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On springs and (non-) conservation laws

The problem we discussed in the tutorial looks like a textbook problem to me, but I couldn’t find
a reference for it. Anyway, this is what we want to solve:

Let us consider a dish of mass M hanged on a spring of constant k. There is an object of
mass m, suspended at height h over the level of equilibrium of the dish (see Fig 1 for
the setup). One releases the body m, which falls on the dish and sticks to it (“perfectly
inelastic collision”).

Determine the depth d of the maximum elongation of the spring, as measured relative to the
level of collision (C-level) of M and m.
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Figure 1: The setup.

To solve the problem we have to figure out
what is conserved and what is not. For one, it
should be clear that the total mechanical energy
of the system (spring+ dish + dropped object) is
not conserved through the whole process because
we have an inelastic collision at some point.

Nevertheless, we do not discard the conserva-
tion laws – we may, and we are going to use them
piecewise.

We start by noticing that the setup in Fig 1 is
a bit too simplified, and may trick someone into
missing important pieces of information. Namely,
since we are told the collision takes place at the
level of equilibrium for the dish M , it is clear that
the spring was already stretched at that time and
position – there was some sagging of the spring
because of the dish. On the far left on Fig. 2 the
sag is denoted by b.
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Figure 2: Some more details on the setup
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During the collision between M and m, the
total kinetic energy is not conserved (part of m’s
kinetic energy goes into heat; we are not given de-
tails about this venue, so we stop thinking of it),
but the total momentum (of the system m + M)
is conserved. Of course, to claim conservation
of the momentum during the collision we must
assume that the impulse ∆P = Fext∆τ of any
net external force Fext acting on M and m dur-
ing the time interval of collision (∆τ) is negligible
compared to the total momentum. Fext stands in
this case for the weights of the colliding bodies
and the spring force acting on M .

Anyway, to move on with the solution let us
note that we can calculate the speed vm of m just
before it hits M . The speed’s value is vm =

√
2gh.

Since we know that the momentum of the sys-
tem m + M is conserved during the collision, we
may write ~Pi = ~Pf , or in detail

~Pi = m~vm + M ~vM︸︷︷︸
= 0

= (m + M)~vC = ~Pf , (1)

where by ~vC I denoted the velocity of the com-
pound system m + M . We project (1) on a coor-
dinate axis oriented vertically downward, and get
for the speed vC

m
√

2gh = (m + M)vC → vC =
m

m + M

√
2gh.

(2)
After the collision, between the C-level and the
lowest level reached by the m + M system there
is a distance d. The total mechanical energy is
conserved on this part of the “road”, so we may
write EC = Ef , or in extended form:

EC = EpC + EkC + EeC

= (m + M)gd +
1

2
(m + M)v2

C +
1

2
kb2,(3)

Ef = Epf︸︷︷︸
= 0

+ Ekf︸︷︷︸
= 0

+Ee f =
1

2
k(b + d)2. (4)

Above I denoted by subscripts p, k, e the poten-
tial, kinetic and elastic potential energy respec-
tively, while the subscript f stands for the final
state values of the corresponding quantities. The
lowest (“final”) level is taken to have 0 potential
(gravitational) energy. For the elastic potential
energy the 0-level corresponds to the unstressed
spring.

What is left is mostly a bit of math: from (3)
and (4) we obtain a quadratic equation for d.

Before doing that, we need to calculate b. In-
deed, since M was at equilibrium just before the
collision, the elastic force of the spring was bal-
ancing the weight of M . Hence,

kb = Mg → b =
Mg

k
. (5)

With the above expression for b the quadratic
equation for d becomes, after a bit of algebraic
manipulation,

1

2
kd2 −mgd− m2gh

m + M
= 0. (6)

The discriminant of this quadratic equation is

D = m2g2 +
2km2gh

m + M
= m2g2

(
1 +

2kh

(m + M)g

)
,

(7)
where I forced out the common factor m2g2 for
cosmetic reasons.

The solutions of (6) are

d± =
−(−mg)±

√
D

2× 1
2k

=
mg

k

(
1±

√
1 +

2kh

(m + M)g

)
.

(8)
From the setup of the problem (see the diagrams)
it is clear that d is expected to be positive, there-
fore the final solution for d is

d =
mg

k

(
1 +

√
1 +

2kh

(m + M)g

)
. (9)

First, we need to check the dimensions of our re-
sult. The bracket is just a number, with no units.
The mg/k factor is indeed a length (see, e.g. (5)).
So we are Ok here.

What about some limit cases? Say, if h → 0,

then (9) gives d → 2
mg

k
. It is not quite obvious

why d should be twice the equilibrium elongation
of the spring with only m attached to it. Please,
solve this particular case from scratch, to con-
vince yourself that this is what you get if body m
is just put on the dish, with no initial momentum
and no kinetic energy.
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