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Angle between the products of collision

These notes deal with the problem
that we discussed in the tutorial. I
decided to write down the solution, so
that you can think it over in detail,
while preparing for the test.

The problem: Suppose we have two
bodies of equal masses m (the original
problem, solved in the class by Dr. Har-
rison, made use of two protons). One
of them is at rest, the other approaches
it with a velocity ~v0. After the collision
(not perfectly frontal), the two bodies
leave the scene on trajectories defined
by the angles α and β, relative to the
direction of ~v0.

At the lecture, Dr. Harrison showed
that if the collision is perfectly elastic
(i.e. the kinetic energy of the whole sys-
tem is conserved through the collision)

then the angle between the trajectories
of the products is θ = 90◦. That is,
θ = α + β = π/2. See Fig 1 for the
setup.

The question I asked in the tuto-
rial was: “if the collision is not
perfectly elastic, is the angle θ
smaller, equal to, or bigger than
90◦?”.

By “not . . . ”, I meant that the col-
lision is not perfectly inelastic either —
the bodies still separate and fly away af-
ter collision. The point is that during
the collision some kinetic energy (KE)
is being lost to heat, sound waves, etc.,
so that the total kinetic energy of the
system after is less than what we had
before the collision.
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Figure 1: The setup: masses are equal (m); the velocity vectors are represented
by bold-face symbols. On the right, because of the equality of masses the
conservation of momentum reduces to the addition of velocity vectors.

During the collision, the momentum of the whole system is conserved.
Therefore,

~Pi = m~v0 + 0 = m~v1 + m~v2 = ~Pf . (1)

Since the masses are equal, the above equation becomes

~v0 = ~v1 + ~v2. (2)

On the other hand, we know that during the collision some kinetic energy is
lost, therefore
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where by Q I denote the lost kinetic energy (by the way I am defining it I
assume that Q > 0!). Equation (3) can be rewritten as

v2
0 = v2

1 + v2
2 +

2Q

m
. (4)

Now, if you attended the lecture, you may recall that at this point, with KE
conserved, we would have v2

0 = v2
1 + v2

2. By using eq. (2) and a diagram like
the one I draw in Fig. 1 (right) the lecturer came to the conclusion that the
only way this could happen (the sum of the squares of two sides of the triangle
equals the square of the third side) is for the angle γ to be 90◦. Therefore, if
KE is conserved, the angle between the outgoing trajectories is also 90◦, since
it is clear that θ = 180◦ − γ.

In our case, from (4) we find instead that

v2
0 > v2

1 + v2
2. (5)

But in a triangle we always have

v2
0 = v2

1 + v2
2 − 2v1v2 cos γ. (6)

Given inequality (5), from (6) we conclude that v1v2 cos γ < 0. This points to
the conclusion that γ is obtuse (cos γ < 0), hence, its complementary angle θ
satisfies θ < 90◦. See Fig. 1 for geometrical details.

The problem can be solved in a more formal way, with less geometry rea-
soning, as follows.

We know that the magnitude of any vector ~A and its dot-product with
itself satisfy

A2 = | ~A|2 = ~A · ~A. (7)

Hence, in our case

v2
0 = |~v0|2 = ~v0 · ~v0 = (~v1 + ~v2) · (~v1 + ~v2)

= ~v1 · ~v1 + 2~v1 · ~v2 + ~v2 · ~v2 = v2
1 + v2

2 + 2~v1 · ~v2. (8)

But from the non-conservation of KE we have the inequality (5), therefore,
the above equation gives

2~v1 · ~v2 > 0. (9)

Hence, ~v1 · ~v2 = v1v2 cos θ > 0 which means that cos θ > 0, therefore the angle
θ = 6 (~v1, ~v2) < π/2.
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