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Introduction

The Belgium Assimilation System for Chemical ObsErvations (BASCOE)

4D-Var system dedicated to assimilation of stratospheric chemical
observations

57 chemical species interact through 200 chemical reactions
All species advected, usually by ECMWF dynamical fields
The system includes a simple PSC parameterization

Typical resolution: 3.75° lon x 2.5° lat x 37 levels (0.1 hPa to the
surface)

Up to now, B has always been considered diagonal, with a fixed error
usually between 20% to 50% of the background field

This system has been used successfully to assimilate UARS MLS,
MIPAS, GOMOS and EOS MLS
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Why to implement spatial correlations in B?

@ NRT assimilation of EOS MLS is done by BASCOE within MACC.
Correlations in B might allow to improve the analyses AND also allow
to increase the resolution = Double improvement

@ We would also like to compare 4D-Var and EnKF. For this purpose,
an optimal 4D-Var system is required.
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@ New formulation of BASCOE
@ Numerical test: assimilation of one pseudo observation
© Real test: assimilation of EOS MLS ozone
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Control Variable Transform (1/4)

The classical formulation of 4D-Var (i.e. not incremental), as previously
implemented in BASCOE, aims at minimizing the objective function J:

J(x(to)) = E[X(tO)—Xb(’-“O)]T'Tl[X(tO)—Xb(’-“O)] (1)
NAt

n ,Z[y, (x(t)]T R yi — H(x(t:))]

where:

@ x"(ty) and B are, respectively, the background model state (at time step 0) and its
associated error covariance matrix

@ y; and R; are, respectively, the observation vector and its associated error
covariance matrix at time step i, Na¢ being the number of model time step

x(t;) is the model state vector at time step / and is calculated from the previous
time step by the model operator M: x(t;) = M;_1[x(ti—1)]

@ H is the observation operator that maps the model state into the observation space

In the following, J® and J° will refer to the background and observation terms of J
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Control Variable Transform (2/4)

@ As the typical dimension of x is around 10°, a full B matrix is of size
10%2. This is far too large for current computers.

@ The specification of the elements of such a matrix requires a huge
amount of a priori information, more than available.

For those reasons, it is necessary to reduce the problem. Following the
method used by meteorological centers [Bannister, 2008a,b, QJ, and
references therein|, we apply the following control variable transform
(CVT):

b
=L 2
X y X' =LX ( )
where
B=LL" (3)
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Control Variable Transform (3/4)

The objective function:

S(x(t0)) = E[X(tO)*Xb(tO)]TB_l[X(tO)*Xb(tO)] (4)
NAt

J(x(k)) = *Z[y, x(t)]TR; Hyi — H(x(t))] (5)
becomes:

() = x(0) (o) (6)
NAt

S (x(t)) = *Z[d — H(Lx(t))] "R [d; — H(Lx ()] (7)

where d; = y; — H[x"(tp)]
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Control Variable Transform (4/4)

Efficient minimization of J requires VJ. In the classical formulation, we
had:

Vb = B7lx(to) — x(to)] (8)
Nat T
o OH(x(t; _
VI = ZMlTaolel ML (5)(())> R lyi — H(x(t:))]
i=0 x(ti)
(9)
In contrast, with the new control variable x, we have:
vrh = xo (10)
Nat T
OH(x(t))
o _ T T T T
VS =1L iZ:; Mi oMy ... My <8x(t,)
R lyi — H(x(t:)]- (11)
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Formulation of L (1/3)

Again, as done by meteorological centers [Bannister, 2008a,b, QJ], we
construct the BECM from a set of very sparce matrices. In our case, L is
given by

L = GESA/? (12)
where
o A is the correlation matrix defined in the spectral space; ' = A1/2y

@ S operates the transformation from the spectral space to the gaussian
grid. The control variable x is thus a set of spherical harmonic
coefficients; x” = Sy’

@ X is the background error variance matrix; ox’ = Xdx”

o G operates the transformation from the gaussian grid to the lat/lon
grid of BASCOE; 6x = x — x? = Gox/
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Formulation of L (2/3)

By considering homogeneous and isotropic correlations, A is a block
diagonal matrix in the spectral space. For example, if Nz =2, Nip, = 4
and N, = 3 and if we organize x as follow, N takes the form:
N @ &2

N

- P G

X11 g3 & g

o Xl are the expansion of x in spherical harmonics; / is the level index,
n is the total wave number and m is the zonal wave number

@ g/ are the horizontal correlation coefficients, depending on the level /

and on the total wavenumber n (but not on the zonal wavenumber m)

Iyl

@ c,’’ are the vertical correlation coefficients, depending on the pair of

levels (/;, ;) and the total wavenumber n
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Formulation of L (3/3)

Current formulation of L in BASCOE

@ We assume that c,l,';l" = c,I{;Ij, i.e. vertical correlations are indendent of
the total wave number n.
= vertical and horizontal correlations are separable

@ Horizontal correlations: gaussian and second order autoregressive
(SOAR) correlations can be modelled, given a correlation length scale
Ly (in km)

@ Vertical correlations: gaussian correlations can be modelled, given L,
(in level units)

Correlation models with L= 2000 km
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Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single
pseudo observation:

@ Model grid size: 41 latitudes x 80 longitudes x 9 levels
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Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single
pseudo observation:

@ Model grid size: 41 latitudes x 80 longitudes x 9 levels

@ Uniform background field and variances: x” = 1; X = 0.1l
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Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single
pseudo observation:

@ Model grid size: 41 latitudes x 80 longitudes x 9 levels
@ Uniform background field and variances: x” = 1; X = 0.1l

@ One observation is located on a grid point (20,40,5);
y° =1.2;0°=10.001
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Assimilation of a single pseudo observation (1/2)

The new formulation of BASCOE is tested with the assimilation of a single
pseudo observation:

@ Model grid size: 41 latitudes x 80 longitudes x 9 levels
@ Uniform background field and variances: x” = 1; X = 0.1l

@ One observation is located on a grid point (20,40,5);
y° =1.2;0°=10.001

@ Gaussian vertical and horizontal correlations. L, = 1; L, = 1200km
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Assimilation of a single pseudo observation (2/2)

Cross section of the Analyses along the longitude
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Assimilation of EOS MLS Ozone observations (3/9)

BASCOE setup:
@ Resolution: 2° lat x 2° lon x 37 levels

@ Only O3 is considered and the chemistry is turned off in order to
reduce the CPU time. Ozone data are rejected above 0.5 hPa.

o wind and T° are taken from ERA-Interim

EOS MLS O3 data are assimilated between December 2004 and March
2005
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Assimilation of EOS MLS Ozone observations (4/9)

@ To make the system optimal, the error parameters must be tuned

@ This is done using the innovations (Hollingsworth and Lonnberg,

1986, Tellus):
Xb — Xtruth 4 €b
yo — thruth 1€
then:
yo — Hx” = ¢ — HeP

Assuming that observations
errors are horizontally
uncorrelated and that
background errors are
spattially correlated,
auto-covariance of / can be

used to estimates the errors.

Errera and Ménard

BASCOE BECM

background srrer

/ covariance

separation

—
-
—
N—r
~
|
—
Q
lop
N
N
e
—
i)
L=
N—r

SPARC DAW 2011 15 /21



Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 1: Assimilation of EOS MLS (Dec 2004) without spatial
correlations, o? = 30%; 0° = 15%
= EXP 1
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 2: Estimating the errors parameters from EXP 1
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Assimilation of EOS MLS Ozone observations (

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 2: Estimating the errors parameters from EXP 1
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Assimilation of EOS MLS Ozone observations (

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 2: Estimating the errors parameters from EXP 1

Errorsform EXP 1
—6— Obs Gauss Date = 15dec2004

107 —«— Obs SOAR 107
—6— Gaus:
.| —*—SOAR|
Background Gauss|
Background SOAR
10°
T
a
=
o
510 b
@
o
o
10° b
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Errera and Ménard BASCOE BECM SPARC DAW 2011

16 / 21



Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 3: Re-assimilation of EOS MLS (Dec 2004).
e o” and ¢° provided by tuning of EXP 1
Horizontal correlations: SOAR with L; = 600 km

(]
o Vertical correlations: gaussian with L, = 1.5 level
o This is EXP 2
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 4: Estimating the errors parameters from EXP 2
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Assimilation of EOS MLS Ozone observations (

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 4: Estimating the errors parameters from EXP 2

Errorsform EXP 2
. —6— Obs Gauss o Date = 15dec2004 o
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 5: Re-assimilation of EOS MLS (Dec 2004).
e o? and ¢° provided by tuning of EXP 2
Horizontal correlations: SOAR with Lj, tuned from EXP 2

(]
o Vertical correlations: gaussian with L, = 1.5 level
o Thisis EXP 3
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE

@ Step 6: Estimating the errors parameters from EXP 3 and checking
for convergence
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Assimilation of EOS MLS Ozone observations (

Application of Hollingsworth and Lonnberg on BASCOE

@ Step 6: Estimating the errors parameters from EXP 3 and checking
for convergence

Errorsform EXP 2
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 6: Estimating the errors parameters from EXP 3 and checking

for convergence = Convergence not reached
Errorsform EXP 3
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 7: Re-assimilation of EOS MLS (Dec 2004).
e o? and ¢° provided by tunning of EXP 3
Horizontal correlations: SOAR with Lj, tuned from EXP 3

(]
o Vertical correlations: gaussian with L, = 1.5 level
e Thisis EXP 4
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE

@ Step 8: Estimating the errors parameters from EXP 4 and checking
for convergence
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Assimilation of EOS MLS Ozone observations (

Application of Hollingsworth and Lonnberg on BASCOE

@ Step 8: Estimating the errors parameters from EXP 4 and checking
for convergence

Errorsform EXP 2
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Assimilation of EOS MLS Ozone observations (

Application of Hollingsworth and Lonnberg on BASCOE

@ Step 8: Estimating the errors parameters from EXP 4 and checking
for convergence

Errorsform EXP 3
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
@ Step 8: Estimating the errors parameters from EXP 4 and checking

for convergence = Convergence Ok
Errorsform EXP 4
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE

o New Exp 5
o 0 =30%; 0° = 15%
e Horizontal correlations: SOAR with L, = 600 km
o Vertical correlations: gaussian with L, = 1.5 level
e Thisis EXP 5
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
o Step 9: Checking whether J/p has reached its theoretical value of 0.5

J(x(to)) = 1[X(fO)—Xb(tO)]TB_l[X(tO)—Xb(tO)]
NAt

+ 7Z[y, t, ]TR l[yl ( (tl))]
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Assimilation of EOS MLS Ozone observations (5/9)

Application of Hollingsworth and Lonnberg on BASCOE
o Step 9: Checking whether J/p has reached its theoretical value of 0.5
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Assimilation of EOS MLS Ozone observations (6/9)

OmF: Deviation of the BASCOE background fields to EOS MLS
observations Period considered: 01Jan2005 - 31Mar2005
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Assimilation of EOS MLS Ozone observations (7/9)

OmA: Deviation of the BASCOE analyses fields from independent
ACE-FTS observations Period considered: 01Jan2005 - 31Mar2005
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Assimilation of EOS MLS Ozone observations (8/9)

Analyses on 22 Feb 2005

Analyses [ppmv] for EXP-1 at 9.8925 hPa Analyses [ppmv] for EXP-2 at 9.8925 hPa
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Assimilation of EOS MLS Ozone observations (9/9)

Increments on 22 Feb 2005

Analysis Increments [%)] for EXP-1 at 9.8925 hPa Analysis Increments [%] for EXP-2 at 9.8925 hPa
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Conclusions

@ Spatial correlation implemented in BASCOE with a new control
variable defined in the spectral space
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Conclusions

@ Spatial correlation implemented in BASCOE with a new control
variable defined in the spectral space

@ Homogeneous and isotropic horizontal AND vertical correlations are
modelled
© Case studies with EOS MLS O3 data show:

o Errors parameters are successfully tuned using Hollingsworth and
Lonnber's method
e Tuned error parameters allow to improve the lower stratosphere
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