
The RC circuit

Let us consider a simple RC circuit, as de-
picted in the diagram below. Assume for the
beginning, that the switch s is open, C2 has no
charge and that C1 has charge q0 (+q0 on the
top plate, −q0 on the bottom one). Let E0 de-
note the energy on C1 in this initial setup. Let
us close the switch.

Our task is to find:

i) the time constant τ of this circuit.

ii) which are the energies (E1, E2) “deposited”
on each capacitor after a very long time
(t→∞).

iii) how does the energy loss
∆E = (E1 + E2)− E0

depend on the value of R?
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1. Low-tech solution
We don’t want to get into complicated math.

To solve the problem we use the conservation
laws in the asymptotic regime (t→∞).

i) The time constant is that of a circuit with
a resistor R connected in series with an equiv-
alent capacitor Ce. Obviously,1 C1 and C2 are
connected in series, so that

1

Ce

=
1

C1

+
1

C2

⇒ Ce =
C1C2

C1 + C2

.

The time constant is therefore

τ = RCe =
RC1C2

C1 + C2

. (1)

ii) The charging/discharging of the capacitors
ends when there is no current flowing through

1Perhaps it’s a bit premature to say “obvious”. The
“high-tech”, mathematically based solution will show
that the capacitors behave as if connected in series.

the circuit. In particular, this means that when
the current vanishes the potential drop across
the resistor R is 0, i.e. UR = Vb − Va = 0.
This means that Va = Vb, where we calculate the
potential relative to a reference point (say O, as
depicted). But U1 = Va−VO, U2 = Vb−VO. The
implication is that the transient process stops
when the voltage drops on C1 (U1) and C2 (U2)
are equal. This allows us to calculate the state
(i.e. charge, voltage) of each capacitor.

Indeed, the total charge is conserved

q0 = q1 + q2, (2)

and, as noted above

q1

C1

= U1 = U2 =
q2

C2

. (3)

One may solve (2) and (3) for q1, q2 and calcu-
late the energy on each capacitor
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q2
1
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2
0

(C1 + C2)2
, (4)
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2
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(C1 + C2)2
. (5)

It is readily seen that

E0 =
1

2

q2
0

C1

>
1

2

q2
0

(C1 + C2)
= E1 + E2. (6)

iii) As can easily be found from the above ex-
pression, the energy loss is

∆E = − q2
0

2C1

C2

C1 + C2

< 0, (7)

and does not depend on R at all! The energy dis-
sipated during the discharging of C1 and charg-
ing of C2 does not depend on the value of the
resistor on which the dissipation (by heat gen-
eration) takes place. Puzzling, isn’t it?

2. High-tech solution

i) The Kirchhoffs’s 2nd rule for the RC circuit
reads

U1 = iR + U2, (8)

where

U1 =
q1

C1

, U2 =
q2

C2

, i = −dq1

dt
= +

dq2

dt
, (9)
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with “−” in front of dq1/dt because q1 is decreas-
ing (dq1 < 0), but according to (8) we have i > 0
(the clockwise direction is the positive one).

The circuit is isolated from the point of view
of charge (i.e. the charge is conserved), which
means that at any time t we have q1(t)+q2(t) =
q0. However, the system it is not isolated from
an energetic point of view - as time goes by,
there is energy dissipated (to heat) on R.

Using (9) one may rewrite (8) as an ordinary
differential equation (ODE) for q1:

dq1

dt
+

q1

R

(
1

C1

+
1

C2

)
=

q0

RC2

. (10)

Right away we may claim, by carefully inspect-
ing (10), that the time constant of the circuit
is the inverse2 of the coefficient in front of q1.
Hence,

τ = R
C1C2

C1 + C2

. (11)

Indeed, equation (10) is of the form

dx

dt
+ ax = b, (12)

with a, b constants. For b = 0 it has a solution
of the form

x(t) = x0e
−at. (13)

Since we know that the charge/discharge of the
capacitors is described by an exponential (re-
laxational) law — of the sort exp(−t/τ) — by
comparison we get (11).

It is true that in our case b 6= 0, but it is
also true that this doesn’t matter for the way
we find τ (b is not a function of time, and unlike
a it is not coupled to x, hence one may expect
that its value doesn’t impact the time constant
of the relaxational process). Indeed, b is given
by the asymptotic condition on the problem —
actually b = ax when dx/dt = 0; this situation
occurs when the charge doesn’t change anymore,
i.e. when the current i = dx/dt = 0. In our case
this happens for t→∞.

2The reader may recall a similar situation in the “sim-
ple harmonic oscillator” problem. In that case one re-
arranges the equation of motion in such a way that it
reads d2x

dt2 + ω2x = 0, and right away finds the period of
oscillation via T = 2π/ω.

The reader familiar with the theory of ODE’s
will recognize in the above reasoning a mere re-
derivation of the general rule that the solution to
a (non-homogeneous, like (12)) ODE is the solu-
tion of the homogeneous ODE (with b = 0) plus
a particular solution of the non-homogeneous
ODE (which we find by an educated guess, or
by other methods). One can easily verify that
the solution of (10) is

q1(t) =
q0C2

C1 + C2

e−t/τ +
q0C1

C1 + C2

, (14)

where we accounted for the initial condition
q1(t = 0) = q0 to determine the coefficient in
front of the exponent; τ is given by (11).

ii) We now reproduce the results of the “low-
tech” section. Finding the (final) charges on the
capacitors proves to be simple. For q1 we find
the answer from (14) by taking t→∞, while q2

is obtained from the conservation law (2).

q1 =
C1

C1 + C2

q0, q2 =
C2

C1 + C2

q0. (15)

The values for E1 and E2 are derived as in (4)
and (5), and we get the same ∆E as in (7).

iii) Let us see why one gets the somewhat puz-
zling result that the energy loss does not depend
on R. From (14) one may derive the expression
for the current

i = −dq1

dt
=

q0

RC1

e−t/τ , (16)

and then calculate the energy loss by integrating
w.r.t. time the power dissipated on R

|∆E| =
∫ ∞
0

i2R dt =
q2
0

RC2
1

∫ ∞
0

e−2t/τ dt (17)

=
q2
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RC2
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0

=
q2
0C2

2C1(C1 + C2)
.

Indeed, R cancels out in the final result!
What happens if R = 0? Do we still have

energy loss? Well, the answer is yes, because
there is no such thing as R ≡ 0 for the real-life
circuits (save for, maybe, the superconducting
version of it). If one takes the limit R→ 0 then
(17) holds all the way to 0.

For more on RC circuits read Ch. 21 in Ser-
way & Jewett “Principles of Physics” (3rd ed.).
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