
Calculating g from a cubic fit

The data analysed in these notes are for the plastic ball (the Free fall exp.).
The theory says that if the friction is accounted for, the dependence s = s(t) has the form
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where the dots stand for the terms1 with higher powers of t. To check this prediction we fit our
data (s, t) to a polynomial of the form
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1 + A2t
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3. (2)

One has to compare the coefficients of t’s in (1) and (2), and solve for g, v0, α. We obtain
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, (3)

v0 = A1, (4)
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The cubic fit (real data!) gave me the following values for the coefficients:

A1 = (1.7902± 0.0066)mm/ms, (6)

A2 = (0.004822± 0.000033)mm/ms2, (7)

A3 = (−1.09± 0.4) · 10−7mm/ms3, (8)

with χ2 = 3.6 for 7 d.o.f. It is not a “perfect” cubic fit, but still OK.
First step would be to calculate the relative error for each coefficient – this will give as a tool

to perform the error propagation in a ”smart” way!

δA1

A1

=0.0037≈ 0.004(= 0.4%),
δA2

A2

=0.0068≈ 0.007(= 0.7%),
δA3

A3

=0.37≈ 0.4(= 40%). (9)

Well, looking at the numbers above we can clearly see that everywhere A3 is involved as a factor (in
our case in the 2-nd term on r.h.s. of (3) and in the expression (5) for α) the leading relative error
is (by far!) the one in A3.

So, right away you may say that
δα
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, without doing the “full” error propagation for α.

Let us now calculate the mean value of α:

ᾱ = −
3

2

−1.09

1.7902 · 0.004822

mm ·ms−3

mm ·ms−1 ·mm ·ms−2
= 189.4 · 10−7mm−1. (10)

By using the above result on the error we get δα ' 0.37α = 70 · 10−7mm−1, so the final answer
for α would be2

α = (190± 70) · 10−7mm−1 = (19± 7) · 10−3m−1. (11)

1In our case those terms are assumed to be negligible. Under which conditions this holds true, and which is the
impact of this approximation (i.e. accuracy!) error on our results is another story; we won’t go into details here.

2Because the error in the mean value ᾱ is so big we can safely round 189.4 ≈ 190, the rounding error being here
truly insignificant.
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Let us now calculate v0. This is straightforward, since v0 = A1, so that

v0 = (1.790± 0.007)mm/ms = (1.790± 0.007)m/s. (12)

Please observe that we rounded up both the error and the mean value. Both roundings are
acceptable in my opinion. In the error, “66” works as fine as “70” does (and “70” looks better,
right?). The “02” at the end of the mean value in (6) can be dropped, given the big error (66
or, if you prefer, 70). Once you agree to have “70” for the error, the rounding of the mean and
letting aside of the end 0s is straightforward.

To summarize, the reasoning for the rounding process was as follows:

• we start with the full, “untouched” value v0 = (1.7902± 0.0066)m/s.

• the “02” in the mean is negligible compared to the error “66”. So, rounding it up introduces
a negligible rounding error in the mean 3.

• once we have “1.7900” for the mean, the next step would be to review the error so that the
reading is more human readable.

• we decide to “play conservative”, so we increase the value of the error a bit (by about 6% -
that’s reasonable and allowable) from “66” to “70”.

• we get rid of the ending 0s and present the final result as v0 = (1.790± 0.007)m/s. Neat!

Let us now calculate “g”. The mean value of g is (see (3))

g = 2A2 −
3

2

A1A3

A2

= 0.009644 + 607 · 10−7 = 0.0097047mm/ms2 = 9.7047m/s2. (13)

According to our observation (9) on the error in A3, the error in the (A1A3/A2) term is

ε2 ≡ δ
(

−
3A1A3

2A2

)

= 0.4× 607 · 10−7mm/ms2 = 240 · 10−7mm/ms2 = 0.024m/s2. (14)

The error in the (2A2) term is

ε1 ≡ δ(2A2) = 2× 0.000033mm/ms2 = 0.066m/s2. (15)

Hence,

δg =
√

(ε1)2 + (ε2)2 =
√

(0.066)2 + (0.024)2 ' 0.07m/s2. (16)

The final result4 for g is therefore

g = (9.70± 0.07)m/s2. (17)
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3The rounding in the mean still leaves the ”true” value of the velocity in the same 68% confidence interval (with
the center slightly shifted). Besides, the mean values and the errors are based on our guess of reading errors. This
allows us to play a bit with the results — within reasonable limits!

4Don’t hurry with the rounding of the mean value of g given by (13). Get the error calculus done before
taking any decision on roundings! Indeed, let us suppose that the error in g is found to be 0.0007m/s2. Then, the
final answer for g should have been quoted as g = (9.7047 ± 0.0007)m/s2. Any rounding in the error or/and the
mean value would be a bit too nasty now. It would introduce rounding errors bigger than 15–20%!
Observation: The last result’s relative error δg/g ≈ 0.007% (!) seems to be too small to be true. Here “too
small” has two aspects: the first is that with the devices you have at hand in Free Fall exp. it is unlikely to get such
a small relative error. The second issue is that although the error calculus may give you such results, the method
of the cubic fit and the underlying hypothesis of friction depending on v2 are (perhaps) introducing accuracy errors

bigger than those 0.007% ! On the other hand, the value of g as quoted in (17) has a relative error δg/g ≈ 0.7%
which looks more realistic.
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