
Interference

These notes present the solution of the prob-
lem #9 from Ch. 14 of Serway&Jewett.

“Two speakers area driven in phase by the same

oscillator of frequency f . They are located a distance

d from each other on a vertical pole. A man walks

straight toward the lower speaker in a direction per-

pendicular to the pole as shown on figure. (a) How

many times will he hear a minimum in sound inten-

sity, and (b) how far is he from the pole at these

moments? Let v be the speed of sound and assume

the ground doesn’t reflect sound.”

(a) For the beginning let us note that the
path difference ∆ between the signals received
by M (see Fig. 1) is given by the formula

∆ = x2 − x1 =
√

d2 + x2
1 − x1. (1)

We know (see also Example 14.1, pg. 476) that
at point M we get a minimum when the signals
are out of phase by an odd multiple of π (=

180◦), or in other words, when ∆ is either
λ

2
or

3λ

2
or

5λ

2
and so on.
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Figure 1: The setup.

There is a minimum in sound intensity when-
ever

∆ = (2n − 1)
λ

2
, n = 1, 2 . . . (2)

From (1) we notice that 0 < ∆ < d, (∀) x1 > 0.
This and (2) tells us that there is a maximum
value of n for which we observe minima. To get
that n we solve the inequality

(2n − 1)
λ

2
≤ d (3)

over integer numbers. This gives

n ≤ d

λ
+

1

2
=

df

v
+

1

2
, (4)

and therefore nmax (the maximum number of
minima the man can hear while approaching
the pole) is the greatest integer equal or less

than
df

v
+

1

2
.

N.B. On Fig2 the lines of constant path (phase) dif-
ference between the signals sent by the speakers are de-
picted by dotted lines. One may see that those curves
are hyperbolas since the equation describing them is
δ = x2 − x1 = const, (we consider the 2-dimensional
problem; only the region below the midline and to the
left of the pole is shown). Indeed, a hyperbola is the
locus of points for which the difference between the dis-
tances to two fixed points named focuses – in our case
the focuses are the speakers – is a constant. By vary-
ing that constant (i.e. δ) we get different hyperbolas.
As one can see, for the middle line δ = 0 (both signals
travel the same distance to reach points on that line)
while the hyperbolas corresponding to first (n = 1),
second (n = 2) minima have δ = λ/2, 3λ/2 a.s.o.

The hyperbola for the n-th destructive path differ-
ence (for which δ = (2n − 1)λ/2) crosses the pole at
some point which is at distance zn from the bottom
speaker. In terms of distances x2, x1 (now taken along
the pole) we get

δn = x2 − x1 = (d − zn) − zn = (2n − 1)λ/2. (5)

From the geometry of the problem one can see that
the number of minima on the ground (denoted as n =
1, 2 . . .) is the same as the number of intersection points
of the hyperbolas with the vertical pole. You may think
of this as being the conservation of the number of “field
lines”. Therefore, the number of minima one can hear
on the ground is not larger than the number of hyper-
bolas crossing the bottom half of the pole - as shown on
Fig.2. On the figure we see that 0 < zn < d/2. From
zn > 0 we get that

n − 1

2
<

fd

v
, (6)

which gives the same nmax as the one found from (4).

(b) We can solve this part of the problem
by either using the results of the previous part
or by starting from scratch, with an alternative
approach. We discuss first the alternative ap-
proach, but, for reasons to become clear shortly,
we’ll solve the problem using the method used
in (a).
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Figure 2: Diagram for the alternative way of
determining the number of minima.

“Wrong” solution: Let us assume that the
equations describing the disturbances propa-
gating from the lower and the upper speakers
are

y1 =A sin(kx1−ωt), y2 =A sin(kx2−ωt) (7)

where we accounted for the fact that the waves
are driven in phase (φ = 0). The amplitude of
the signal at some point M is given by

y = y1 + y2

=2Acos

(

k(x2−x1)

2

)

sin

(

k(x1+x2)

2
−ωt

)

.

To get a minimum sound amplitude the argu-

ment of cos() has to be of the form (2n− 1)
π

2
,

which makes the cos to be 0.
On a second look at the setup we observe that

there are a few important caveats: the ampli-
tude A is NOT constant – it depends on the dis-
tances x1, x2 from the sources. This is because
the amplitude of the wave has to decrease when
the distance from the source increases! (think
of ripples on water surface). Indeed, at some
radius r the energy is the integral of the power
P over a period, the integral being also taken
along the length of the circle. Since P ∝ ω2A2v
(see pg. 451 in S& J) and ω, v are constants, the
only way to get the same energy for different r
is to have an A decreasing with r. Specifically,

we expect the product A2r to be a constant,
and hence A(r) ∝ 1/

√
r.

We conclude that (7) with constant A is
appropriate for 1-dimensional but not for 2-
dimensional motion.

Besides, the amplitude of y1 and y2 of the
waves on the line L are different (because x1 6=
x2 and because A is a function of x, as ar-
gued above). Therefore we do not pursue this
approach, although it may give us the correct
answer with some more accurate mathematical
modeling of the waves.

To solve the problem correctly we return to
the path difference derived in part (a). The
condition for the minima is again that

∆ = (2n − 1)
λ

2
, n = 1, 2 . . . (8)

which solved for x1 gives

(x1)n
≡ L

n
=

d2 −
[

(2n − 1)
λ

2

]

2

λ(2n − 1)
(9)

Using the relation λ = vT = v/f we finally get

L
n

=
d2 −

(

n − 1

2

)2 v2

f 2

2v

f

(

n − 1

2

) (10)

N.B. It is of interest to understand why do we get a

correct answer even with the wrong formula for ampli-

tude (see the notes above, and finish the calculations

regarding the argument of cos()). My take is that al-

though the amplitude A is a function of distance from

the source, the minimal amplitude is still determined

by the condition (8) in both cases (in the “wrong” case

cos() = 0 gives exactly the same equation for (x1)n as

for the correct solution!).
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