectations will have the most divergent views as to
the proper target, while the least controversial components may be at the periphery
of the negotiations.

This is not to say that the targets and timetables approach embodied in Kyoto
is necessarily wrong. It is of course a political judgment as to whether or not the
most controversial elements ought to be at the center or the periphery of diplomatic
negotiations and whether targets and timetables are the most appropriate banner
under which to marshal support for the near-term actions that will lead to any
necessary long-term emissions reductions. The role of policy analysis, however, is
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to ensure that the decision space is clear. The search for robust, adaptive-decision
strategies suggests that a robust response to climate change should employ a num-
ber of different types of government and private sector actions, from technology
development to emissions trading, and that there is a wide variety of reasonable
(and a wider variety of unreasonable) combinations of such actions. It is thus inter-
esting to note that perhaps the most important policy conclusion to emerge to date
from the prediction-based approach (Nordhaus, 1998) is not any agreement about
the appropriate level of emissions reductions – the nominal subject of the work –
but the argument that the most robust way to achieveanygiven emissions target is
to allow for flexibility in the timing and location of reductions through some type of
market-based approach. Our work supports this view of the importance of flexible
mechanisms. More broadly, it suggests that a climate-change strategy that suc-
ceeded in: (1) establishing the physical and institutional capability to monitor the
relevant climate and economic systems, (2) establishing the capability to effectively
regulate greenhouse gases, and (3) encouraging the use of new emissions-reducing
technologies (Jacoby et al., 1998), would be at least as successful in the long-term
as a policy that succeeded in meeting particular near-term targets for reductions in
greenhouse-gas emissions.

4. Implications

The practitioners of scenario-based planning (Schwartz, 1996) generally oppose
efforts to assign probabilities to different scenarios of the future. Scenario-planners
regard scenarios as a handful of plausible stories about the future designed to
illustrate the alternative consequences of key uncertainties. These scenarios are
intended to help groups of decision-makers, such as the senior management of a
corporation, internalize the fact that the future may be quite different from a simple
extrapolation of the present. Motivated by these scenarios, decision-makers can
better craft policies that hedge against the risks they face. Assigning probabilities
to scenarios would interfere with this process because people are likely to assign a
high probability to those scenarios with which they are most comfortable and a low
probability to those scenarios they find most troubling. If they are able to discount
the likelihood of uncomfortable futures, people tend to ignore them when making
their plans.

Scenario planning thus provides a useful language for focusing the attention
and imagination of decision-makers, considered as individuals and as groups, on
a highly uncertain future. But scenario planning generally lacks the great advan-
tage of traditional prediction-based policy analysis – an ability to bring to bear a
great deal of quantitative information to systematically adjudicate among different
policy alternatives. We believe that the qualitatively new capabilities provided by
today’s computer technology have now made possible a synthesis between the
more natural language of scenario-based planning and the ability of probability-
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based decision analysis to systematically use quantitative information to compare
policy options. This view of the problem – looking for robust strategies rather than
optimum policies – has implications for the users of simulation models as well as
their suppliers, because it affects the demands for policy-relevant information from
the scientific community and the types of questions policy analysts can help policy-
makers ask. For instance, here are two examples of questions that seem amenable
to systematic, quantitative analysis, but which are generally ignored because they
fit poorly with the framework of prediction-based policy analysis.

First, what are reasonable and unreasonable combinations of shaping and
hedging actions for a climate-change policy? Most climate-change policy and
policy analysis concentrates on near-term emissions reductions and the steps, such
as emissions-trading, needed to achieve these reductions. But are these reductions
intended as a hedging or a shaping action? Most analysis and policy debate sug-
gests the former, that the purpose of near-term reductions is to reduce atmospheric
concentrations of greenhouse gases and thus hedge against the possibility of ser-
ious impacts from climate change. But if climate change proves to be extreme,
these reductions will have little benefit. However, such reductions may be useful
as shaping actions, intended to make very large reductions easier in the future if
those prove necessary. The primary benefit of Kyoto may be to spur investment in
emissions-reducing technologies and initial experimentation with an international
emissions-trading scheme that may take decades to perfect. If such is the purpose,
or at least a significant potential benefit of current policies, then the question of
optimal emissions paths is much less helpful than, for instance: (i) information on
the range of emissions-reductions paths with which emissions trading institutions
may someday have to contend, and (ii) analysis of the economic, political, and
other shocks that might derail such institutions before they have a chance to become
established.

Second, how do we know whether or not our climate policies are working?
What are the signposts that would suggest we have to change our strategy? There
is much literature on fingerprints of climate change and whether or not particular
already-observed trends are due to anthropogenic sources. But few have bothered
to estimate which observations over the next decade or so should cause us to
validate or invalidate our current climate-change strategy. In particular, literatures
as diverse as scenario-based planning and control theory both make clear there
is a close connection between available signposts and the choice of strategy. In
other words, in a world of deep uncertainty, one chooses a strategy in large part
based on what reliable observations one can make to re-adjust that strategy over
time. To date, climate policy rests on observations of emissions of greenhouse
gases, which are probably a very poor signpost if for no other reason that, in the
short-term at least, variations in emissions are affected far less by climate policy
than they are by factors such as variations in economic growth (see, for instance,
Schelling, 1992). The climate-change-policy community could do policy-makers a



EDITORIAL ESSAY 399

great service by examining signposts that might provide a better basis for building
near-term climate-change policies.

Questions such as these cry out for a quantitative assessment, and require key
inputs from the scientific community. But such questions are hard to address
with a prediction-based policy analysis predicated on answering ‘what is likely
to happen in the future?’ Society should pursue robust strategies that will work
reasonably well no matter what the future brings. Fortunately, new computer tech-
nology has provided analysts the means to systematically propose and evaluate
such approaches to the threat of climate change.

Notes

1 Or many of us, if the juggernaut of medical science sufficiently slows the process of aging within
our lifetimes.

2 As adjusted by any risk-aversion on the part of the decision-maker.
3 Our criticisms are similar to those found in IPCC (1996), though we believe we also offer some

innovative remedies.
4 To be sure, empirical evidence and scientific arguments can narrow the different expectations

among different groups. For instance, the scientific community might generate a consensus about the
subjective probability distribution for some physical parameter, such as climate sensitivity, sufficient
to convince any reasonable stakeholder. But there are many key parameters for which this is just
not possible, for instance, the likelihood that new technology will substantially lower the cost of
greenhouse-gas abatement.

5 This language is common in the qualitative literature on scenario-based planning (Dewar, 1993)
and business strategy. Finance theory provides a quantitative description of optimum hedges that re-
duce vulnerability given certain assumptions (e.g., liquidity, known probabilities of price movements,
etc.). These hedges are not necessarily optimum, nor prudent, in cases where those assumptions do
not hold.

6 This is the reason for the seemingly paradoxical unimportance of uncertainty in many analytic
discussions of climate-change policy. Often we find that the optimum policy is little affected when
uncertainty is subsequently added to the analysis and thus, uncertainty may seem unimportant. But
such analyses do not provide any language to discuss the actual response of decision-makers to
conditions of deep uncertainty – adopt strategies designed to work reasonably well against a wide
range of plausible futures.

7 It is useful to compare exploratory modeling with sensitivity analysis. In the latter we first
assume our models and data are accurate, calculate an optimum policy, and then ask how sensitive
that policy is to changes in our assumptions. Exploratory modeling asks the question in reverse order.
It first assumes that our models cannot predict the future nor the likelihood of different events, then
provides the means to look for strategies that perform well across a broad range of plausible futures.

8 This use of Monte Carlo sampling is consistent with the concept of exploratory modeling, and
we have used it in our work (Robalino and Lempert, forthcoming). However, it is important that
one save the results of individual cases to use in further analysis rather than lose this information by
saving only the mean and variance of the outputs over the sample. In addition, Monte Carlo sampling
is only one way to search over an ensemble of scenarios. Often in an exploratory modeling analysis
we want to use a search to find particular cases. For instance, we might use a genetic algorithm search
(e.g., Miller, 1998) to find those scenarios in which a particular strategy performs best and those in
which it performs worst.
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9 More complex adaptive-decision strategies are certainly possible. We consider such strategies in
the work discussed below.
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