Chapter 6

Basic Concepts in Nonlinear
Filtering

6.1 Introduction

In this lecture, we are interested in treating the estimation problem for nonlinear systems.
Due to the difficulties involved in problems of this type, and the various possible methods to
approach them, we will confine this lecture to the study of the case of systems governed by
stochastic ordinary differential equations. In fact, we assume that the case of atmospheric
data assimilation, which the governing equations are a set of partial differential equations,
can be formulated in terms of a system of ordinary differential equations. In general, this
can be done by treating the space variables on a discrete grid, restricting in this manner the
infinite dimensional problem to the case of finite dimension. Although this type of argument
is in general a good starting point for dealing with the problem of data assimilation in earth
sciences, it appears that the best way would be to study the system of governing equations
and observational process in the continuum, at least to a very good extent. Discretization
leads to modeling errors which have not been treated appropriately so far in that field. For
further details related to this point of view the reader is referred to the excellent discussion

in Cohn [27].

We saw in Lecture 4, that in many cases of Bayes estimation an estimate of the variable
of interest reduces to the conditional mean. As a matter of fact, the estimate of minimum
variance is the conditional mean. In case of Gaussian processes, other optimization criteria
produces similar estimates to the one given by the minimum variance. Furthermore, we saw
in Lecture 5, that when a linear observation process is combined with a linear dynamical
process the Kalman filter provides the best linear unbiased estimate (BLUE). When the
statistics of errors are Gaussian the Kalman filter estimates correspond to the conditional
mean. In the nonlinear case, even with Gaussian error statistics, the resulting estimates
are not Gaussian distributed and consequently different Bayes optimization criteria lead
to distinct estimates, in particular not necessarily coinciding with the conditional mean.
One of the consequences of Gaussian error statistics in the linear case is that only the first
two moments are enough to describe the process completely; in the nonlinear case, on the
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other hand, moments of higher order may play an important role in describing the process.
Ideally, the transition probabilities related to the processes under consideration should be
the quantities being calculated, however, in most practical applications calculating these
quantities requires computations well beyond available resources.

A precise treatment of the estimation problem for nonlinear systems can be made following
statistical arguments. Since the probability density of the variables of the system contain
all the necessary information to describe the system, the probabilistic method studies the
evolution of the probability density in time, as well as the way by which this quantity is
modified as observations become available. In Lecture 3, we obtained evolution equations
only for the first two moments of the probability density for nonlinear dynamical systems.
In fact, it is possible to show that the probability density evolves according to the Fokker—
Planck equation, and once its evolution is determined we can determine any desired moment.

For the continuous—discrete system case, the conditional probability density evolves through
the Fokker—Planck equation during the intervals of time in which there are no observations.
At observation times the transition undertaken by the probability density due to the ob-
servations can be evaluated through Bayes rule. The rigorous mathematical treatment
following this procedure can be found, for example, in the classic text books of Jazwinski
[84] and Sage & Melsa [121], or in more modern texts such as that of @ksendal’s [108]. The
precise treatment of nonlinear estimation problems is beyond the scope of our introductory
course.

6.2 The Extended Kalman Filter

In this section, we follow the simple treatment of Gelb [60] to derive the so called extended
Kalman filter. We consider the continuous—discrete system problem, that is, the case in
which the dynamics evolves continuously in time whereas the observations are available at
discrete times tq,t9,.... The modification for the case in which the dynamical system is
discrete in time can be derived using the results from Section 3.2.2.

The continuous—time dynamical process, corresponding to the evolution of the n—vector
w'(t) — the variable of interest — is written here as

dw'(t)
dt

= f(w' t) + b'(t) (6.1)
and the discrete—time observation process, at times t;_1 <t < t, is written as

wi = h(w}) + b (6.2
where the wi ='(t = t3), and the m-vector w{ corresponds to the observation vector.
We assume the n—vector process noise {b’(¢)} is white in time, Gaussian, with mean zero
and (co)variance Q(¢). Similarly, we assume the m—vector observation noise {b}} is white
in time, Gaussian, with mean zero and (co)variance Ry. Moreover, the processes {b’()}
and {by} are assumed to be uncorrelated at all times. Analogously to what we have done in
the previous lecture, let us indicate by W¢ = {w},w{_,, -, w{} the set of all observations
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up to and including time t. The n—vector function f corresponds to the dynamics of the
system and the m—vector function h corresponds to the observation operator.

The most common procedure to deal with estimation problems for nonlinear systems is
that of minimum variance. Since the estimate with minimum variance corresponds to the
conditional mean, we choose to calculate the conditional mean during the interval of time in
which there are no observations. In this way, we want to calculate E{w'(t)|W¢_,} during
the interval of time ;1 <t < t;. According to to (6.1) it follows that

de{w! (1) Wi _,}
dt

where we used the fact that the process {b(¢)} is white and has mean zero.

= E{f[w'(t), t]]W}_} (6.3)

A measure of the error in the estimate can be obtained by means of the conditional error
(co)variance matrix P(¢), defined as

P(t) = &{[w'(t) = E{w' O)IWE_ ] [W'(t) = E{w OIWE_ 1T Wi} (6.4)

for tx_1 <t < tp. The evolution equation of this matrix between two consecutive obser-
vation times can be determined as in Lecture 3. Integrating (6.3) between t;_; and ¢y,
substituting the result in the definition of P, differentiating the resulting expression and
using the properties of the processes {w'(t)} and {b’(¢)} we obtain (see Exercise 6.1):

P(t) = w0 [w'(t),IWi_} — E{w! ()| Wi_ Je{f[w' (), £][Wy_}"
+ E{EIw (), qw T ()W} — E{Ew' (1), IWi_ JE{w' ()| WF_, 3T
+ Q(Y) (6.5)

which is often written in the more compact form,

P(t) = &w't )i — Efwhin {0,
+ e — E{f W, + Q) (6.6)

where we wrote the conditional ensemble mean operator in the compact form: £{(.)}x—1 =
E{./IW¢_,}, and we omitted the explicit functional dependencies of w’ and f. The equations
for the mean and error (co)variance are not ordinary differential equations in the usual sense
because they depend on the ensemble mean. To solve these equations it is necessary to know
the probability density of the process {w'(¢)}, which in general is not known. Moreover,
we should calculate the corresponding moments depending on the function f[w?(¢)].

The simplest approximation to the equation for the evolution of the mean (6.3) and to
the equation for the evolution of the second moment (6.6), follows what we have seen in
Lecture 3. That is, let us introduce the forecast vector W]J; as a suitable approximation for
the conditional mean, that is,

w!(t) = E{w!(1)|Wi_) (6.7)

In the extended Kalman filter, we expand the function f[w’(¢)] as a Taylor series about the
approximate mean Wf(t)7 and retain only up to the the first order term. Thus, in the time
interval t,_y <t < tg, between two consecutive observations, we write

flw'(t),t] ~ flw/(t), 1] + Fwl(t),t](w'(t) — w/(t)) (6.8)

105



where, as in Lecture 3, F is the n X n Jacobian matrix defined as

of[w'(t), ]

Flwl(t),t] = =7 (6.9)
8[Wt(t):| Wt(t):Wf(t)
Consequently, using the expansion and (6.7) the forecast equation becomes
wi(t) = flw/(1),1] (6.10)

valid for the times ¢ in the interval between ¢;_; and t;: Using the expansion (6.8) in (6.6)
we obtain that

P/ (t) = Flw/ (1), )P/ (t) + PO)FTw/(1),1] + Q(t) (6.11)

which is identical to what we saw in Lecture 3, with the additional restriction that this
expression applies only when ¢ € [tx_1,%x). Notice that here,

Pl(t) = e{[w'(t) - w/ ()} [w'(t) - w/()}]" } = P(1) (6.12)
that is, P/(¢) is an approximation to the conditional error (co)variance matrix P(t).

The problem of producing an estimate w{ in {; of the state of the system, using the
observation wy, is what we want to solve in order to obtain a filtered estimate. Motivated
by the results obtained in the linear case, we assume that such an estimate can be obtained
as a linear combination among the observations. Hence, we write

wi = up + Kpwy¢ (6.13)

where the n—vector ug and the nxm matrix Ky are deterministic (non-stochastic) quantities
to be determined from statistical and optimization arguments, just as we did in the linear
case.

Introduce the analysis and forecast estimation errors, that is, e} is the error in the estimate
at time t; which includes the current observation, while ef; is the error in the estimate at

time t; which includes observations only up to time t5_q:

el = wi — wi (6.14a)
ef; = W]J; - w}, (6.14b)

By adding and subtracting wl from the left-hand-side of expression (6.13), and using (6.2)
we can write

el = wi —w,
= u, + Ky [h(w)) + bf] — w} (6.15)

Now, adding and subtracting W]J; from the right—hand—side of last equality above we get
a __ % t 0 ! f
e; = u, + Ky {h(wk) + bk} + e, — wy (6.16)
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According to Bayes estimation, one of the desired properties of an estimate is that it be
unconditionally unbiased. This means that we want £{e}} = 0. Therefore, applying the
ensemble mean operator to the expression above it follows that

elet} = &{[w + Kih(wh) - wi|} + £{bi} + £fef} (6.17)

Recall that the sequence {b}} has mean zero, thus £{b{} = 0. Moreover, inspired by the
linear case, we assume that the forecast error is unbiased. A word of caution is appropriate
here: it is important to recognize that this is an assumption we know can only be approx-
imately correct since the forecast is only an approximation to the conditional mean, that
is,

Elef} = &{wl - wi)
~ S{E{wHIWEL ) - E{wi)

= efwh) - e{wi}
=0 (6.18)

thus E{eg} ~ 0. With that in mind, from (6.17) we see that for the estimate to be
(approximately) unbiased we should satisfy:

&{ [w + Kih(wh) — wi]} =0 (6.19)
Since uj was assumed to be deterministic we have
we = &f|w] - Kih(w))]}
= wf - Kp&{h(w})} (6.20)
Substituting this result in (6.13) we obtain
wi = wl + Ky [wi — £{h(w})}] (6.21)
Moreover, the analysis error can be re—written as

ef = el + Ky [h(w}) — &{h(w})} + bf] (6.22)

As in the linear case, we want to minimize the analysis error variance (6.22). We introduce
the analysis error (co)variance matrix

P; = £{ef (ef)} (6.23)

and the problem of minimization is reduced to the problem of minimizing the trace of this
matrix,

T = Tr(P%) (6.24)

as in (5.19), but using E; = I in that expression, without loss of generality.
From (6.22) it follows that
Pi = P+ R {[nwh) - efhiwi)] [biwh) - ehiwi] | KT
+ ¢ {ef [nwh) - etnowi] | &Y
+ K& {[h(w}) - e{hwi)}] (D)} + KRR (6.25)
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Applying the trace operator to this expression and using the rules from matrix calculus
introduced earlier in this lecture, we can solve

NLS
oK,

=0 (6.26)
to find that the gain matrix minimizing J is given by

~ T

K=K, = ¢ {eg [e{h(w))} - hiw))] }

et niwh) - emwhy] [bowh) - etnenin] o r
(6.27)

Substituting this gain matrix in the general equation for the analysis error (co)variance at
time ¢;, we have

i =Pl - K& {[e{h(w}) - h(wi)}] ()"} (6.28)

(see Exercise 6.2). Equations (6.22), (6.27) and (6.28) provide the minimum variance es-
timate, optimal gain and corresponding error (co)variance at time . These expressions
involve the ensemble average operator and consequently cannot be used directly. Anal-
ogously to the Taylor expansion used for f[w'(¢),t], when deriving a closed form for the
evolution of the first and second moments in the interval of time between two consecutive
observations, we expand the function h[w’(¢)] about the estimate of the state of the system
available at time ¢z before the observations are processed, that is, W]J;. Therefore,

h[w'(1)] ~ hw/(t)] — #'[w/ (1), ](w/(t) — w'(t))
= h[w/(@t)] — H[w!(t),t)e (1) (6.29)

where H' is the m x m Jacobian matrix defined as

Oh[w(1),1]

w00 = (t)]’Tt

(6.30)

wi(t)=wi(t)

of the m-vector function h. The substitution of this approximation in expressions (6.22),
(6.27) and (6.28) produces

wi = W]J; + K, {WZ — h(wg)} (6.31a)
-1

Kp = P{HT(w]) [H (wl)P{H" (w]) + Ry (6.31b)

Pi = [I- KH (w))|Pf (6.31¢)

which correspond to a closed set of equations for the update of the state estimate, gain
matrix and corresponding error (co)variance. The equations above, together with (6.10)
and (6.11), form the set of equations constituting the extended Kalman filter. In case the
functions f and h are linear, these equations reduced to those of the standard Kalman filter,
derived in the previous lecture. The results obtained above can be extended to the case
of continuous—time observation processes. Also, higher order expressions can be derived
by considering higher order terms in the Taylor expansions for the functions f and h (see
Gelb [60], Jazwinski [84], and Sage & Melsa [121]). Equations for the case of discrete-time
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Table 6.1: Extended Kalman filter: discrete-discrete systems.

Dynamical Process wl = (wl_,) + bl_,
Observational Process wj = h(w!) + b}
Estimate Propagation w,f = P(wi_,)
Error Covariance Pf; = f’(wg_l)Pg_lf’T(wg_l) + Qr_1
Propagation

-1
Gain Matrix K, = Pé?—l/T(wg)[H’(wi)Pi?—l'T(wg) + Ry
Estimate Update wi = W£ + Kg {w,‘; — h(w,{:)}
Estimate Error Py = [I — Kk";'-l'(w,{:)} Pf;

Covariance Update

Definitions Fl(wg) = 6;%;‘,)
w=wg

_ Oh(w
%/(Wi) = aszT) wew!

dynamics and discrete—time observations which can be derived simply by using the equations
for mean and (co)variance evolution given in Section 3.2.2, are displayed in Table 6.2, which
is an adaptation of Table 9.4-3 of Sage & Melsa [121]. Applications of the extended Kalman
filter in the contexts of atmospheric and oceanic data assimilation are those of Biirger &
Cane [21], Daley [38], Evensen [52], Ménard [104], Miller et al. [107], to cite just a few.

It is important to notice that, contrary to what we saw in Section 5.1.3, The analysis and
forecast error (co)variance matrices now depend on the observations — therefore expressions
(5.41)—(5.42) is not valid in the nonlinear case. The error (co)variance matrices are func-
tions of the Jacobian matrices F' and H’, which are functions of the current estimate —
which in turn depends on the observations themselves. Thus, the gain matrix Ky and the
error (co)variances Pf; and P{ are random, due to the fact that they depend on the set
of observations W?. But most importantly is the fact that neither one of these covariance
matrices correspond to the conditional error (co)variance matrices, but are rather approxi-
mations to these quantities. The same is true about the estimates W]J; and w{ provided by
the extended Kalman filter, that is, they represent only approximations to the conditional
mean, in particular these estimates are only approximately unbiased. Therefore, precisely
putting it, the extended Kalman filter provides biased state estimates.
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6.3 An Approach to Parameter Estimation

In this section we want to briefly point out that extensions of the Kalman filter to nonlinear

systems, such as the extended Kalman filter discussed in last section, can be used to estimate
unknown system parameters, even when the dynamics and observation process are linear.
These parameters can be either related to the dynamics, that is, to the vector function f
or to the observation operator h. It is also possible to estimate parameters related to the
statistics of the errors involved in the problem.

As a simple illustration, consider the discrete—discrete system described by
wi = ¥(@)wi_, + bl_,; (6.32a)
w? = Hw} + b (6.32b)

where the sequence of the noises {b%} and {b{} are as in the previous section Gaussian
with mean zero and given (co)variances, that is, bl ~ A (0,Qy) and by ~ N (0,Ry), and
are mutually uncorrelated. The system (6.32) does not represent the most general form for
problems of parameter estimation, since we are assuming that the equations are linear in
the state variable. Another simplification in the system studied here is that the observation
function is taken as known, with no parameters to be determined to describe it. Also,
the noises error (co)variances are assumed to be completely known. Even with all these
simplifications, the system above is sufficient to exemplify the main idea of the approach of
parameter estimation based on the extended Kalman filter.

In system (6.32) the variable 8 represents an r—vector of constant, but unknown, coefficients
that we intend to estimate. Notice from the beginning that the problem of parameter
estimation is always nonlinear (expect in the case of additive unknown parameters — see
Jazwinski [84], Section 8.4), making essential the use of nonlinear filter procedures. If we
imagine that the parameters 8 are functions of time, the fact that they are in reality constant
can be expressed as @ = @, = 0_,. This equality produces an extra equation that we can
append to the system above, to augment the state vector, that is

ul, = (ngv ) (6.33)

where n 4 r—vector u' is now the re—defined state variable. Unfortunately, this procedure
does not lead to anything (see Exercise 6.3), in terms of estimating 6.

To be able to actually estimate 8 through, say, the extended Kalman filter it is necessary to
treat the vector of deterministic, constant and unknown parameters as if it were a random
vector. Thus, we write the equation for the parameters to be estimated as

0, = 0,_, + € (6.34)

where €, is an r—random vector with assumed known statistics, e, ~ AN (0, S;) — taken to
be uncorrelated from the errors b and b — system (6.32) can be re—written in the form

bt

w, = f(uj_,) + ( 6: ) (6.35a)
t

wi = (H 0)(Z§)+bz (6.35b)
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where f(u_,) is defined as

flup_y) = ( \11(0(;;_1) (I) ) Wy = ( \11(0’;;0_7;:_)1\7\72_1 ) (6.36)

Let us assume that initially, at t = to, the estimates w{, and 8} are
o — [ W5 E{wp}
ul = a = ~ 6.37
0 ( 00 ) ( 00 ( )

P — (cov{wé,wé} 0 ) (6.38)

with error (co)variance

0 ON)

Following the extended Kalman filter equations listed in Table 6.2, for the discrete—discrete
case, we need to calculate the Jacobian of the modified dynamics in (6.35a). That is,

of (u})
1(..a — k
f(uk) - a[u},;]T .
uk_uk
ow(0))w! ow(0))w!
a[wZ]T ut =u? Q[OZ]T t —ya
— K K
50, 20,
a[wZ]T llt:lla Q[OZ]T t_ua
k k k
(o) 2200 wi
= 1) S P (6.39)
0 I

Then, the forecast step of the extended Kalman filter becomes

(v) = (M) (6.400)

(6e_,) 9@ o

_ T Wk
P/ = Ul e e, | PR,
0 I
i T
¥ (0] a‘I’(tek)W“
% ( k—l) a[ek]T k—1 02202_1
0 I
Qr-1 O
+ ( A (6.40b)
and analysis step becomes
T
K, = P{(H o)
T _1
[(H o)P/(H o) —|—Rk] (6.41a)



o 1-K.(H o) P (6.41b)

a /
w w 0
( g ) = ( 05 ) + Ky {Wk — leﬂ (6.41c)

A few comments are pertinent:

e It is interesting to mention that this type of application of the extended Kalman filter
converts the filter into an adaptive filter. This means that, at each time step the filter
described above improves upon the knowledge of the parameter vector 8. In other
words, the system “learns” about itself.

e The technique used here to construct the extended Kalman filter for the parameter
estimation problem, that is, that of incorporating the parameter vector into the state
vector, is known as state augmentation technique. This nomenclature is relatively
evident, since in the case studied above, the augmented state uf contains the sys-
tem state vector wi as well as the vector of parameters 8}, State augmentation is a
very common and powerful technique in estimation theory. Examples in which this
technique is used are in problems of smoothing (e.g., Anderson & Moore [1]); colored
noises, that is, noises that are not white (Anderson & Moore [1]); more general pa-
rameter estimation problems, as that of estimating parameters related to the noise
statistics. Application of these ideas to atmospheric and oceanic data assimilation are

those of Hao [71] and Hao & Ghil [72].

e The problem of parameter estimation belongs to a wider class of problems more com-
monly referred to as system identification (e.g., Sage & Melsa [120]). Many alternative
methods, which do not use concepts related to the Kalman filter can be found in the
literature; some identification methods are based on statistics, but not all (see com-
ments in Gelb [60], pp. 350).

EXERCISES

1. Following the procedure indicated in Section 6.2, derive equation (6.5) for the forecast
(prediction) error covariance evolution.

2. Following the procedure indicated in Section 6.2, derive expression (6.28) for the
analysis error covariancia.

3. Consider the following scalar system:

i
wy, = 0wj_,
w) = w' + b°

where b9 ~ A(0,0%), and 6 is an unknown parameter, with an initial estimate of
fo. Show that if the parameter 6 is modeled as a deterministic quantity the state
augmentation technique, together with the Kalman filter, give no further information
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on the unknown parameter 8, as the filter gets iterated in time. In other words, show
that in this case, the extended Kalman filter can be partitioned as

< ()

and explain why this partition implies nothing is learned about the parameter 8, by
the filtering procedure. This is an example of a problem known as identifiability, i.e.,
f# is non—identifiable.

4. Computer Assignment. Consider again the Lorenz (1960) ! model of Exercise 3.7. We
want to implement an assimilation system based on the extended Kalman filter, and
a simple modification of it, for this model. Because this is just a simulation, we have
to “define the true model”. We take for that the exact same model, that is,

dw'

e f(wt)

where f is the Lorenz model of Exercise 3.7, but we choose a different initial condition
that is taken from a realization of w{ = wq + b, where

0.12
wy = 0.24
0.10

and b)) ~ N (0,P2), with P§ = (0§)?I. Moreover, we make the perfect model as-
sumption by saying that b? = 0, for all £ = 1,2,.... Consequently, Qj = 0, for all
k=1,2,...

Let us choose the initial standard deviation error o§ = 0.1, which is ten times larger
than the value we used in our Monte Carlo experiments before. To facilitate your
evaluation of different results to be obtained below, fix a seed, in the very beginning
of the code, for the random number generator of Matlab.

All experiments that follow are to be performed in the time interval from ¢, = 0 to
ty = 250, and time step At = 0.5, of Exercise 3.7. With the choice of initial error
given above:

True state and approzimate mean state evolution: Plot the evolution, of all three
variables, of the true state and those produced by a prediction model based on the
mean equation, that is,

d

=t
where f is given by the Lorenz model in Exercise 3.7, for all three variables. Take for
the initial mean state the value p(0) = wyg, given above. Does the “predicted” state
have any resemblance with the true state?

To construct an assimilation system we need an observation process, which for this
problem is taken to be simply
wi = wi +bj

Lorenz, E.N., 1960: Maximum simplification of dynamical equations. Tellus, 12, 243-254.
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for k = 1,2,.... That is, the observation process is linear, with all three variables of
the model being observed under noise bg ~ A’ (0, R), with R = (¢?)I.

The extended Kalman filter: In all cases below plot the true state evolution against
the estimate evolution. Also, separately, plot the evolution of the variances for all
three variables.

(a) Low frequency update. Taking the observation noise level to be 0° = 0.2, and the
observation interval to be At,p; = 50 time units, insert the appropriate equations
in your Matlab code to perform the analysis step of the extended Kalman filter.
Notice that, between two consecutive observations your program should evolve
the mean and (co)variance just as it did in Exercise 3.7. Observe also, that in the
extended Kalman filter the mean equation does not include the bias correction
term involving the Hessian of the dynamical model. Plot the evolution of the
mean on the same frame as that for the true state, for all three variables of the
model. Does assimilation improve the prediction you had in the previous item?
What do the variance plots tell you?

(b) More frequent observations. Reduce the assimilation (observation) interval in the
experiment of the previous item to half of what it was. How do the estimates
chance? What happens if the observation interval is reduces further to At = 10
time units?

(c) More accurate observations. The observations considered above are quite lousy
— the observation error level is about 100% of the value of the amplitude of
the variables of the system — a more sensible observation error level would
be considerably smaller. In this way, taking ¢° = 0.05, repeat the filtering
experiment of item (a). Comment on how this changes the estimate, and what
the variance plots tell you.

The bias correction term: We saw in the experiments in Exercise 3.7 that the bias
correction term can have a considerable influence on the evolution of the mean and
(co)variance. In particular, its presence may allow for error variance saturation, avoid-
ing indefinite growth of error. Here, we want to examine the effect of this term in the
context of assimilation (filtering). The inclusion of the bias correction term provides
a second order filter, which is in principle more accurate than the extended Kalman
filter. Repeat items (a) and (b) above when the bias correction term is included in
the equation for the evolution of the mean. Compare the results with those found
previously in (a) and (b).

Now that you have constructed a small data assimilation system, you might what to
change your dynamical model to be a more interesting one, such as the Lorenz (1963)?

chaotic model. You can use as a guide for some experiments the work of Miller et al.
(1994)3, where the extended Kalman filter was first applied to that model. Have fun.

2Lorenz, E.N., 1963: Deterministic non—periodic flow. J. Atmos. Seci., 20, 130-141.
Miller, R.N., M. Ghil, & F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical
systems. J. Atmos. Sci., 51, 1037-1056.
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