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Introduction

1.1 Motivation

Repeated insertion of observations in any global data assimilation system is
known to induce spurious mixing and to increase the speed of the stratospheric
meridional overturning circulation, as compared with observations and model
free simulations. This has an adverse effect on a number of standard diag-
nostics such as tracer distribution and the age of air, and poses a significant
challenge in studies of long-term trends. In a recent comparison of the strato-
spheric circulation modelled by chemical transport models driven by analysed
winds [1] improvements in the specification of the dynamical background-
error constraints were cited as one of the chief ways in which these diffi-
culties may be addressed. In particular, the Charney nonlinear balance and
Quasigeostrophic (QG) omega equation can be used [2] to replace the static,
regression-based constraint [3] traditionally used in atmospheric assimilation.

1.2 Flow-dependence
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Flow-dependence of increments is a de-
sireable feature from a physical stand-
point, and can be illustrated through one-
obs experiments as, for example, those at
the European Centre for Medium-Range
Weather Forecasting (ECMWEF). The figure
is adapted from [2]. Red contours show
temperature increments corresponding to a
single observation in geopotential height,
while grey contours show the background
geopotential height field as a proxy for
the path of the jet stream, which is highly
curved in this region. In panel (a) the Char-
ney and QG omega balances are used, and
in (b) the usual regression-based balance

operator is employed. While the increment in (b) is roughly circular, the one in
(a) is deformed and aligned with the background flow.

2 One-obs experiments
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1.3 Tangent-linear constraints in n-coordinates

With some approximation, the balanced temperature and velocity potential
increments 01’5, dx B, resp., can be obtained from the streamfunction increment
d¥ and background state (7)., p, ps, ur = (ur,v,), ( = k-V x u,) using the
following tangent-linear (TL) equations in the hybrid vertical coordinate 7

e Charney and hydrostatic balance equations
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e adiabatic QG omega and continuity equations

where o = static stability parameter, R = dry gas constant, py is a constant
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reference pressure and B(n) is specific to the hybrid coordinate. (1) with the
condition 6®p(n = 0) = 0 also provides a balanced surface pressure incre-

ment. Neglecting the last two terms in (1) yields the Linear Balance.

In this study, experiments are performed with the 3D variational (3D-Var) data
assimilation system of the Canadian Meteorological Centre (CMC) and the
GEM-Strato forecast model, using the following TL balance constraints:

e SB - statistical, regression-based constraint (control)

e LB - Linear balance

e CB - Charney balance

e QG - QG omega balance

CBQG refers to experiments with both the CB and QG constraints.
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2.1 Linear and Charney balance
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2.2 QG omega balance
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Black contours show horizontal sections of a single, specified observation in
geopotential height §GZ(OBS) and the corresponding temperature increments
0T obtained using the SB, LB and CB dynamical constraints. Color shading
shows the background geopotential height (same in all plots) as a proxy for
the mean flow. As expected, LB is similar to the control case SB, although
its structure is more focused at the observation location. In the CB case the
increment is deformed and, to some degree, aligned with the path of the back-
ground winds.
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The vertical structure of 67" in the SB and CB cases is shown. While qualita-
tively similar, the increment in case CB is more intense and compact than in

case SB, both horizontally and vertically. Case LB (not shown) is intermediate
between SB and CB.
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Black contours show horizontal sections of a single, specified observation in
the temperature, d7'(OBS), and the corresponding zonal velocity increments
oU obtained using the SB, LB and CBQG constraints. Color shading shows the
background geopotential height (as in section 2.1). As above, LB is similar to
the control case SB and does not exhibit any asymmetry due to the background
flow. In the CBQG case the increment shape and alignment are both influenced
by the mean winds. The QG omega constraint additionally induces some small
scale structure on the increment due to local divergent motions.

3 Time-mean correlations

3.1 Equinox conditions
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Monthly-averaged correlation of the unbalanced temperature 67y with the
streamfunction ¥ under September conditions obtained from an assimilation
cycle which uses the SB (blue curves), CB (red curves) and CBOG (green
curves) constraint. Correlations were averaged spatially over 3 distinct
latitude bands: 905-30S, 30S-30N and 30N-90N. For an accurate balance, the
correlation should be small, i.e. the change of variable employed in the 3D-Var
scheme should decorrelate the control variables (see e.g. [3]). Constraint
CB consistently yields smaller correlations than SB in a number of regions,
particularly in the upper stratosphere/lower mesosphere. The QG constraint
does not make a significant contribution in this case.
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Correlations between dxy and d¥ are also generally smaller with CB than
with SB at higher altitudes. The additional QG constraint has a small but
significant impact above approx. 5 hPa, positive in tropics, negative in the
southern hemisphere, and mixed in the northern hemisphere.

3.2 Solstice conditions
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Correlations of 07Ty with 0¥ and dyy with dW¥, as in section 3.1, but under
January conditions. Correlations tend to be smaller in the CB and CBQG cases
than the control in the southern hemisphere and the tropics. In the northern
hemisphere an improvement is only evident in the mesosphere.

4 Time-mean scores against radiosondes
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Scores against radiosondes in the tropics for a September assimilation cycle
employing CBOG (red curves) are compared with the control, SB case (blue
curves). With CBQG both O-A and O-P zonal velocity bias is improved in the
lower stratosphere. The same holds for cycles in January. A small improve-
ment with CBQG is also visible in the O-A temperature standard deviation
and O-P geopotential height. Otherwise differences are not significant.
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Global scores against radiosondes are shown for the cycles above. CBQG sig-
nificantly improves the O-A temperature standard deviation at all radiosonde
heights, however the O-P temperature standard deviation deteriorates some-
what above 200 hPa. Similar results hold for the northern and southern
hemisphere individually, and likewise for January cycles.

5 Discussion

Both the Charney and QG omega constraints induce flow dependence on
increments in 3D-Var, as shown by one-obs experiments. On average, the
control variables are found to be more decorrelated for the Charney balance
than for the statistical balance, particularly in the upper atmosphere. As
implemented here, the QG omega constraint has a relatively small effect in
this respect. Regarding scores against radiosondes, the new balances improve
both the O-A and O-P bias for the zonal velocity in the tropics. Elsewhere

results are mixed, i.e. O-A scores decrease however O-P scores increase.
Unlike the statistical balance, which is time-averaged, the Charney and QG

omega operators are not averaged or smoothed, and thus, tend to produce
relatively noisy fields. The resulting small-scale features may themselves
spawn spurious gravity waves, which would explain why, in the extratropics,
the impact on O-A scores is clearly positive but tends to be negative for
O-P scores. It should also be noted that only the covariances between control
variables were modified. Variances and spatial correlations for each individual
field were based on regression, and held fixed for all experiments. Current
work is focused on the development of more consistent background statistics,
as well as the introduction of diabatic forcing, similarly to [4].
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