Sudden Stratospheric Warmings as Noise-Induced Transitions
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1. Background, Concepts, Summary 2. Holton & Mass (1976)

-Sudden Stratospheric Warmings (SSWs): conventionally considered to be QG equations for linearized PV and zonal mean
associated with planetary wave activity flow, B-channel, 60°N+30° 10km = z = 80km:

>Can small-scale variability, e.g. due to breaking gravity waves, lead to SSWs
when planetary wave activity is not strong enough to cause a SSW by itself?

- study SSWs using recently proposed highly truncated version of Holten—-Mass (1976)
stratospheric wave-mean flow model (Ruzmaikin et al., 2003)

-this low-order model exhibits multiple stable equilibria corresponding to the
undisturbed vortex and an SSW-state, respectively

- momentum forcing due to quasi-random gravity wave actitvity is introduced as
additive noise in evolution equation for the mean flow

- study stochastic system using concept of First Passage Times (FPTs): initialized at = V4 Ly, %d?’) and 7
undisturbed state, numerically integrate system many times in order to derive ]
statistics of transitions to the SSW-state

- solve Fokker-Planck equation corresponding to the stochastic system numerically in :
: ) " . . Wave forcing at
order to derive stationary probability density function Ansatz: lower boundary:

>Even small to moderate strengths of stochastic gravity wave forcing can lead u(y,2,1t)
to SSWs for cases where the deterministic system does not predict a SSW.
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3. Ruzmaikin et al. (2003) + Noise 4. Stationary Solutions of the

- discretize Holton & Mass (1976) very coarsly in z (only three levels) deterministic System
~obtain low order system consisting only of three coupled ODEs for the 500 F
real (X) and imaginary (Y) parts of the wave streamfunction and the >U__ as a function of wave forcing h :
mean flow (U), respectively, at the mid-level z = 25 km
-represent small scale effects, e.g. due to quasi-random gravity wave - A = 1 m/s/km
activity as additive noise term in the evolution equation of the mean flow Radiative State
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5. First Passage Times (FPTs) 6. Fokker-Planck Equation

= time taken to first undergo transition from radiative state to wave state ;g;:rzﬁlti';'_ X _ A + %ﬁ' + 14 *— additive noise
after noise is switched on (marked by cross—-over of stationary solution - dt

the Fokker-Planck ;(x, 4 p 1 o, 0
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