1-D motion with friction

Q: When there is no friction, the flight time for an
object thrown directly upward is 75 = 2w /g.
Assume now that there is friction of the form

(a) = —k"v, or

where k* is a constant. If the launch speed vy is
the same w/ and w/o friction, how does the flight
time 7 with friction compare with 7,?
(a) “Linear” friction case

With Oy oriented upward the equation of time
evolution for the speed is

dv
dt

v(t=0) =1y, (1)

v=—kv—y,
where k = k*/m (m is the mass of the object).
The solution of (1) is given by

I (vo + Q) exp ™.

’ ’ (2)

For the y co-ordinate we obtain

1
Yy = —%t + z (vo + %) (1—exp ™). (3)

For proper mathematical handling let us denote
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= ¢ and introduce t* = t/7y — the non-

dimensional time. In terms of these notations

(3) becomes
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where we relabeled t* back to ¢ for simplicity.
By Taylor expansion in the limit ¢ < 1 — the

“weak friction” approximation — (4) becomes
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We see that in this case the equation y = 0 gives
for the total flight time

1
t =
1+¢

<1,

(6)

which in terms of dimensional time means that
if (weak) friction is present, the flight time 7

is always smaller than the flight time without
friction 7.

An interesting result is obtained if in (4) we
take the limit ¢ — oo (strong friction). One
observes that in this case y — 0 while for the

1
flight time we get t \ 3 Of course, one may

question whether the linear in v friction is an
appropriate approximation in this limit.

By graphical analysis (see Fig. 1) it can be
seen that for 0 < € < oo the solution t = t(¢) to
the equation y = 0in (4) is a monotonic function
of e, witht - lase - 0,and t — 1/2 as ¢ —
oo. Hence, we conclude that the (dimensional)

flight time obeys
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with equality only when there is no friction.
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Figure 1: Plot of y(t,e) = (1/e)[—t + (1/2)(1 +
1/e)(1 —exp(—2¢t))] and y = 0 surfaces in (e, ?)
co-ordinates. For ¢ — 0 the intersection curve
of the two surfaces approaches the line ¢t = 1,
while for large ¢ it goes close to the line ¢t = 0.5.

(b) “Quadratic” friction case

In this case the friction F o< v? and the equa-
tions of motion are as follows:

(i) Motion upward (axis Oy directed upward,
origin at the launch point)

v(t =0) = vy, (8)

0= —kv® — g,



and the solution is

v = \/g tan (arctan \/gvo - @t) . (9)

The time to reach the highest point of the tra-
jectory is

k
t, = arctan vg

\/_

and the maximum height is

1 k
Ymaz = % In (1 + 5“3)

(71) Motion downward: we choose the origin
of the reference frame at the highest point (Oy
directed downward). The equation of motion is

(10)

(11)

b= —kv*+g, o(t=0)=0, (12)

with the solution

\/7 exp! (2v/kgt) _
exp(2\/_t) +1

which in turn gives for the vertical coordinate

1
y=op {2 In(1+ exp(Q\/@t)) —2y/kgt —2In 2}

(14)
By equating the above y with v,,.. we get the
time of descent
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We now denote € = vg\/k/g and get the total
time of flight 7 =1¢, +t4 as

(13)
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After a bit of calculus it can be seen that in
(16) the multiplier between the curly brackets is
bounded to be in the (0,2) interval as e scans
the (00, 0) interval.

Comparison with the time of flight for the fric-
tionless motion, 7y, shows that 0 < 7 < 7.

Projectile motion with friction

Q: It is known that for a given launch speed vy, the
maximal range is achieved by shooting at arg = 45°
(no friction case). If weak friction is present, to get
the maximal range for a given vy should one aim
higher or lower than a?

When there is no friction the dynamic equations
are a, = 0, a, = —g, from which we get
(17)

x=uvptcosa, y=uvptsina— (g/2)t*

Eliminating ¢t between x and y expressions we
get

g

=ztana — = —5——— 18

Y 2 v¢ cos? o (18)

For y = 0 we get two solutions for x, namely the
trivial z = 0 and

vE sin 2a

g (19)

Tr =
For a given vy the range x,.. is achieved for
sin 2ag = 1, and hence ag = 45°.

Now assume that there is friction of the form
F; = —k*v. The equations of motion become
ay = —kvg, ay = —g — kv, (20)
with k = k*/m. Since v, = a,, v, = a,, and the
initial conditions are v,(t = 0) = vgcos a, and
vy (t = 0) = vpsina, from (20) we get

vy, = voexp M cosa, (21)
v, = <’U0 sin v + z) exp M —%. (22)
By integrating (21) and (22) one obtains
_ 1o C;S “ (1 — exp_kt) : (23)
y = % (vosin a—l—%) (1—exp_kt) — %t, (24)

which gives the equation of trajectory
kx

kvg sin a
k? | vy cos g

+ln<1— ki

25
Vo COS a)] (25)
N.B. In the limit £ — 0, (25) recovers (18).




We consider the case of a small enough k, such
that n = (kx /v cos o) < 1. We expand the log-
arithm up to the 3-rd order according to the for-
mula In(1 —7n) ~ —n—n%/2—n3/3. We set then
y = 0 and obtain that the resulting equation in
x has the nontrivial solution

(-

N.B. In the limit & — 0, (26) recovers (19).

To get the angle o which provides the ex-
tremal value of the range we request that
Ox/0a = 0 (simple reasoning convinces us that
the extremum is indeed a maximum). Denoting
for shortness 16kvy/3g = p, one gets

2

1 —sin’a = ~sina (1 + psina —4/1 —i—psina)
p

(27)

Assuming for now the parameter p to be small,

one may expand the square root in (27) and ob-
tain the equation

16 &
36% sin o — 1) (26)
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where sin & = z and we look for solutions around
2 = V/2/2 = sin(n/4). One can easily see that
the behaviour of f(z,p) around zj is as depicted
in Fig.2, whatever 0 < p << 1 we choose. In
particular, f(zo,p) > 0, which means that the
solution z; for (28) obeys zy < 2y, which in turn
means that oy < 7/4 (since sina is a mono-
tonically increasing function for o € (0,7/2)).
Therefore, in the “weak friction” approximation
we have shown that for a given initial speed vy,
the maximal range is achieved by shooting at an
angle oy less that 45°.
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Figure 2: Behaviour of f(z,p) in the [0, 1] inter-
val.

Note 1: It can be seen that the smallness of p

and 7 as defined above is related to the smallness

2vg sin ay |

of kg (where 19 = is the time of flight

in the frictionless case).
Indeed, kmp < 1 & p < 1, since 2sin oy and
16/3 are both O(1). On the other hand we have

n=——=~Fkm
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where 2.y is given by (19) with oy = 45°. Since
we look for solutions with vgyeak friction we ex-
pect that x < z,., and % to be O(1). Tt is

true that n < 1 4 kg <<COlS,Of3ut this is not an
issue here.

Note 2: One may set sinaw = 1 in (24) and
obtain the same results that we got in the first
part (1-dimensional motion, case (a)).

As an exercise the reader is asked to try solv-
ing the 2-D projectile motion with “quadratic”
friction, although the resulting system of ODEs
is more complicated (there is no decoupling).
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