Intercomparison of IWV measurements from radiosonde, sunphotometer, FTIR, and GPS instruments at Uccle

P K. Clémer¹ (katrijnc@oma.be), C. Hermans¹, M. De Mazière¹, H. Brenot², H. De Backer², R. Van Malderen², and S. Fally³ ¹Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium; ²Royal Meteorological Institute of Belgium (KMI-IRM), Brussels, Belgium; ³Université Libre de Bruxelles (ULB) - Service de Chimie Quantique et Photophysique, Brussels, Belgium aeronomie. AIM GPS system CIMEL -> Obtain a better monitoring and understanding of the changing water vapor content in the atmosphere. --> Assess the 'quality' of the different measurements: the precision - accuracy - performance. -> Characterize and improve the quality of the integrated water vapor (IWV) measurements. **INSTRUMENTS** -> Cimel sunphotometer : • direct sun measurements @ 940 nm (and @ 675 and 870 nm for aerosol correction) clear sky only • level 2 data from the AERONET website (http://aeronet.gsfc.nasa.gov) Radio sonde FTIR -> GPS system: • Global Navigation Satellite System (GNSS) -> Radio sondes: • Vaisala RS80 and RS9X Iaunched around 12:00 UT -> FTIR - Fourier Transform Infrared spectrometer: • solar absorption mode measurements • 1 line @ 4198 cm⁻¹, belonging to spectra covering the region 3950-4300 cm⁻¹ · clear sky only

LOCATION & PERIOD

--> June 2006 - July 2007

-> UCCLE (Belgium, 50°48'N, 4°21'E, 100 m asl)

RESULTS

$\mathsf{DRY} \twoheadrightarrow \mathsf{RS80} \twoheadrightarrow \mathsf{FTIR} \twoheadrightarrow \mathsf{GPS} \twoheadrightarrow \mathsf{CIMEL} \twoheadrightarrow \mathsf{RS9x} \twoheadrightarrow \mathsf{WET}$

15 20 IWV GPS (mm)

SUMMARY & CONCLUSIONS

-> The bias between CIMEL and GPS IWV data is generally relatively small.

IWV GPS (mm)

→ In the period from 26/08 to 12/09 a larger discrepancy is observed between CIMEL and GPS data:

• Non-hydrostatism of the troposphere can result in an underestimation (up to max . 3 mm) of the GPS IWV values.

15 20 25

IWV GPS (mm)

- Part of the overestimation of the GSP IWVs could be explained by the presence of hydrometeors [Brenot et al., 2006].
- → The ratio between CIMEL and GPS data exhibits a seasonal variability.

-> For large IWV values (>15 mm) the GPS measurements appear to overestimate the IWV (regression slopes 0.7-0.9).

-> The RS80 radio sonde data have the largest dry bias. This can be explained by the observed dry bias in vertical relative humidity profiles.

ACKNOWLEDGEMENT

15 20 IWV GPS (mm)

This research was supported by the AGACC project (contract SD/AT/01A) funded by the Belgian Federal Science Policy Office.