Using Bin Microphysics Simulations to Evaluate the Potential for Irreversible Dehydration by Overshooting Convection

Eric J. Jensen¹, Andrew S. Ackerman, and Jamison A. Smith

¹NASA Ames Research Center

Irreversible dehydration requirements:

- 1. Removal of vapor in cold overshoot
- 2. Sedimentation of ice before detrainment and warming

Impact of convection on TTL thermal structure not addressed

from Sherwood and Dessler [2000]

Overshooting convection simulations with DHARMA

- Large-eddy simulation fluid dynamics code [Stevens and Bretherton, 1997]
 - Smagorinsky subgrid-scale model
 - third-order advection
 - \circ 60 x 48 x 24 km domain, dx = dy = 500 m, dz = 275 m
- Size-resolved microphysics code [Jensen et al., 1994; Ackerman et al., 1995]
 - o 24 size bins each for aerosols, droplets, ice, and graupel
 - aerosols 5 nm 0.5 μm radius
 - droplets, ice, and graupel 1 μ m 1.2 cm radius
 - aerosol activation
 - homogeneous and heterogeneous ice nucleation
 - collision-induced and spontaneous breakup
 - gravitational sedimentation and collection
- Two-stream radiative transfer code [Toon et al., 1989]
 - 44 wavelength bands
 - Mie scattering and absorption (volume-equivalent spheres)

Overshooting convection simulations with DHARMA

- Large-eddy simulation fluid dynamics code [Stevens and Bretherton, 1997]
 - Smagorinsky subgrid-scale model
 - third-order advection
 - 60 x 48 x 24 km domain, dx = dy = 500 m, dz = 275 m
- Size-resolved microphysics code [Jensen et al., 1994; Ackerman et al., 1995]
 - o 24 size bins each for aerosols, droplets, ice, and graupel
 - aerosols 5 nm 0.5 μm radius
 - droplets, ice, and graupel 1 μ m 1.2 cm radius
 - \circ aerosol activation
 - homogeneous and heterogeneous ice nucleation
 - collision-induced and spontaneous breakup
 - gravitational sedimentation and collection (ice-ice collection exaggerated)
- Two-stream radiative transfer code [Toon et al., 1989]
 - 44 wavelength bands
 - Mie scattering and absorption (volume-equivalent spheres)

Overshooting convection simulations with DHARMA

- Large-eddy simulation fluid dynamics code [Stevens and Bretherton, 1997]
 - Smagorinsky subgrid-scale model
 - third-order advection
 - \circ 60 x 48 x 24 km domain, dx = dy = 500 m, dz = 275 m
- Size-resolved microphysics code [Jensen et al., 1994; Ackerman et al., 1995]
 - o 24 size bins each for aerosols, droplets, ice, and graupel
 - aerosols 5 nm 0.5 μm radius
 - droplets, ice, and graupel 1 μ m 1.2 cm radius
 - \circ aerosol activation
 - homogeneous and heterogeneous ice nucleation ($N_{IN} = 0.5 \text{ cm}^{-3}$)
 - collision-induced and spontaneous breakup
 - gravitational sedimentation and collection (ice-ice collection exaggerated)
- Two-stream radiative transfer code [Toon et al., 1989]
 - 44 wavelength bands
 - Mie scattering and absorption (volume-equivalent spheres)

Overshooting case study

- Darwin, Australia sounding taken from DAWEX
- CAPE = 5.5 kJ kg⁻¹
- TTL relative humidity w.r.t ice = 90%
- $N_{CN} = 100 \text{ cm}^{-3}$ (clean)
- Convection triggered by localized surface heat fluxes
- Convective core updraft speeds as high as \simeq 35 m s⁻¹
- core overshoots LNB (16.5 km) and reaches about 17.3 km

Convective injection will dehydrate an initially supersaturated TTL

Summary

We find no evidence for irreversible dehydration caused by overshooting convection.

But, convection penetrating into the TTL is still very important:

- Convection affects the TTL thermal structure.
- Convectively-driven gravity waves are important.
- Convection is the primary source of air (and water) to the TTL.
- Convection can hydrate or dehydrate the TTL, depending on the ambient relative humidity.
- The net effect of convection depends on the climatology of TTL *RHi* in regions with deep convection.

Large Crystals and Ice Supersaturations Observed in TTL Cirrus during CRAVE

Reverse-time growth-sedimentation calculations

Factors controlling crystal growth

Issue	Assumption	Impact crystal growth
Upstream T-prof	Small stratospheric lapse rate	Deeper supersaturated layer
Deposition coefficient	Unity	Fastest possible growth
Nucleation threshold	RHi = 100%	Deepest possible supersaturated layer
Crystal temperature	$T_{ice} = T_{amb}$	Fastest growth
Ice phase (cubic/hexagonal) Hexagonal	Fastest growth

- Wave-driven temperature and vertical wind perturbations help, but not much
- 3.5–4 ppmv H₂O still required for growth of large crystals

Implications

- Large supersaturations ($RHi \simeq 200\%$) in TTL cirrus are real
- Higher than expected supersaturation thresholds for ice nucleation
- TTL in situ cirrus are not dehydrating RHi = 100% by any means
- Calibration of satellite H₂O measurements