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A comparison of trends in the vertical distribution of ozone in
true and equivalent latitude coordinates:
Implications for radiative forcing at polar latitudes
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Introduction

Decreases in polar stratospheric ozone during the 1980s and 1990s affected radiative forcing with associated changes in atmospheric dynamics.
To date, calculations of this radiative forcing have used ozone trends calculated as a function of geographic latitude and altitude as input.

In geographic latitude the steep horizontal gradients in ozone across the vortex edge are flattened in monthly mean calculations because of mixed
sampling of inner and outer vortex air.

This is likely to lead to an underestimate of ozone trends on the poleward side of the vortex edge and an overestimate of ozone trends on the
equatorward side of the vortex edge.

In turn this may have implications for calculations of ozone radiative forcing in the polar regions.
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Results

@

Overall trend distribution looks quite similar in true and equivalent latitude.

In NH winter (February) trends in the Arctic seems to be slightly larger in equivalent latitudes and the maximum of the trend is closer to the north
pole.

In SH spring (October) trends in the Antarctic are larger in equivalent latitudes and there is a steeper trend gradient at the edge of the vortex. As
well, stronger trends reach lower pressure levels.

For radiative forcing, using trends in true latitude may not fully capture the full extend of the effect compared to the case when equivalent latitude
trends are used.



