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1. Introduction

We used the GEOS-Chem global 3-D chemical transport model (CTM) to
interpret the tropical atmospheric distributions of HCN observed by NASA
Aura Microwave Limb Sounder (MLS) instrument. The main sources of
hydrogen cyanide (HCN) are from the biomass burning (BB) and domestic
fossil fuel burning while the main sink iIs ocean uptake, resulting in a
tropospheric lifetime of > S months. This lifetime is sufficiently long to let the
variability in HCN introduced by surface emissions be observed in the tropical
upper troposphere and stratosphere. The recent study of MLS data has
reported a 2-year cycle in the HCN concentrations in the stratosphere which
was partly attributed to the inter-annual variabilities of biomass burning
Australia and Indonesia. On the other hand, the intermittent tropospheric HCN
column data from ground-based instruments across the tropics show an annual
cycle. In this study, we used the model to reconcile the discrepancy between the
space-borne and ground-based observations of HCN over the tropics. By
comparing the observations and the CTM simulations, the roles of dynamics
and surface emissions determining atmospheric HCN will be investigated.

3. Aura MLS observation vs GEOS-Chem simulation

Tape recorder — tropical anomalies of HCN
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Fig.2 Timeseries of tropical anomalies (2004-09 — 2006-12) of zonal mean of HCN volume mixing ratio (pptv) on meridional plane from;
a) Aura MLS observati; b) GEOS-Chem simulation; and c¢) match of MLS (100-10hPa) and GEOS-Chem (1000-100hPa).

GEOS-Chem long term run
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Fig.3 Time series of tropical anomalies of HCN mixing ratio from GEOS-Chem long term (2001 — 2006) run..

6. Conclusions

» The ground-based FTIR observations show the annual variability of
HCN while the satellite Aura MLS data show the 2-year cycle in
tropical stratosphere

» Simulation of GEOS-Chem shows that the annual cycle and the 2-
year cycle in the lower stratosphere are consistent with each other over
the Stratosphere-Troposphere Exchange (STE)

» The long lifetime of HCN in the stratosphere combined variations of
biomass burning induced the 2-year tape recorder observed by MLS

> The correlation analysis shows that the variations of surface biomass
burning emissions mainly impact on the tropospheric HCN

» The high correlations in the stratosphere indicate that the QBO
plays an important role on the 2-year cycle of stratospheric HCN

The relative roles of dynamics and emissions in determining atmospheric HCN
- reconciling ground-based FTIR and space-borne data by using a 3-D CTM

2. GEOS-Chem simulation of HCN

Description

»3-D global CTM driven by assimilated meteorology from the Goddard Earth Observing
System (GEOS) of the NASA Global Modeling and Assimilation Office
»2x2.5 degree horizontal resolution and 30 vertical levels up to 80km

»HCN in troposphere: BB and domestic fossil fuel burning sources, ocean uptake sink
»HCN in stratosphere: CH,CN+OH source, HCN+OH sink

» Monthly mean BB emission from Global Fire Emissions Database Version 2
»Monthly mean OH fields from GEOS-Chem (troposphere) and Aura MLS (stratosphere)

Model Evaluation with ground-based FTIR measurements
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Fig.1 HCN total columns observed by ground-based FTIR (black dots) and simulated by GEOS-Chem (grey dots). a) Jungfraujoch,
Switzerland (46.6N, 8.0E). b) Kitt Peak, Arizona (31.9N, 116W); and c) Mauna Loa, Hawaii (19.5N, 155.6W).

a N
14 ol
21
31
48
&
100
146
215+ —
3161 -
464 -

B&1 —
1000 L0 v v v v v v b b e e b e b

-12 =10 -8 -6 -4 =2 0 ? 4 )
lag {months

HCMN levels (hPa)

-

¢ 10
14
21
3
46
68
100
146 5
215
316
464

681 O I

1000 LS .......I.ﬁ.fl([ IRy
—12 =10 -8 -6 -4 -2 0O 2 4 & 8§

HCM levels {hPa}

10 12
lgg {months)

b

Fig.4 Lag correlations between tropical HCN and surface BB: blue contours — negative correlation; red contours — positive
correlation. a) MLS HCN with global BB emission. b) MLS HCN with BB emission of SE.Asia, Australia and Indonesia. c)
GEOS-Chem HCN with global BB emission. d) GEOS-Chem HCN of long term run (2001-2006) with global BB emission.
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S. Roles of Quasi-Biennial Oscillation (QBO) of tropical
stratospheric zonal wind
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Fig.5 Lag correlations between tropical HCN mixing
ratio and the 50hPa QBO index. Color setting same as
Fig.4. a) MLS HCN with QBO index. b) GEOS-Chem
HCN with QBO index. Timeseries of tropical anomalies
of zonal mean HCN vmr (pptv) observed by Aura MLS
(2004 — 2006): tape recorder. (white columns represent
the gap of data).
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