
Capacitor “games”

How long it takes to charge a capacitor?

This problem is well-known in the Physics
folklore. I heard it myself from one of my
high school teachers (I. Bartos-Elekes).

Let us consider a circuit like the one de-
picted in Fig. 1. The capacitors have equal
capacitances (C1 = C2 = C), and at the be-
ginning there is no charge on capacitors. The
voltage provided by the battery is U . For
numerical application later on we shall use
C = 1µF and U = 10V . One sets the switch
to position 1 and waits some time for C1 to
get fully charged. Obviously, the final charge
on the capacitor is

q0 = UC. (1)

The switch is then set to position 2 and the
charge on C1 gets redistributed on both ca-
pacitors. After some time1 the charges on C1

and C2 reach their equilibrium values q1 and
q2, respectively. We then set back the switch
to 1, and charge C1 again, up to q0, and re-
peat the above steps again and again.

Question: how many times does it make
sense to continue the back-and-forth switch-
ing? Let us see what happens after a few
steps of switching, and hope for the best, that
the reason for which we should be aware of
“makes sense” will arise in our way.

Let us denote by q
(1)
1 and q

(1)
2 the charges

on C1 and C2 after the first cycle. We have,
by charge conservation

q
(1)
1 + q

(1)
2 = q0, (2)

and from the fact that the capacitors (for the
switch in position 2) are in parallel, the po-
tential difference between their plates should

1since we are looking at an idealized problem with

no time constants, we may assume the redistribution

process to be almost instant

C1 2C

U

1 2

-

+

Figure 1: The setup.

be the same, therefore

q
(1)
1

C1

=
q
(1)
2

C2

. (3)

Solving (2) and (3) for q
(1)
1 and q

(1)
2 one gets

q
(1)
1 = q

(1)
2 =

1

2
q0. (4)

Next, the switch is placed again in position 1

and the charging of C1 resumes — the final
charge on it is again q0.

Pitfall prevention: when I say “the charge
on the capacitor is q0” I mean that the upper
plate has charge +q0 on it, while the bot-
tom plate has −q0. Therefore, the above and
the forthcoming calculations deal, rigorously
speaking with e.g., the charges on the upper
plates of the capacitors.

The next round of “charge transfer” be-
tween capacitors starts by setting the switch
to position 2. Now, the total charge on the
upper plates is q0 + q

(1)
2 ; therefore, the new

charge balance equation, at the end of the
second cycle reads

q
(2)
1 + q

(2)
2 = q0 + q

(1)
2 = q0 +

1

2
q0 =

3

2
q0. (5)

Besides (5), the equation (3) is still valid here,
but with the superscript (1) replaced by (2).
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Since the capacitances are equal, at the end
of the day we get

q
(2)
1 = q

(2)
2 =

3

4
q0 =

22 − 1

22
q0. (6)

One may continue this “game” and observe
that the charge on capacitor C2 builds up
continuously. It can be shown (please, check
this for your own good) that after the n–th
switching, the charge on C2 is

q
(n)
2 =

2n − 1

2n
q0. (7)

At this point it becomes clear (hopefully)
what do they mean by “makes sense”. The
difference between the charge q0 which C1

brings for sharing with C2 and the charge
already on C2 from previous steps decreases
continuously. The difference is

∆q(n) ≡ q0 − q
(n)
2 =

1

2n
q0. (8)

One can observe that ∆q(n) never vanishes,
although in the limit n → ∞ we get ∆q(n) →
0. But the difference does not have to vanish
for the switching to be stopped — at some
point the ∆q(n) becomes less than the charge
of an electron |e|. And you cannot cut an
electron in pieces, to continue the process!
That is the moment when one should cease
the switching.

What is left is pure math: one should find
n for which ∆q(n) = |e|. We have

∆q(n) =
1

2n
q0 = |e| ⇒ n =

1

ln 2
ln

q0

|e|
. (9)

With the numerical values for U and C given
at the beginning the final result is

n ≈ 46.

Inspired by the above results one may think
of a related problem. In real–life capacitor

charging, when shall we consider the charg-
ing/discharging to end: at t → ∞ or earlier?

Let us consider the discharge of a capacitor
through a resistor (R). The charging problem
is similar. The charge on capacitor obeys

q(t) = q0 × exp
(

−
t

τ

)

, (10)

where τ = RC, and q0 is the initial charge on
capacitor (q0 = UC) at time t = 0.

Again, with the same reasoning, the dis-
charging is “done” when

q0 exp−t/τ ≈ |e|. (11)

Solving for t in terms of τ one gets

t ≈ τ ln
q0

e
≈ 32τ,

where the numerical estimate is based on the
values quoted at the beginning of these notes.

The same result applies to the charging
process. It doesn’t make sense to wait longer
than a few tens of time constants, and this
is because the difference between the asymp-
totic target value q0 and the charge on capac-
itor q(t) = q0(1 − exp(−t/τ)) becomes less
than an electron charge after that time in-
terval. The real–life case is a bit more com-
plex: there will be stray electrons “floating”
around (say, created by photoelectric effect)
– so that the problem is not so clear-cut as
here. Nevertheless, the conclusion is the same
— it does not make sense to wait an infinite
time to get the job done.
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