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ABSTRACT

Stationary wave nonlinearity describes the self-interaction of stationary waves and is important in main-

taining the zonally asymmetric atmospheric general circulation. However, the dynamics of stationary wave

nonlinearity, which is often calculated explicitly in stationary wave models, is not well understood. Stationary

wave nonlinearity is examined here in the simplified setting of the response to localized topographic forcing in

quasigeostrophic barotropic dynamics in the presence and absence of transient eddies. It is shown that sta-

tionary wave nonlinearity accounts for most of the difference between the linear and full nonlinear response,

particularly if the adjustment of the zonal-mean flow to the stationary waves is taken into account. The

separate impact of transient eddy forcing is also quantified. Wave activity analysis shows that stationary wave

nonlinearity in this setting is associated with Rossby wave critical layer reflection. A nonlinear stationary wave

model, similar to those used in baroclinic stationary wave model studies, is also tested and is shown to capture

the basic features of the full nonlinear stationary wave solution.

1. Introduction

The stationary wave field, which is the zonally asym-

metric part of the time mean flow, is a principal field to

explain in the atmospheric general circulation. It plays a

significant role in the eddy-driven zonal mean circula-

tion and is key to understanding climate variability and

change on regional scales (e.g., Held et al. 2002, and ref-

erences therein). Stationary wave theory has progressed

from a focus on the simple linear response to thermal

and orographic forcing (e.g., Hoskins and Karoly 1981)

to a quantitative framework that accounts for nonlinear

stationary wave effects, transient eddy effects, and sen-

sitivity to the zonal mean flow (e.g., Valdes and Hoskins

1991; Ting and Yu 1998; Joseph et al. 2004; Brandefelt

and Körnich 2008; Chang 2009). This development has

been based on stationary wave models that solve for the

stationary wave field in the presence of prescribed zonal

mean and zonally asymmetric forcing fields; the pre-

scribed fields are understood to fall outside the station-

ary wave theory itself.

In this study we focus on the so-called ‘‘stationary wave

nonlinearity,’’ also known as ‘‘stationary nonlinearity’’

or ‘‘nonlinear self-interaction,’’ which arises primarily

through advective terms in the equations of motion and

becomes more important for larger-amplitude station-

ary waves (e.g., Ting et al. 2001, and references therein).

For example, in quasigeostrophic (QG) dynamics, sta-

tionary wave nonlinearity involves the flux of stationary

eddy potential vorticity (PV) by the stationary eddy

velocity. Observed stationary wave amplitudes are suf-

ficiently large that stationary wave nonlinearity is a

leading-order term in stationary wave dynamics, com-

parable in impact to topographic forcing (Valdes and

Hoskins 1991; Ting 1994; Ting et al. 2001). Classically,

linear stationary wave models have diagnosed the im-

portance of stationary wave nonlinearity by imposing

the stationary wave nonlinearity as an external forcing

(e.g., Ting 1994). But nonlinear techniques have also

been developed that predict the stationary wave non-

linearity as part of a stationary wave calculation (Valdes

and Hoskins 1991; Jin and Hoskins 1995; Ringler and

Cook 1997; Ting and Yu 1998; Held et al. 2002).

Our aim in this study is to improve our dynamical

understanding of stationary wave nonlinearity and to

evaluate the nonlinear stationary wave modeling tech-

nique of Ting and Yu (1998) and Held et al. (2002). We

do so in the classical setting of barotropic QG dynamics

on the sphere, in which we will see that stationary wave

nonlinear effects primarily involve stationary Rossby

wave reflection at critical latitudes (Nigam and Held
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1983; Held and Phillips 1987). We here consider in detail

the regional response to isolated forcing in the presence

and absence of transient eddies. We separately consider

the nonlinear effects of stationary and transient eddies

in the zonal mean and zonally asymmetric flow. Under-

standing this elementary model problem is, in our view,

a necessary step to understanding the baroclinic non-

linear stationary wave calculations of Ting and Yu (1998)

and Held et al. (2002), which we are currently applying to

the study of the three-dimensional stationary wave re-

sponse to climate change. To our knowledge, our re-

sults concerning zonally asymmetric stationary wave

nonlinearity in the presence and absence of transient

eddies, applied to this simple system, have not previously

been documented.

After describing the set of dynamical equations and

techniques we use (section 2), we analyze a strongly

damped case in which transient eddies are absent and in

which the only nonlinearity arises from the stationary

wave field itself (section 3). We also develop a weakly

nonlinear asymptotic theory to explicitly account for the

stationary wave nonlinear effects. We then examine a

more weakly damped case in which transient eddies are

important and test a Ting–Yu type nonlinear stationary

wave model that numerically predicts the stationary wave

nonlinearity. In both the strongly damped and weakly

damped cases, critical-layer reflection is important, but

in the weakly damped case the adjustment of the zonal

mean basic state also needs to be accounted for to ac-

curately reproduce the critical-layer reflection. Conclu-

sions are presented in section 4.

2. Numerical models and diagnostics

We consider barotropic vorticity dynamics on a rotat-

ing sphere in the presence of relaxation to a prescribed

zonal flow that represents the boreal winter upper tro-

pospheric wind, and in the presence of orography that

generates a Rossby lee wave train. We first solve by di-

rect nonlinear simulation (DNS) the equation
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where the notation, which is for the most part standard,

is described in Table 1. We solve (1) using a T85 (1.48)

resolution pseudospectral model from the National Oce-

anic and Atmospheric Administration/Geophysical Fluid

Dynamics Laboratory Flexible Modeling System. The

zonal asymmetry in the model arises from a mountain

whose amplitude is determined by h0; the amplitude of

the associated potential vorticity perturbation is (h0/H)f0,

where H 5 10 km is a representative depth for the

troposphere. Standard QG scaling (Vallis 2006) requires

that the PV contribution from topography be compa-

rable to z; that is, f0h/H ; f0h0/H ; z ; Z0, where z and

Z0, from Table 1, provide scales for the vorticity and

topography. We define a topographic amplitude param-

eter « 5 f0h0/Z0H. For linear theory to be applicable, the

PV contribution from topography needs to be small

compared to z (i.e., « � 1). We test cases in the range

100 m # h0 # 2 km, which corresponds to 0.1 # « # 2. In

section 3c, we develop diagnostics based a small-parameter

expansion of the equations in «.

The response of a given field to this topography is

defined as the solution with topography minus the so-

lution without topography. In the absence of topogra-

phy, the solution has the zonal jet given by Uref, slightly

spread out by hyperviscosity, and Uref is taken as the

basic background flow.

We consider two cases in this study. In the strongly

damped (SD) case, we set tZ 5 tE 5 5 days, which pro-

vides sufficiently strong damping to suppress transient

eddies that arise because of the instability of the zonally

asymmetric flow. The SD case represents a classical

application of this model to the stationary wave problem

TABLE 1. Variable notations and definitions.

Notation Definition

z Vorticity

c Streamfunction

tZ Damping time scale for zonal mean flow

tE Damping time scale for eddies

[ ] Zonal mean

� Time mean

* Deviation from zonal mean

9 Deviation from time mean

U Prescribed time-independent and zonally symmetric

zonal wind

Z, Z0 Prescribed time-independent and zonally symmetric

vorticity and its representative value (1 3 1025 s21)

u Horizontal velocity, u 5 (u, y), zonal and meridional

winds, respectively

f, f0 Coriolis parameter and its representative value

(1 3 1024 s21)

n Resolution-dependent hyperdiffusion coefficient;

n 5 2.7 3 1050 m8 s21 for the highest meridional

mode with zero zonal mode in T85, corresponding

to a 3-h damping time scale on this mode

zref Vorticity of a zonally symmetric reference zonal flow

corresponding to Uref 5 25 cosu 2 30 cos3u 1

300 sin2u cos6u (Held 1985)

h Topography, a Gaussian mountain centered

at (l0, u0) with half-width Dl and Du;

h 5 h0 expf�(l� l0)2/(Dl)2 � (u� u0)2/(Du)2g,
where l0 5 908, u0 5 308, Dl 5 Du 5 22.58,

h* 5 h 2 [h]
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and is useful for testing ideas. In the weakly damped

(WD) case, we set tZ 5 5 days and tE 5 ‘, which allows

transient waves and a transient zonal flow to develop.

The WD case is qualitatively more realistic and perhaps

more relevant to the observed general circulation, but it

is much more complex because of transient eddy effects.

The time average of (1) has zonal mean component

$ � z* 1
f

0
h*

H
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� �
1 [z9u9]
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t
Z
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and zonally asymmetric component

$ � f 1 [z] 1
f

0
[h]

H

� �
u* 1 z* 1

f
0
h*

H

� �
[u]

�

1 z* 1
f

0
h*

H

� �
u* 1 z9u9

� �
*
	

1
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t
E
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where we have not included the (relatively small) hyper-

viscous term. In the SD case, the transient eddy vorticity

flux z9u9 5 0, and these two equations represent a closed

system that could in principle be solved for the zonally

symmetric and the zonally asymmetric components of

the flow. In practice, we use prognostic versions of these

equations, along the lines of (4) below, to solve for these

components of the flow. In the more realistic WD case,

z9u9 6¼ 0, and in the absence of an accurate mean flow

parameterization of the transient eddy fluxes, we must

integrate (1) by DNS and take its time average to get

the stationary wave field. In particular, we show the day

200–1000 average fields in the WD case.

In contrast to (2) and (3), stationary wave models rep-

resent so-called ‘‘anomaly models’’ in which only the

stationary wave terms of the general form A* for a field

A are solved for and other fields are prescribed as con-

sistently as possible with the original equations. We

consider two types of stationary wave model in this

study. The linear stationary wave model (LIN-ANOM)

integrates to a steady state the equation
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which is linear in the zonally asymmetric terms like z*.

The right-hand term F* is a prescribed ‘‘forcing’’ that

represents the zonally asymmetric component of the

eddy vorticity flux convergence and can include either or

both of the stationary and transient eddy contributions

to this flux taken from the DNS solution of (1). The

terms U, Z, and F* are not genuine external forcing but

rather inherently dynamical quantities that are treated

as forcing for diagnostic purposes. In addition, tE, which

is used in the linear model, is a tuning parameter to

stabilize the solution as necessary.

The second anomaly model we consider is a nonlinear

stationary wave model (NONLIN-ANOM) in which we

integrate
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to a ‘‘quasi-steady’’ state, by which we mean that tran-

sients are suppressed to the extent that it is practicable

while maintaining a reasonable solution (similar to Held

et al. 2002; see section 3e). This equation corresponds to

the Ting and Yu (1998) and Held et al. (2002) nonlinear

baroclinic stationary wave model, whose performance

we wish to evaluate in this simplified setting of baro-

tropic dynamics. In this model, the zonal mean flow is

again prescribed via U and Z, but now F* is understood

to represent only the transient eddy contribution. In this

model, tE is again set to a minimum value that stabilizes

the flow.

A final anomaly model we use is a prognostic version

of the zonal mean equation (2) to diagnose the zonal

mean state in the presence of prescribed time averaged

zonal mean eddy vorticity flux convergence of either or

both of the stationary and transient eddies (ZONAL-

ANOM). This calculation is a barotropic version of clas-

sical baroclinic calculations of the zonal mean circulation

consistent with a prescribed eddy forcing, which is com-

monly known as the ‘‘downward control’’ diagnostic in the

stratospheric literature (Haynes et al. 1991).

To diagnose the wave response we show three prin-

cipal diagnostics. First, we display the zonally asymmetric

streamfunction c*. Second, we plot the propagation of

Rossby wave activity in the longitude–latitude plane us-

ing the Plumb (1985) wave activity flux, which for baro-

tropic flow linearized about a zonally symmetric basic

state reduces to

W 5
cosf

2
y*2 � c*

a cosf

›y*

›l
, �u* y*� c*

a

›y*

›f

� �
.

This wave activity flux is parallel to the local group

velocity of stationary Rossby waves in the Wentzel–

Kramers–Brillouin (WKB) limit for monochromatic
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waves, but it has also been found useful for wave pockets

that are more relevant in this study. Finally, we make use

of Taylor (2001) diagrams that combine information

about the correlation and relative magnitude of two fields

as a single point in a polar-coordinate plane; this allows

us to concisely represent the results of several sensi-

tivity tests.

3. Results

a. Zonal wind response

Figure 1a shows Uref, the SD case zonal wind [u]SD,

and the WD case zonal wind [u]WD for a mountain with

h0 5 2 km. The Northern Hemisphere jet is slowed

down by the mountain in the SD case but is sharpened

(with acceleration of the maximum and deceleration of

the flanks) in the WD case. In Fig. 1b, we show the zonal

wind response for the SD case, which is almost entirely

associated with the stationary eddy forcing, with a much

weaker contribution from hyperdiffusion. We also show

the WD response and the decomposition of the WD re-

sponse into parts associated with the zonally symmetric

components of the stationary eddy vorticity flux and of the

transient eddy vorticity flux, using the ZONAL-ANOM

model as discussed in section 2. We see that the stationary

wave vorticity flux has a similar decelerating effect in the

SD and WD cases, but that the transient eddy vorticity

flux in the WD case is responsible for the sharpening of

the jet. In this sense the weakly damped case provides

a qualitative representation of the observed upgradient

flux of transient eddy momentum into the tropospheric

jet stream. The distinct zonal mean responses to the

topography in the two cases have important implications

for understanding stationary wave nonlinearity.

b. Strongly damped case

In Fig. 2a we show the stationary eddy streamfunction

c* induced by the topography in the DNS of (1); Fig. 2b

shows the associated Plumb wave activity flux and its

divergence. The response is highly structured and we

can identify three distinct branches of wave activity

propagation. First, wave activity diverges away from the

topography into a weak convergence region eastward

and poleward of the topography. Second, wave activity

diverges away from the topography into a strong con-

vergence region eastward and equatorward of the to-

pography, in the vicinity of the critical line defined by

the zero contour of zonal wind. This low-latitude branch

has a relatively shorter wavelength but greater ampli-

tude. Third, wave activity diverges away from the critical

line eastward of 1508E and propagates poleward before

bending back equatorward. This part of the wave re-

sponse evidently deviates from the classical great circle

ray passing through the topography that is predicted by

linear theory (Hoskins and Karoly 1981).

We use stationary wave modeling to separate linear

and nonlinear effects in this solution. In the SD case,

z9u9 5 0, so the sole source of nonlinearity in (2) and (3)

is the stationary eddy potential vorticity flux, which

can be decomposed into zonally symmetric and zonally

asymmetric components. The zonally asymmetric com-

ponent is the stationary wave nonlinearity referred to in

the stationary wave modeling literature (Ting et al.

2001); the zonally symmetric nonlinear term is a momen-

tum flux convergence, which, as discussed in section 3a,

FIG. 1. (a) For « 5 2, Uref (solid), [u]SD (dashed), and [u]WD (dotted). (b) SD zonal wind response (solid), WD zonal

wind response (dashed), WD response to stationary eddy forcing (dotted), and WD response to transient eddy

forcing (dashed–dotted). Units are meters per second.
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drives the zonal mean flow away from Uref. The rest of

the zonal mean response comes from the zonal mean of

the topography and the hyperdiffusion, which represent

smaller terms.

As a test, we can use the linear model, LIN-ANOM, to

closely reproduce the nonlinear solution by prescribing

Z 5 [z]
SD

, U 5 [u]
SD

, and (zonally asymmetric) station-

ary wave nonlinearity

F*5�$ � z
SD
* 1

f
0
h*

H

� �
u

SD
*

� �
*

(6)

from the DNS solution of (1). Doing so reproduces the

DNS solution to a very high precision, with less than 1&

in relative error between the DNS (1) and LIN-ANOM

(4) solutions (not shown).

Next, we can solve the linear model (4) with Z 5 zref,

U 5 Uref, F* 5 0, and tE 5 5 days, which represents the

classical solution of linear theory. The linear solution

(Figs. 2c,d) propagates from the topographic forcing

region to the critical layer; has slightly greater amplitude,

shorter wavelength, and does not propagate downstream

as far as the original solution; and is more consistent with

the expected great circle propagation pattern passing

through the topography (although we have not checked

agreement with the great circle solution in detail).

Nonlinear effects are shown in Fig. 2e, which plots the

DNS solution (Fig. 2a) minus the classical linear solution

(Fig. 2c); Fig. 2f shows the wave activity associated with

this eddy streamfunction pattern (as opposed to the dif-

ference in wave activities). We see that the high-latitude

branch and the low-latitude branch to the east of 1508E

are associated with nonlinear effects. In addition, we see

another wave train pattern emanating poleward of the

critical line east of 1508W. Thus, the dominant non-

linear effect in this solution is critical layer reflection,

which occurs in this highly damped setting through self-

advection of stationary wave potential vorticity. Nonlinear

reflection of Rossby wave trains is usually character-

ized by localized overturning PV contours associated

FIG. 2. (left) Streamfunction (m2 s21) and (right) associated wave activity flux (arrows, m2 s22) and its divergence

of the stationary wave responses for « 5 2; the Gaussian mountain is centered at the location of the triangle in each

plot. (a),(b) The DNS streamfunction response and its associated wave activity. (c),(d) As in (a),(b), but for the

classical linear model. (e),(f) The DNS response minus the linear response in streamfunction and the associated wave

activity. (g),(h) Linear model response to zonally asymmetric stationary wave nonlinearity and the associated wave

activity. Contour intervals of streamfunction and wave activity divergence are 3 3 106 m2 s21 and 1 3 1025 m s22,

respectively. Solid contours are positive; dashed contours are negative; and dashed–dotted contours are zero. The

arrows representing wave activity fluxes are 4 times longer in (f) and (h) than in (b) and (d) for graphical display. For

this and subsequent plots, the critical lines are indicated by dashed–dotted contours.
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with wave breaking (Brunet and Haynes 1996; Walker

and Magnusdottir 2003, and references therein). Weak

PV overturning is observed when the topographic forcing

is strong (i.e., 2000 and 1000 m), but nonlinear station-

ary wave reflection still exists with weaker topographic

forcing even though the stationary wave does not ho-

mogenize the potential vorticity field (not shown be-

cause the patterns are similar to those in the 2000-m case

except with smaller amplitude). In the discussion, we

return to the issue of when critical-layer reflection can

be expected to occur.

We can now use the stationary wave model to sepa-

rately diagnose the stationary wave response in terms

of changes to zonally asymmetric forcing terms and of

changes to the zonal mean basic state. Although both

the zonally asymmetric forcing terms and the zonal mean

basic state depend on the stationary wave field, we find

that such diagnostics can provide physical insight. In the

SD case, we find that it is the stationary wave non-

linearity that is most important: when we calculate the

response to F* from (6) with the zonal mean basic state

corresponding to Uref, we get a pattern (Figs. 2g,h) that

accounts for the main features of Figs. 2e,f; in particular,

stationary wave nonlinearity generates the critical layer

reflection term. The complementary case, in which the

basic state is altered by the stationary eddy forcing and

F* is set to zero, yields only a weak wave response (not

shown). This solution is sometimes referred to a ‘‘quasi-

linear’’ solution (e.g., Davey 1980; Haynes and McIntyre

1987).

c. Weakly nonlinear asymptotic theory
for the SD case

To better understand stationary wave nonlinearity in

the SD case, we develop a weakly nonlinear asymptotic

theory that shows how stationary wave nonlinearity

arises as part of the rectified effect of the eddy PV flux

from the linear solution. In (2) and (3), we see that the

topographic forcing comes in as a term proportional to

«Z0; for topography to represent a small perturbation,

we require « � 1. We perform a standard asymptotic

analysis involving small-parameter expansion in «, ne-

glecting the hyperviscosity term in (1). We express

the variables as asymptotic series in the standard way:

ẑ 5 ẑ0 1 «ẑ1 1 «2ẑ2 1 � � � and û 5 û0 1 «û1 1 «2û2 1 � � �,
where the variables with a hat are nondimensional. We

also assume that the advective and damping time scales

are comparable: tZ ; tE ; z21 ; Z0
21. Then to O(«0 5

1), the leading-order vorticity and winds are z0 5 zref,

u0 5 (Uref, 0), and u0* 5 0, where z0 is the dimensional

version of ẑ0, u0 is the dimensional version of û0, and so

on. To O(«), we have

O(«): [u
1
] 5 0, [z

1
] 5 0,

U
ref

›z
1
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H
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where again all fields and coordinates are understood to

be dimensional. The contribution to the zonal mean flow

at this order is zero, and the zonally asymmetric flow

satisfies the classical linear stationary wave equation.

Nonlinear terms come in at O(«2). The dimensional zonal

equation is

O(«2): $ � z
1
*1

f
0
h*

H

� �
u

1
*

� �
5�1

t
[z

2
], (7)

showing that the zonally symmetric component at sec-

ond order is driven by the eddy PV flux associated with

the first-order fields (and topography), and the dimen-

sional zonally asymmetric equation is

O(«2): U
ref

›z
2
*

a cosu›l
1 y

2
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›( f 1 [z
ref
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0
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H
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u

1
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*
, (8)

showing that stationary wave nonlinearity, in the sense

of Ting and Yu (1998), comes in as the zonally asym-

metric component of this eddy PV flux.

In Fig. 3, we test the accuracy of the weakly nonlinear

asymptotic solution given by (7) and (8) as the mountain

height increases. In Fig. 3a, we show the zonal mean

winds predicted by the solution for mountains of various

height. In Fig. 3b, we plot the wave solution’s Taylor

diagram, in which the target point refers to the station-

ary wave in the DNS minus the stationary wave in the

classical linear model (e.g., Fig. 2e for h0 5 2000 m). As

the forcing magnitude decreases, the second-order cor-

rection approaches this target field, illustrated by a se-

ries of arrows in Fig. 3b. The Taylor diagram gives a

good measure of how well a linear prognostic theory can

estimate the self-nonlinearity of the stationary wave

responses to various forcing amplitudes. The solution

remains reasonably good as long as « 5 f0h0/Z0H , ½,

which corresponds to a 500-m mountain for a depth of

10 km.

In sum, for the SD case, the linear response to isolated

topography involves transmission of the wave packet to

the critical latitude and absorption of the wave activity

there. The nonlinear response involves reflection of the

wave activity, and this is captured by the stationary wave

nonlinearity, which is the eddy potential vorticity flux

here. The zonally symmetric contribution to the solution
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is relatively small. Furthermore, we have found that the

stationary wave nonlinearity can be reasonably pre-

dicted in terms of the eddy vorticity flux from the linear

solution. By contrast, we will see several differences in

the WD case.

d. Weakly damped case

Our aim in this subsection is to see how transient

eddies affect our conclusions about the role of stationary

wave nonlinearity of the SD case. We have not extended

the weakly nonlinear asymptotic theory of section 3c to

this case because there is no well-established statistical

closure to describe the transient eddy PV flux. We will

thus limit our analysis to the numerical models de-

scribed in section 2. We recall that in the WD case, as

described at the beginning of this section, the transient

eddies act to sharpen the jet (see Fig. 1; we also note

a zonal wind response seen in the Southern Hemisphere

polar region, associated with eddies that propagate

across the equator, but this will not be discussed fur-

ther). The stationary wave streamfunction response in

DNS is shown in Fig. 4a. Similarly to the SD case, we see

Rossby wave reflection and propagation into multiple

branches. The WD stationary wave response has larger

amplitude than the SD response and more wave energy

propagates farther downstream because of the removal

of the damping on waves. But the more fundamental

difference in the dynamics is seen when we analyze the

interplay between the controlling factors in the solution,

as diagnosed by the LIN-ANOM model.

The WD case is more complex than the SD case be-

cause we have no predictive theory (closure) for the

transient eddy PV fluxes. We introduce a new notation

to discuss separately the impacts of transient and sta-

tionary eddies. We refer to the stationary nonlinear

terms as S and the transient nonlinear terms as T. The

linear model solution’s dependence on S and T can be

written schematically as

c* 5 L U([S], [T]), F*(S*, T*)f g,

where U depends on the zonal components of the sta-

tionary and transient eddy nonlinearity [S] and [T] and

F* depends on the zonally asymmetric component of the

stationary and transient eddy forcing S* and T*. In the

linear calculation, we include the dependence on [S]

and [T ] by changing the zonal mean basic state to be in

balance with these terms, according to the zonal mean

equation (2). The classical linear case corresponds to

LfU([S] 5 0, [T ] 5 0), F*(S* 5 0, T* 5 0)g; note that

U([S] 5 0, [T ] 5 0) corresponds to Uref, apart from

hyperdiffusion effects.

FIG. 3. (a) The zonal-mean zonal wind response (m s21) for the weakly nonlinear asymptotic theory (7) and for

DNS solutions [u]SD 2 Uref for « 5 f0.1, 0.2, 0.5, 1, 2g by h0 5 f100, 200, 500, 1000, 2000gm normalized by the reciprocal

square of the mountain height. (b) Taylor (2001) diagram comparing the stationary wave response for the weakly

nonlinear asymptotic theory (8) to the target field, which is the stationary wave in the DNS minus the stationary wave

in the classical linear model (e.g., Fig. 2e for « 5 2), for the cases in (a). In a Taylor diagram, the point 1 along the x

axis corresponds to perfect agreement between the solutions, the orientation of the point is related to correlation

between the fields (as indicated by the quarter circle labeled ‘‘correlation’’), and the distance from the origin in-

dicates amplitude relative to the amplitude of the target field.
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To obtain the linear solution from the LIN-ANOM

model (4), it is necessary to add a weak damping on the

waves to suppress resonant modes, which degrade the

solution. Thus, in (4), we set, for example, tE 5 40 days

for « 5 2. The classical linear case is shown in Fig. 4b;

the only difference between Figs. 4b and 2c is the re-

duction of the eddy damping, which serves to enhance

the poleward branch and increase the amplitude of the

solution. The nonlinearity of the solution, which is the

difference between Figs. 4a and 4b, is shown in Fig. 5a,

and its corresponding wave activity is shown in Fig. 5b,

in which critical layer reflection is primarily visible near

158N, 1508E.

We find that the individual contributions from the

zonally asymmetric nonlinear terms in the operator L do

not, in isolation, well explain the critical layer reflection

in the WD case, which is in contrast to the SD case, in

which S* explained much of the nonlinearity. For ex-

ample, in Figs. 5c,d we show the streamfunction and

wave activity for LfU([S] 5 0, [T ] 5 0), F *(S* 5 S*WD,

T* 5 0)g, which includes stationary wave nonlinearity. In

contrast to the SD case, the WD S* alone does not ac-

count for critical layer reflection (compare Figs. 5c,d to

Figs. 2e,f). The case LfU([S] 5 0, [T ] 5 0), F*(S* 5 0,

T* 5 T*WD)g (Figs. 5g,h), in which only the zonally

asymmetric transient eddy nonlinearity is included, pro-

vides a solution which is largely of opposite sign to the

previous case. We find that the S* and T* components in

these cases are generally of opposite sign (not shown),

which is consistent with our previous finding that [S] and

[T ] acted in opposite senses on the zonal jet (section 3a).

After some trial and error experimentation, we have

found two ways of producing the key nonlinear ef-

fects. One way, corresponding to the operator LfU([S] 5

[S]WD, [T ] 5 0), F*(S* 5 S*WD, T* 5 0)g (Figs. 5i,j), is to

include both the zonally symmetric and zonally asym-

metric stationary nonlinear terms. This case produces

significant reflection near 158N, 1508E and the overall

feature of the wave activity pattern is fairly consistent

with that in Fig. 5b. The other way is to include the jet

sharpening effect of the transient eddy forcing, using

LfU([S] 5 0, [T ] 5 [T ]WD), F*(S* 5 0, T* 5 0)g (Figs.

5k,l). This change in the basic state alone can induce

considerable reflection wave energy back to midlatitudes,

but the location of the reflection is much broader than

that in Fig. 5b and the pattern around the reflection area

in the streamfunction plot (Fig. 5k) is not similar to that in

Fig. 5a. This effect is diminished when the zonal mean

adjustment to the stationary eddy forcing is reintroduced—

LfU([S] 5 [S]WD, [T] 5 [T]WD), F*(S* 5 0, T* 5 0)g, Figs.

5e,f—again because of the opposite impact of the station-

ary and transient eddy forcings on the zonal mean jet.

Thus, critical layer reflection downstream from the

topography can be induced by the combination of sta-

tionary wave nonlinearity and its impact on the zonal

mean basic state. The zonal mean basic state response to

transients is able to induce pronounced reflection but

does not put the reflection in the right location. There is

no evidence indicating the involvement of the time

mean zonally varying component of transient eddy

forcing in the reflection in our simulation.

e. Nonlinear stationary wave model

One of our applied goals in this study is to test the Ting

and Yu (1998) and Held et al. (2002) nonlinear sta-

tionary wave modeling approach in the presence of

transient eddy forcing. In the NONLIN-ANOM model

(5), the zonal flow and T* are prescribed, but the sta-

tionary nonlinearity is calculated internally instead of

being prescribed. The flow is stabilized by tE. A linear

damping is still required to suppress the transients gen-

erated internally, while an absolutely steady flow is

achieved only with an unrealistically strong damping.

The magnitude of the damping is chosen as a tradeoff

between the need to suppress transients and the need to

maintain a good-quality solution relative to the DNS.

The 40-day damping used in the linear WD calculation

appears suitable for a good solution to (5); it produces

transient eddy fluxes that are an order of magnitude

smaller than those found in the WD DNS. This tech-

nique is similar to the treatment in Held et al. (2002), in

which weak transients are present that are not strong

enough to significantly modify the solution.

In Fig. 6, we show a Taylor diagram comparing the

LIN-ANOM model and the NONLIN-ANOM model in

the WD case. The plotting symbols are grouped according

FIG. 4. (a) Streamfunction (m2 s21) of the stationary wave responses for « 5 2 for the DNS of the WD case.

(b) Streamfunction response (m2 s21) for the classical linear model, with tE 5 40 days. Contouring is as in the

corresponding plots in Fig. 2.
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to whether stationary wave nonlinearity is neglected

fF*(S*) 5 0, gray symbolsg, prescribed from the WD

DNS in the LIN-ANOM model fF*(S*) 5 F*(S*WD)g,
black symbols], or predicted with the NONLIN-ANOM

model (white symbols). The sensitivity of neglecting,

prescribing, or predicting stationary wave nonlinearity

to the presence of the remaining nonlinear effects is

explored in the figure. In all cases, neglecting stationary

wave nonlinearity seriously degrades the agreement

with the DNS. We see that the NONLIN-ANOM model

reproduces the effect of prescribed stationary wave

nonlinearity F*(S*) in the LIN-ANOM model for vari-

ous combinations of forcings fairly well, in terms of both

correlation and amplitude. The worst performance comes

for the case in which the zonally asymmetric transient

eddy forcing is prescribed without any change to the

zonal mean (white triangle). Overall, this comparison

supports the validity of the nonlinear stationary wave

modeling technique, confirms the necessity of including

the stationary wave nonlinearity in stationary wave

modeling, and highlights the importance of zonal mean

adjustment. All the nonlinear model integrations are

FIG. 5. As in Fig. 2, but for the WD case. (a),(b) DNS minus the classical linear response (i.e., Fig. 4a minus Fig. 4b)

and the associated wave activity. Following this are plotted the responses diagnosed from the linear model to (c),(d)

zonally asymmetric stationary eddy forcing, (e),(f) zonally symmetric transient and stationary eddy forcing, (g),(h)

zonally asymmetric transient eddy forcing, (i),( j) combined zonally symmetric and zonally asymmetric stationary

eddy forcing, and (k),(l) zonally symmetric transient eddy forcing.
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with tE 5 40 days, except for the one indicated by a star

symbol, which achieves complete suppression of the tran-

sient eddies with tE 5 15 days.

4. Summary and discussion

We have used simple barotropic QG dynamics to im-

prove our understanding of stationary wave nonlinearity

in barotropic dynamics. We have shown that stationary

wave nonlinearity in our model is primarily manifested

as critical layer reflection in the absence and presence of

transient eddies. In the weakly damped case with tran-

sient eddies, a combination of adjustments to the zonal

mean and stationary wave nonlinearity is required to

accurately reproduce the pattern of critical layer reflec-

tion in the DNS solution. Although including the zonal

mean adjustment to the transient eddy forcing also results

in reflection (Figs. 5k,l), presumably through a change in

the refractive properties of the basic state (Karoly 1983;

Hoskins and Ambrizzi 1993), the spatial distribution of

the wave activity associated with this effect is not fully

consistent with the reflection pattern of the DNS solution.

How general are the effects we have described here?

In the cases shown here and additional cases we have

analyzed, we find local stationary wave activity reflection

where stationary wave amplitudes are large enough to

induce localized easterlies and weak PV gradients. In

fact, we see such reflection even in cases where the zonal

mean zonal wind is westerly at all latitudes (not shown).

This is similar to what Waugh et al. (1994) saw for total

(stationary plus transient) eddy wave activity fluxes.

We also used a weakly nonlinear asymptotic theory to

physically interpret stationary wave nonlinearity in the

SD case. We find that to leading order, stationary wave

nonlinearity represents the PV flux associated with the

linear response in the SD case. This theory not only

matches the nonlinear solution in the small forcing limit

but also expresses the ability to prognose a large portion

of both zonally symmetric and asymmetric components

of the nonlinear response to finite size forcing. An im-

proved version of this approach might be extended to

a multiple stage method to prognose the stationary wave

response to an imposed forcing that includes a zonal flow

adjustment to stationary wave forcing. This might po-

tentially provide an advance over standard approaches in

which the zonal mean is fixed (e.g., Valdes and Hoskins

1991) and avoid reported sensitivities to the zonal mean

basic state used (Ting and Sardeshmukh 1993). It should

be remembered, however, that in the absence of a statis-

tical closure for transient eddy fluxes, this theory does not

extend to the WD case. The fact that stationary and

transient eddy effects oppose each other in this simple

system suggests that care needs to be taken with such an

approach in both barotropic and baroclinic systems.

The Ting–Yu nonlinear technique of stationary wave

modeling is now being employed to calculate stationary

wave nonlinearity in observations and climate simula-

tions. We have attempted to quantify its performance

and found that the Ting–Yu approach works best when

zonal mean adjustments are included and eddy damping

is used that does not entirely remove transients from

the solution. Our results suggest that in the presence of

transient eddies, such as baroclinic eddies in the tropo-

sphere or the transient planetary waves of the strato-

sphere, stationary wave models will be qualitatively more

accurate if the zonal mean flow adjustment is explicitly

accounted for. Construction of such models is a topic of

ongoing work, as well as the generalization of the results

of this study to the baroclinic case. There certainly exist

other types of stationary wave nonlinearity in more com-

plicated systems, such as the nonlinear interaction be-

tween topography and diabatic heating forced stationary

waves (see review in Held et al. 2002), which are subjects

of future investigation.
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