
1-D motion with friction

Q: When there is no friction, the flight time for an
object thrown directly upward is τ0 = 2v0/g.

Assume now that there is friction of the form

(a) F = −k∗v, or

(b) F = −k∗v2,

where k∗ is a constant. If the launch speed v0 is
the same w/ and w/o friction, how does the flight
time τ with friction compare with τ0?

(a) “Linear” friction case
WithOy oriented upward the equation of time

evolution for the speed is

dv

dt
≡ v̇ = −kv − g, v(t = 0) = v0, (1)

where k = k∗/m (m is the mass of the object).
The solution of (1) is given by

v = −g
k

+
(
v0 +

g

k

)
exp−kt . (2)

For the y co-ordinate we obtain

y = −g
k
t+

1

k

(
v0 +

g

k

)
(1− exp−kt). (3)

For proper mathematical handling let us denote
kv0

g
= ε and introduce t∗ = t/τ0 – the non-

dimensional time. In terms of these notations
(3) becomes

y =
2v2

0

g

1

ε

[
−t+

1

2

(
1+

1

ε

)
(1− exp−2εt)

]
, (4)

where we relabeled t∗ back to t for simplicity.
By Taylor expansion in the limit ε� 1 – the

“weak friction” approximation – (4) becomes

y ' 2v2
0

g
(t− t2 − εt2). (5)

We see that in this case the equation y = 0 gives
for the total flight time

t =
1

1 + ε
< 1, (6)

which in terms of dimensional time means that
if (weak) friction is present, the flight time τ

is always smaller than the flight time without
friction τ0.

An interesting result is obtained if in (4) we
take the limit ε → ∞ (strong friction). One
observes that in this case y → 0 while for the

flight time we get t ↘ 1

2
. Of course, one may

question whether the linear in v friction is an
appropriate approximation in this limit.

By graphical analysis (see Fig. 1) it can be
seen that for 0 < ε <∞ the solution t = t(ε) to
the equation y = 0 in (4) is a monotonic function
of ε, with t → 1 as ε → 0, and t → 1/2 as ε →
∞. Hence, we conclude that the (dimensional)
flight time obeys

v0

g
< τ ≤ 2v0

g
, (7)

with equality only when there is no friction.

Figure 1: Plot of y(t, ε) = (1/ε)[−t+ (1/2)(1 +
1/ε)(1− exp(−2εt))] and y = 0 surfaces in (ε, t)
co-ordinates. For ε → 0 the intersection curve
of the two surfaces approaches the line t = 1,
while for large ε it goes close to the line t = 0.5.

(b) “Quadratic” friction case
In this case the friction F ∝ v2 and the equa-

tions of motion are as follows:
(i) Motion upward (axis Oy directed upward,

origin at the launch point)

v̇ = −kv2 − g, v(t = 0) = v0, (8)
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and the solution is

v =

√
g

k
tan

(
arctan

√
k

g
v0 −

√
kgt

)
. (9)

The time to reach the highest point of the tra-
jectory is

tu =
1√
kg

arctan

√
k

g
v0 (10)

and the maximum height is

ymax =
1

2k
ln

(
1 +

k

g
v2

0

)
(11)

(ii) Motion downward : we choose the origin
of the reference frame at the highest point (Oy
directed downward). The equation of motion is

v̇ = −kv2 + g, v(t = 0) = 0, (12)

with the solution

v =

√
g

k

exp(2
√
kgt)−1

exp(2
√
kgt) +1

(13)

which in turn gives for the vertical coordinate

y =
1

2k

[
2 ln(1 + exp(2

√
kgt))− 2

√
kgt− 2 ln 2

]
(14)

By equating the above y with ymax we get the
time of descent

td =
1√
kg

ln

√√√√1 + 2v2
0

k

g

(
1 +

√
1 +

g

kv2
0

)
(15)

We now denote ε = v0

√
k/g and get the total

time of flight τ = tu + td as

τ =
v0

g

{
1

ε
arctan ε+ (16)

+
1

2ε
ln

[
1 + 2ε2

(
1 +

√
1 + ε2

ε

)]}

After a bit of calculus it can be seen that in
(16) the multiplier between the curly brackets is
bounded to be in the (0, 2) interval as ε scans
the (∞, 0) interval.

Comparison with the time of flight for the fric-
tionless motion, τ0, shows that 0 < τ < τ0.

Projectile motion with friction

Q: It is known that for a given launch speed v0, the
maximal range is achieved by shooting at α0 = 45◦

(no friction case). If weak friction is present, to get
the maximal range for a given v0 should one aim
higher or lower than α0?

When there is no friction the dynamic equations
are ax = 0, ay = −g, from which we get

x = v0t cosα, y = v0t sinα− (g/2)t2. (17)

Eliminating t between x and y expressions we
get

y = x tanα− g

2

x2

v2
0 cos2 α

. (18)

For y = 0 we get two solutions for x, namely the
trivial x = 0 and

x =
v2

0 sin 2α

g
. (19)

For a given v0 the range xmax is achieved for
sin 2α0 = 1, and hence α0 = 45◦.

Now assume that there is friction of the form
Ff = −k∗v. The equations of motion become

ax = −kvx, ay = −g − kvy, (20)

with k = k∗/m. Since v̇x = ax, v̇y = ay, and the
initial conditions are vx(t = 0) = v0 cosα, and
vy(t = 0) = v0 sinα, from (20) we get

vx = v0 exp−kt cosα, (21)

vy =
(
v0 sinα +

g

k

)
exp−kt−g

k
. (22)

By integrating (21) and (22) one obtains

x =
v0 cosα

k

(
1− exp−kt

)
, (23)

y =
1

k

(
v0sinα+

g

k

)(
1−exp−kt

)
− g
k
t, (24)

which gives the equation of trajectory

y =
g

k2

[
kx

v0 cosα

(
1 +

kv0 sinα

g

)
+

+ ln

(
1− kx

v0 cosα

)]
(25)

N.B. In the limit k → 0, (25) recovers (18).
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We consider the case of a small enough k, such
that η ≡ (kx/v0 cosα)� 1. We expand the log-
arithm up to the 3-rd order according to the for-
mula ln(1− η) ' −η− η2/2− η3/3. We set then
y = 0 and obtain that the resulting equation in
x has the nontrivial solution

x =
3v0 cosα

4k

(√
1 +

16

3

kv0

g
sinα− 1

)
(26)

N.B. In the limit k → 0, (26) recovers (19).
To get the angle α which provides the ex-

tremal value of the range we request that
∂x/∂α = 0 (simple reasoning convinces us that
the extremum is indeed a maximum). Denoting
for shortness 16kv0/3g = p, one gets

1− sin2 α =
2

p
sinα

(
1 + p sinα−

√
1 + p sinα

)
(27)

Assuming for now the parameter p to be small,
one may expand the square root in (27) and ob-
tain the equation

f(z, p) ≡ p

4
z3 + 2z2 − 1 = 0, (28)

where sinα = z and we look for solutions around
z0 =

√
2/2 = sin(π/4). One can easily see that

the behaviour of f(z, p) around z0 is as depicted
in Fig.2, whatever 0 < p << 1 we choose. In
particular, f(z0, p) > 0, which means that the
solution zf for (28) obeys zf < z0, which in turn
means that αf < π/4 (since sinα is a mono-
tonically increasing function for α ∈ (0, π/2)).
Therefore, in the “weak friction” approximation
we have shown that for a given initial speed v0,
the maximal range is achieved by shooting at an
angle αf less that 45◦.

Figure 2: Behaviour of f(z, p) in the [0, 1] inter-
val.

Note 1: It can be seen that the smallness of p
and η as defined above is related to the smallness

of kτ0 (where τ0 =
2v0 sinα0

g
is the time of flight

in the frictionless case).
Indeed, kτ0 � 1 ⇔ p � 1, since 2 sinα0 and

16/3 are both O(1). On the other hand we have

η =
kx

2v0 cosα
= kτ0

(
x

xmax

)
cosα0

2 cosα
,

where xmax is given by (19) with α0 = 45◦. Since
we look for solutions with weak friction we ex-
pect that x ≤ xmax and

cosα0

2 cosα
to be O(1). It is

true that η � 1 6→ kτ0 � 1, but this is not an
issue here.

Note 2: One may set sinα = 1 in (24) and
obtain the same results that we got in the first
part (1-dimensional motion, case (a)).

As an exercise the reader is asked to try solv-
ing the 2-D projectile motion with “quadratic”
friction, although the resulting system of ODEs
is more complicated (there is no decoupling).
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