
Electric field for point-like charges

These notes are a wrapped-up version of the
problem solved in the tutorial.

The problem: Assume you have three charges
on the x-axis; from left to right they are
−3q, +q, +2q. The distances between consec-
utive charges is d (see the diagram for details).

Task: find the point(s) on the x-axis at which
the electric field vanishes.

Let us try to figure out, on a diagram, in
which regions on x-axis one may hope to find
a point of ~E = 0. In what follows E and EX

will be used partially interchangeable; I hope
this will not create confusion. Anyway, in our
case on the x-axis one has ~E = EX x̂, so the
magnitude E of ~E is the absolute value of EX .

On the top of the diagram, in three rows,

the ~E’s generated by each of the charges is de-
picted. As you can see, the field created by −3q
is pointing toward the charge in all of the re-
gions. The field created by the positive charges
is “outbound” from the corresponding charge.
To add some information, the magnitudes of
the vectors are also indicated. The fields are
calculated at the middle point of each interval,
that is at d/2 of the adjacent charges. I also in-
dicated the fields at the points which are at d/2
to the left of −3q and to the right of +2q. The
numbers on the arrows are the relative magni-
tudes of the fields – the unit magnitude is the
value of E generated by the −3q at distance
d/2 around it1
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As one may notice, in region B the fields
are all oriented in the same direction, to the
left, therefore we should not expect the resul-

tant field to vanish in that region. May we ex-
pect to find solutions in all other regions?

To check this, let us sketch the behaviour of

1Example calculation: in region B the field generated by the +q charge at d/2 to its left is keq/(d/2)2 =
(1/3) × ke3q/(d/2)2 = 1/3 of the unit magnitude.
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the resultant EX in the vicinity of the charges.
It is clear that close to a charge, the value of
the field is mainly due to the charge sitting at
that particular location. For example, at the
point located at distance ` to the left of the
−3q charge, the projection on x-axis of the to-
tal field is given by2

EX = +ke

3q

`2
− ke

q

(` + d)2
− ke

2q

(` + 2d)2
. (1)

Now, if one takes the limit ` → 0, the second
and the third terms in (1) stay finite, while
the first term blows up to infinity; therefore,
the dominant contribution is from the charge in
vicinity of which we calculated the field. With
the same approach, you may convince yourself
that the behaviour of EX is as depicted.

Since the value of the field is a continuous
function of distance (except for the location of
the charges, where ones gets singularities), we
observe that in region C there must be a point
M at which EX = 0.

What about regions A and D? The field ap-
parently goes to 0 at large distances away from
the charges. It can be shown that it is not van-
ishing at any finite distance in those regions.
The proof is postponed to the end of this docu-
ment. In conclusion, there is only one point of
x-axis at which the field vanishes.

To find the position of M we choose the ori-
gin of the x-axis to be at the location of the +q
charge. Let the coordinate of M be x. Then the
distances from M to the −3q and +2q charges
are d + x and d − x, respectively.

The field ~E on x-axis has only EX compo-
nent. We require

EX = ke

[

−
3q

(d + x)2
+

q

x2
−

2q

(d − x)2

]

= 0,

(2)
where, again, the signs come from the orien-
tation of the corresponding vector relative to
the positive direction on x-axis – see also the
footnote 1. Equation (2) gives

4y4 − 2y3 + 7y2 − 1 = 0, (3)

where for brevity I denoted y ≡ x/d. We expect
the solution to obey 0 < y < 1. Indeed, there
is a unique solution with this property, namely
y = 0.382902. Hence we obtain x ≈ 0.383d.
You may get this solution either numerically
(using Mathematica, Maple, etc.) or by dig-
ging into math monography for the analytical
solution of the 4-order polynomial equations.

Let us now prove that the field does not
vanish in the A and D regions. In the text-
book (Serway & Jewett) there is a similar prob-
lem, 19.15, dealing with the field generated by
a dipole on its axis.

As before, we choose the origin of x-axis at
the location of +q charge, and find the expres-
sion for EX far away from the charges, say,
in the region D. Let x denote the position at
which we calculate the field. For this situation
we assume d � x, which is to say that

ξ ≡
d

x
� 1.

We have

EX = ke

[

−
3q

(x + d)2
+

q

x2
+

2q

(x − d)2

]

=
keq

x2

[

−
3

(1 + ξ)2
+ 1 +

2

(1 − ξ)2

]

≈
keq

x2
[−3(1 − 2ξ) + 1 + 2(1 + 2ξ)]

=
keq

x2
× 10ξ = ke

10qd

x3
. (4)

Above we used the approximation 1/(1+α)2 =
1/(1 + 2α + α2) ≈ 1/(1 + 2α) ≈ 1 − 2α, which
is valid for α � 1. In conclusion, we found
that far from the region with charges, the field
is proportional to 1/x3 – it goes to 0 as x → ∞

but never vanishes for any finite x. As a side-
note, the 1/x3 dependence is typical for con-
figurations of charges which have total charge
equal to 0. See also 19.,15 in the textbook.
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2To obtain this expression I took the magnitudes of the individual fields and set the signs afterward, in
agreement with the direction of the fields relative to the positive direction of x-axis.
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