
Chapter 1

Fundamental Concepts of

Probability Theory

1.1 Probability Space

1.1.1 The Probability Triplet

The probability space is formally de�ned through the probability triplet (
;B; P ) where,

� 
: is the sample space, which contains all possible outcomes of an experiment.

� B: is a set of subsets of 
 (a Borel �eld | a closed set under operations of: union,

intersection and complement)

� P: is a scalar function de�ned on B, called the probability function or probability

measure.

Each set B 2 B is called an event, that is, B is a collection of speci�c possible outcomes.

In what follows, the mathematical details corresponding to the �eld B will be ignored (e.g.,

see Chung [26], for a detailed treatment). The values ! 2 
 are the realizations, and for

each set B 2 B, the function P (B) de�nes the probability that the realization ! is in B.

The quantity P is a probability function if it satis�es the following axioms:

1. 0 � P (B) � 1, for all B 2 B

2. P (
) = 1

3. P (
S
1

i=1Bi) =
P

1

i=1 P (Bi), for all disjoint sequences of Bi 2 B.
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1.1.2 Conditional Probability

If A and B are two events and P (B) 6= 0, the conditional probability of A given B is

de�ned as

P (AjB) � P (A \B)=P (B) (1.1)

The events A and B are statistically independent if P (AjB) = P (A). Consequently, P (A\
B) = P (A)P (B).

Analogously,

P (BjA) = P (B \ A)

P (A)
; (1.2)

for all P (A) 6= 0.

Combining the two relations above we have:

P (AjB) = P (BjA)P (A)
P (B)

; (1.3)

which is known as Bayes rule (or theorem) for probabilities. This relation is useful when

we need to reverse the condition of events.

1.2 Random Variables

A scalar x(!) random variable (r.v.) is a function, whose value x is determined by the result

! of a random experiment. Note the typographical distinction between both quantities. In

other words, an r.v. x(!) attributes a real number x to each point of the sample space.

The particular value x assumed by the random variable is referred to as a realization. A

random variable is de�ned in such a way that all sets B � 
 of the form

B = f! : x(!) � �g (1.4)

are in B, for any value of � 2 R
1.

1.2.1 Distribution and Density Functions

Each r.v. has a distribution function de�ned as

Fx(x) � P (f! : x(!) � xg) ; (1.5)

which represents the probability that x is less than or equal to x.

It follows, directly from the properties of the probability measure given above, that Fx(x)

should be a non-decreasing function of x, with Fx(�1) = 0 and Fx(1) = 1. Under

reasonable conditions, we can de�ne a function called a probability density function, derived

from the distribution function:

px(x) � dFx(x)

dx

; (1.6)
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Table 1.1: Properties of probability density functions and distribution functions

.

Fx(�1) = 0 (a)

Fx(+1) = 1 (b)

Fx(x1) � Fx(x2) , for all x1 � x2 (c)

px(x) � 0 , for all x (d)R
1

�1
px(x) dx = 1 (e)

Consequently, the inverse relation

Fx(x) =

Z x

�1

px(s) ds ; (1.7)

provides the distribution function. The probability density function should be non-negative,

and its integral over the real line should be unity. Table 1.1 presents a summary of the

properties of probability density functions and distribution functions.

A few examples of continuous distribution functions are given below:

(I) Uniform:

px(x) =

(
1

b�a a � x � b

0 otherwise
(1.8)

Fx(x) =

8><
>:

0 x < a

x�a
b�a a � x � b

1 x > b

(1.9)

(ii) Exponential:

px(x) =

(
1

a
e
�x=a 0 < x

0 otherwise
(1.10)

Fx(x) =

(
0 x < 0

1� e
�x=a

x � 0
(1.11)

(iii) Rayleigh:

px(x) =

(
0 x < 0
x
a2
e
�x2=2a2

x � 0
(1.12)

Fx(x) =

(
0 x < 0

1� e
�x2=2a2

x � 0
(1.13)

(iv) Gaussian:

px(x) =
1p
2��

exp

"
�(x� �)2

2�2

#
(1.14)

Fx(x) = erf

�
x � �

�

�
(1.15)

where erf (x) is the error function (Arfken [5], p. 568):

erf (x) =
1p
2�

Z x

�1

e
�y2=2

dy (1.16)
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Remark: An r.v. with Gaussian distribution is said to be normally distributed, with

mean � and variance �
2 (see following section) and is represented symbolically by

x � N (�; �2).

(iv) �2 (Chi{Square):

px(x) =

(
1

2�=2�(�=2)
x
�=2�1

e
�x=2

x > 0

0 x � 0
(1.17)

Fx(x) =
1

2�=2�(�=2)

Z x

0

u
�=2�1

e
�u=2

du (1.18)

where �(�) is the gamma function (Arfken [5], Chapter 10):

�(�) =

Z
1

0

t
n�1

e
�t

dt (1.19)

Remarks: An r.v. that is �2 distributed has the form: �2 = x2
1
+ x2

2
+ � � �+ x2� , with the

variables xi, for i = 1; 2; � � � ; �, being normally distributed with mean zero and unity

variance.

1.2.2 Expectations and Moments

The mean of an r.v. x is de�ned as

Efxg �
Z

1

�1

x px(x) dx : (1.20)

In this course we will use interchangeably the expressions expected value and expectation

as synonyms for mean. There are extensions of this de�nition for those cases in which

the probability density px(x) does not exist; however in the context that interests us, the

de�nition above is su�cient. Any measurable function of an r.v. is also an r.v. and its

mean is given by:

Eff(x)g =
Z

1

�1

f(x) px(x) dx : (1.21)

In particular, if f(x) = a = const:, Efag = a, due to property (e) in Table 1.1.

If f(x) = a1g1(x) + a2g2(x) then

Efa1g1(x) + a2g2(x)g = a1Efg1(x)g+ a2Efg2(x)g: (1.22)

A function of special interest is f(x) = xn, where n is a positive integer. The means

Efxng �
Z

1

�1

x
n
px(x)dx ; (1.23)

de�ne the moments of order n of x. In particular, Efx2g is called the mean{square value.

The expectations

Ef(x� Efxg)ng �
Z

1

�1

(x� Efxg)npx(x)dx ; (1.24)
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de�ne the n{th moments of x about its mean (n{th central moment).

The second moment of x about its mean is called the variance of x, and is given by:

var(x) � Ef(x� Efxg)2g = Efx2g � 2EfxEfxgg + (Efxg)2
= Efx2g � (Efxg)2 : (1.25)

That is, the variance is the mean{square minus the square of the mean. Finally, the standard

deviation is de�ned as the square{root of the variance:

�(x) �
q
[var(x)]: (1.26)

It is worth mentioning at this point that in many cases, the mean value of an r.v. is used

as a guess (or estimate) for the true value of that variable. Other quantities of interest in

this sense are the median, the mid{range, and the mode values. The median �1 is given byZ �1

�1

px(x) dx =

Z
1

�1

px(x) dx =
1

2
; (1.27)

the mid{range �1 is given by

�1 =
maxx(x) + minx(x)

2
(1.28)

and the mode m is given by
dpx(x)

dx

����
x=m

= 0 (1.29)

The median divides the probability density function in two, each one covering the same area.

The mode corresponds to values of the random variable for which the probability density

function is maximum, that is, it corresponds to the most likely value. The importance, and

more general meaning, of these quantities will become clear as we advance.

1.2.3 Characteristic Function

An r.v. can be represented, alternatively, by its characteristic function which is de�ned as

�x(u) � Ef exp(iux)g ; (1.30)

where i =
p�1.

According to the de�nition (1.20) of mean we see that the characteristic function is nothing

more than the Fourier transform of the density function:

�x(u) =

Z
1

�1

exp(iux)px(x) dx ; (1.31)

from this it follows that the probability density is the inverse Fourier transform of the

characteristic function, that is,

px(x) = (1=2�)

Z
1

�1

exp(�iux)�x(u) du : (1.32)
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Let us now take the derivative of the characteristic function (1.31) with respect to u:

d�x(u)

du

=
d

du

Z
1

�1

exp(iux)px(x) dx ;

=

Z
1

�1

d exp(iux)

du

px(x) dx ;

= iEfx exp(iux)g ; (1.33)

where we used the de�nition of characteristic function to get the last equality. Notice that

by choosing calculate the expression above for at u = 0 we have

d�x(u)

du

����
u=0

= iEfxg ; (1.34)

or better yet,

Efxg =
1

i

d�x(u)

du

����
u=0

; (1.35)

which give an alternative way of calculating the �rst moment, if the characteristic function

is given. As a matter of fact moments of order n can be calculated analogously, by taking n

derivatives of the characteristic function and evaluating the result at u = 0. This procedure

produces the equation

Efxng =
1

i
n

d
n
�x(u)

du
n

����
u=0

; (1.36)

for the n{th moment.

1.3 Jointly Distributed Random Variables

1.3.1 Distribution, Density Function and Characteristic Function

The r.v.'s x1; � � � ; xn are said to be jointly distributed if they are de�ned in the same

probability space. They can be characterized by the joint distribution function

Fx1���xn � Pf! : x1 � x1; � � � ; xn � xng (1.37)

where

f! : x1 � x1; � � � ; xn � xng � fx1(!) � x1g \ � � � \ fxn(!) � xng (1.38)

or alternatively, by their joint density function:

Fx1���xn(x1; � � � ; xn) �
Z x1

�1

� � �
Z xn

�1

px1���xn(x
0

1; � � � ; x0n)dx01 � � �dx0n ; (1.39)

from which it follows that

px1���xn(x1; � � � ; xn) =
@
n

@x1 � � �@xnFx1���xn(x1; � � � ; xn) (1.40)

assuming the existence of the derivatives.

The characteristic function of jointly distributed r.v.'s x1; � � � ; xn is de�ned as:

�x1���xn(u1; � � � ; un) � Ef exp
0
@
i

nX
j=1

ujxj

1
Ag : (1.41)
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1.3.2 Expectations and Moments

If f is a function of jointly distributed r.v.'s x1; � � � ; xn, and
y = f(x1; � � � ; xn), then

Efyg �
Z

1

�1

� � �
Z

1

�1

f(x1; � � � ; xn)px1���xn(x1; � � � ; xn) dx1 � � �dxn : (1.42)

The expected value of xk is given by

Efxkg �
Z

1

�1

� � �
Z

1

�1

xkpx1���xn(x1; � � � ; xn) dx1 � � �dxn (1.43)

and its second-order moment is given by

Efx2kg �
Z

1

�1

� � �
Z

1

�1

x
2

kpx1���xn(x1; � � � ; xn) dx1 � � �dxn : (1.44)

Moments of higher order and central moments can be introduced in analogy to the de�ni-

tions in Section 1.2.2. Joint moments and joint central moments can be de�ned as:

Efx�kx�` g (1.45)

and

Ef[xk � Efxkg]� [x` � Efx`g]�g ; (1.46)

respectively, where � and � are positive integers.

Notice that the characteristic function, of the jointly distributed r.v.'s, gives a convenient

way of computing moments, just as it did in the scalar case. Taking the �rst derivative of

the characteristic function (1.41) with respect to component uk we have

@�x1���xn(u1; � � � ; un)
@uk

= iEfxk exp
0
@
i

nX
j=1

ujxj

1
Ag : (1.47)

Evaluating this derivative at (u1; � � � ; un) = (0; � � � ; 0) provides a way to compute the �rst

moment with respect to component xk, that is,

Efxkg =
1

i

@�x1���xn(u1; � � � ; un)
@uk

����
(u1;���;un)=(0;���;0)

(1.48)

Successive n derivatives, with respect to arbitrary n components of (u1; � � � ; un) produce
the n{th non{central moment

Efxkxl � � �g =
1

i
n

@�x1���xn(u1; � � � ; un)
@uk@ul � � �

����
(u1;���;un)=(0;���;0)

: (1.49)

Of fundamental importance is the concept of covariance between xk and x`, de�ned as:

cov(xk; x`) � Ef[xk � Efxkg] [x` � Efx`g]g : (1.50)
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We have that

cov(xk; x`) = Efxkx`g � EfxkgEfx`g (1.51)

and also,

cov(xk; xk) = var(xk) : (1.52)

The ratio

�(xk; x`) � cov(xk ; x`)

�(xk)�(x`)
(1.53)

de�nes the correlation coe�cient between xk and x`. Therefore, �(xk; xk) = 1.

It is of frequent interest to obtain the probability distribution or density function of a

random variable, given its corresponding joint function. That is, consider two r.v.'s x1 and

x2, jointly distributed, then

Fx1(x1) = Fx1x2(x1;1) =

Z x1

�1

Z
1

�1

px1x2(s1; s2) ds1ds2 ; (1.54)

and analogously, Fx2(x2) = Fx1x2(1; x2), where Fx1
(x1) and Fx2(x2) , are referred to as

marginal distribution functions. The marginal density function is then given by

px1(x1) =
@Fx1x2(x1;1)

@x1

=

Z
1

�1

px1x2(x1; x2) dx2 : (1.55)

It is convenient, at this point, to introduce a more compact notation utilizing vectors. De�ne

the vector random variable (or simply the random vector) in n dimensions as:

x = (x1x2 � � �xn)T (1.56)

where lower case bold letters refer to vectors, and T refers to the transposition operation.

By analogy with the notation we have utilized up to here, we will refer to the value assumed

by the random vector x as x = (x1x2 � � �xn)T . In this manner,

px(x) � px1x2���xn(x1; x2; � � � ; xn) (1.57)

Likewise, the probability distribution can be written as

Fx(x) �
Z x
�1

px(x
0)dx0

=

Z x1

�1

� � �
Z xn

�1

px1���xn(x
0

1; � � � ; x0n)dx01 � � �dx0n ; (1.58)

where we call attention for the notation dx = dx1 � � �dxn, and similarly the probability

density function becomes

px(x) =
@
n
Fx(x)

@x
=

@
n
Fx(x)

@x1 � � �@xn
(1.59)

The marginal probability density can be written as

pxk(xk) =
@Fxk(xk)

@xk
=

Z
1

�1

px(x
0) dx0

�k ; (1.60)
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where dx�k = dx1 � � �dxk�1dxk+1 � � �dxn.

According to the de�nition of mean of a random variable, the mean of a random vector is

given by the mean of its components:

Efxg =

2
64
Efx1g

...

Efxng

3
75 =

2
64
R
1

�1
x1px(x

0)dx0

...R
1

�1
xnpx(x

0)dx0

3
75 (1.61)

Analogously, the mean of a random matrix is the mean of the matrix elements. The matrix

formed by the mean of the outer product of the vector x � Efxg with itself is the n � n

covariance matrix:

Px = Ef(x� Efxg)(x� Efxg)Tg

=

2
66664

var(x1) cov(x1; x2) � � � cov(x1; xn)

cov(x2; x1) var(x2) � � � cov(x1; xn)
...

...
. . .

...

cov(xn; x1) cov(xn; x2) � � � var(xn)

3
77775 : (1.62)

Notice that Px is a symmetric positive semi-de�nite matrix, that is, yPxy
T � 0, for all

y 2 R
n.

Two scalar r.v.'s x and y are said to be independent if any of the (equivalent) conditions

are satis�ed:

Fxy(x; y) = Fx(x)Fy(y) (1.63a)

pxy(x; y) = px(x)py(y) (1.63b)

Eff(x)g(y)g = Eff(x)gEfg(y)g (1.63c)

Analogously, two vector r.v.'s x and y are said to be jointly independent if

pxy(x;y) = px(x)py(y) (1.64)

We say that two jointly distributed random vectors x and y are uncorrelated if

cov(x;y) = 0 ; (1.65)

since the correlation coe�cient de�ned in (1.53) is null. As a matter of fact, two r.v.'s are

said to be orthogonal when

EfxyTg = 0 : (1.66)

This equality is often referred to as the orthogonality principle.

The n r.v.'s fx1; � � � ; xng are said to be jointly Gaussian, or jointly normal, if their joint

probability density function is given by

px(x) =
1

(2�)n=2jPj1=2 exp
�
�1

2
(x� �)TP�1(x� �)

�
; (1.67)
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where the notation jPj stands for the determinant of P, and P�1 refers to the inverse of

the matrix P. The vector x is said to be normally distributed or Gaussian, with mean

� = Efxg and covariance P, and is abbreviated by x � N (�;P). Observe that, in order

to simplify the notation, we temporarily eliminated the subscript x referring to the r.v. in

question in � and P.

Utilizing the vector notation, the joint characteristic function (1.41) can be written as:

�x(u) = Ef exp(iuTx) g : (1.68)

In this way, the characteristic function of a normally distributed random vector can be

calculated using the expression above and the transformation of variables x = P
1=2
y + �,

that is,

�x(u) �
Z

1

�1

px(x)e
iuTx

dx =
1

(2�)n=2jPj1=2

�
Z

1

�1

exp(�1

2
y
T
y) exp

h
iu

T (P1=2
y + �)

i
jjJac[x(y)]jj dy (1.69)

where jjJac[x(y)]jj is the absolute value of the determinant of the Jacobian matrix, de�ned

as

Jac[x(y)] � @x

@yT
=

0
BBBBB@

@x1
@y1

@x1
@y2

� � � @x1
@yn

@x2
@y1

@x2
@y2

� � � @x2
@yn

...
...

. . .
...

@xn
@y1

@xn
@y2

� � � @xn
@yn

1
CCCCCA (1.70)

of the transformation. Using the fact that

jJac[x(y)]j = jP1=2j = jPj1=2 (1.71)

we can write

�x(u) = exp(iuT�)
1

(2�)n=2

Z
1

�1

exp

�
�1

2
(yTy � 2iuTP1=2

y)

�
dy (1.72)

Adding and subtracting (1=2)uTPu to complete the square in the integrand above, we

obtain:

�x(u) = exp(iuT�� 1

2
u
T
Pu)

�
Z

1

�1

1

(2�)n=2
exp

�
�1

2
(yTy � 2iuTP1=2

y � u
T
Pu)

�
dy

= exp(iuT�� 1

2
u
T
Pu)

�
Z

1

�1

1

(2�)n=2
exp

�
�1

2
(y � iP

1=2
u)T (y � iP

1=2
u)

�
dy (1.73)

and making use of the integral

Z
1

�1

exp

�
�1

2
y
T
y

�
dy =

q
(2�)n (1.74)
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we have that

�x(u) = exp(iuT�� 1

2
u
T
Pu) ; (1.75)

is the characteristic function for a Gaussian distribution.

In the calculation of the integral above we de�ned the vector y as a function of the random

vector x and transformed the integral in to a simpler integral. This gives an opportunity for

us to mention a theorem relating functional transformation of random variable (vectors) and

their respective probability distributions. Consider two n{dimensional random vectors x

and y (not related to the characteristic function calculated above), that are related through

a function f as y = f(x), such that the inverse functional relation x = f
�1(y) exists. In

this case, the probability density py(y) of y can be obtained given the probability density

px(x) of x by the transformation:

py(y) = px[f
�1(y)] jjJac([f�1(y)]jj (1.76)

where jjJac([f�1(y)]jj is the absolute value of the determinant of the Jacobian of the inverse

transformation of x in to y. A proof of this theorem is given in Jazwinski [84], pp. 34{35.

1.3.3 Conditional Expectations

Motivated by the conditional probability concept presented in Section 1.1.2, we now in-

troduce the concept of conditional probability density. If x and y are random vectors, the

probability density that the event x occurs given that the event y occurred is de�ned as

pxjy(xjy) �
pxy(x;y)

py(y)
: (1.77)

Analogously, reversing the meaning of x and y,

pyjx(yjx) �
pxy(x;y)

px(x)
; (1.78)

and Bayes rule for probability densities immediately follows:

pxjy(xjy) =
pyjx(yjx)px(x)

py(y)
: (1.79)

Based on the de�nition (1.77) we can de�ne the conditional expectation (or mean) of an

r.v. x given an r.v. y as:

Efxjyg �
Z

1

�1

xpxjy(xjy) dx : (1.80)

Now remember that the unconditional mean is given by

Efxg =
Z

1

�1

xpx(x) dx ; (1.81)
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and that the marginal probability density px(x) can be obtained from the joint probability

density pxy(x;y) as,

px(x) =

Z
1

�1

pxy(x;y) dy : (1.82)

Considering the de�nition (1.77) we can write,

px(x) =

Z
1

�1

pxjy(xjy)py(y) dy (1.83)

and substituting this result in (1.81) we have that

Efxg =

Z
1

�1

Z
1

�1

xpxjy(xjy)py(y) dydx

=

Z
1

�1

Efxjygpy(y) dy
= EfEfxjygg ; (1.84)

where we used de�nition (1.80) of conditional expectation. The expression above is some-

times referred to as the chain rule for conditional expectations. Analogously we can obtain:

Eff(x;y)g= EfEff(x;y)jygg : (1.85)

We can also de�ne the conditional covariance matrix as

Pxjy � Ef[x� Efxjyg][x� Efxjyg]T jyg ; (1.86)

where we notice that Pxjy is a random matrix, contrary to what we encountered when we

de�ned the unconditional covariance matrix (1.62).

We will now prove the following important result for normally distributed r.v.'s: the con-

ditional probability of two normally distributed random vectors x and y, with dimensions

n and m respectively, is also normal and is given by:

pxjy(xjy) =
1

(2�)n=2jPxjyj1=2
exp

�
�1

2
(x� �xjy)

T
P
�1

xjy
(x� �xjy)

�
; (1.87)

where

�xjy = �x + PxyP
�1

y
(y � �y) ; (1.88)

and

Pxjy = Px � PxyP
�1

y
P

T
xy

: (1.89)

Now consider the following vector z = [xT yT ]T of dimension (n+m). This vector has mean

�
z
given by

�
z
= Efzg =

"
Efxg
Efyg

#
=

"
�
x

�y

#
(1.90)

and covariance Pz that can be written as

Pz = Ef(z� �
z
)(z� �

z
)Tg

=

"
Ef(x� �

x
)(x� �

x
)T g Ef(x� �

x
)(y� �

y
)Tg

Ef(y� �
y
)(x� �

x
)Tg Ef(y� �

y
)(y� �

y
)Tg

#

=

"
Px Pxy

P
T
xy

Py

#
: (1.91)
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Let us make use of the following equality (simple to verify):"
I �PxyP

�1

y

0 I

#
Pz

"
I 0

�P�1
y
P

T
xy

I

#
=

"
I �PxyP

�1

y

0 I

#

�
"
Px � PxyP

�1

y
P

T
xy

Pxy

0 Py

#

=

"
Pxjy 0

0 Py

#
; (1.92)

where Pxjy is de�ned as in (1.89), and we are assuming that P�1
y

exists. From this expres-

sion, it follows that the determinant of the covariance matrix Pz is

jPzj = jPxjyj jPyj
= jPx �PxyP

�1

y
P

T
xy
j jPyj (1.93)

(Householder [83], p. 17). Moreover, we have that

P
�1

z
=

"
I 0

�P�1

y
P

T
xy

I

# "
P
�1

xjy
0

0 P
�1
y

# "
I �PxyP

�1

y

0 I

#

=

"
P
�1

xjy
�P�1

xjy
PxyP

�1
y

�P�1

y
P

T
xy
P
�1

xjy
P
�1

y
P

T
xy
P
�1

xjy
PxyP

�1

y
+ P

�1

y

#
(1.94)

Therefore, multiplying P�1

z
by (z ��

z
)T on the left and by (z ��

z
) on the right, we have

(z � �
z
)TP�1

z
(z � �

z
) = (x� �

x
)TP�1

xjy
(x� �

x
)

� (x� �
x
)TP�1

xjy
PxyP

�1

y
(y � �

y
)

� (y � �
y
)TP�1

y
P

T
xy
P
�1

xjy
(x� �

x
)

+ (y � �
y
)TP�1

y
P

T
xy
P
�1

xjy
PxyP

�1

y
(y � �

y
)

+ (y � �
y
)TP�1

y
(y � �

y
) (1.95)

and using the de�nition (1.88) we can write

(x� �
xjy)

T
P
�1

xjy
(x� �

xjy) = [(x� �
x
)�PxyP

�1

y
(y � �

y
)]TP�1

xjy

� [(x� �
x
)�PxyP

�1

y
(y � �

y
)]

= (x� �
x
)TP�1

xjy
(x� �

x
)

� (x� �
x
)TP�1

xjy
PxyP

�1

y
(y � �

y
)

� (y � �
y
)TP�1

y
P

T
xy
P
�1

xjy
(x� �

x
)

+ (y � �
y
)TP�1

y
P

T
xy
P
�1

xjy
PxyP

�1

y
(y � �

y
)

(1.96)

so that (1.95) reduces to

(z � �
z
)TP�1

z
(z � �

z
) = (x� �

xjy)
T
P
�1

xjy
(x� �

xjy) + (y � �
y
)TP�1

y
(y � �

y
) (1.97)
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By the de�nition of conditional probability we have

pxjy(xjy) =
pxy(x;y)

py(y)
=

pz(z)

py(y)

=
1

(2�)n=2
jPyj1=2
jPzj1=2

exp[�1

2
(z � �

z
)TP�1

z
(z � �

z
)]

exp[�1

2
(y � �

y
)TP�1

y (y � �
y
)]

(1.98)

and utilizing (1.93) and (1.97) we obtain

pxjy(xjy) =
1

(2�)n=2jPx �PxyP
�1
y PT

xy
j1=2

� exp[�1

2
(x� �

xjy)
T [Px �PxyP

�1

y
P

T
xy
]�1(x� �

xjy)]

(1.99)

which is the desired result. The assumption made above that the inverse of Py exists

is not necessary. When this inverse does not exist, it is possible to show (Kalman [89])

that the same result is still valid, but in place of the inverse of Py, we should utilize the

pseudo{inverse P+
y
.

The calculation above involved construction of the joint probability distribution pz(z) of the

random vector z = [xTyT ]T . Let us assume for the moment that the two random vectors

x and y are uncorrelated, that is, Pxy = 0. Hence, referring back to (1.88) and (1.89) it

follows that,

�
xjy = �

x
(1.100)

Pxjy = Px (1.101)

which is intuitively in agreement with the notion of independence. Introducing these results

in (1.97) we have

(z � �
z
)TP�1

z
(z � �

z
) = (x� �

x
)TP�1

x
(x� �

x
) + (y � �

y
)TP�1

y
(y � �

y
) (1.102)

Moreover, it follows from (1.93) that for uncorrelated random vectors x and y,

jPzj = jPxj jPyj (1.103)

Thus, the joint probability density function pz(z) can then be written as

pz(z) =
1

(2�)(n+m)=2

1

jPzj1=2
exp[�1

2
(z � �

z
)TP�1

z
(z � �

z
)]

=
1

(2�)(n+m)=2

1

jPxj1=2jPyj1=2

� exp[�1

2
(x� �

x
)TP�1

x
(x� �

x
)� 1

2
(y � �

y
)TP�1

y
(y � �

y
)]

=
1

(2�)n=2
1

jPxj1=2
exp[�1

2
(x� �

x
)TP�1

x
(x� �

x
)]

� 1

(2�)m=2

1

jPyj1=2
exp[�1

2
(y � �

y
)TP�1

y
(y � �

y
)]

= px(x)py(y) (1.104)
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This shows that two normally distributed random vectors that are uncorrelated are also

independent. We have seen earlier in this section that independence among random vari-

ables implied they are uncorrelated; the contrary was not necessarily true. However, as we

have just shown, the contrary is true in the case of normally distributed random variables

(vectors).

Exercises

1. Using the de�nition of Rayleigh probability density function given in (1.12): (a) cal-

culate the mean and standard deviation for a r.v. with that distribution; (b) �nd the

mode of the r.v., that is, is most likely value.

2. (Brown [19], Problem 1.40) A pair of random variables, x e y, have the following joint

probability density function:

pxy(x; y) =

(
1 0 � y � 2x e 0 � x � 1

0 em everywhere else

Find Efxjy = :5g. [Hint: Use (1.77) to �nd pxjy(x) for y = 0:5, and then integrate

xpxjy(x) to �nd Efxjy = :5g.]
3. Consider a zero{mean Gaussian random vector, with probability density and charac-

teristic functions

fx(x) =
1

(2�)n=2jPj1=2 exp
�
�1

2
x
T
P
�1
x

�
;

�x(u) = exp

�
�1

2
u
T
Pu

�
;

respectively. Show that the following holds for the �rst four moments of this distri-

bution:

Efxkg = 0 Efxkxlg = Pkl

Efxkxlxmg = 0 Efxkxlxmxng = PklPmn + PkmPln + PknPlm

where xi; i 2 fk; l;m;ng, are elements of the random vector x, and Pij ; i; j 2 fk; l;m; ng,
are elements of P.

4. Show that the linear transformation of a normally distributed vector is also normally

distributed. That is, show that for a given normally distributed vector x, with mean

�x and covariance Rx, the linear transformation

y = Ax+ b

produces a normally distributed vector y with mean �y = A�x + b and covariance

Ry = ARxA
T .

5. The log{normal distribution is de�ned by

px(x) =
1p
2�s

1

x

exp

"
� 1

2s2

�
ln

x

x0

�2#

Show that:
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(a) its mean and variance are

� = x0e
s2=2

var(x) = x
2

0e
s2(es

2 � 1)

respectively;

(b) introducing the variable

x
� = � ln(

x




)

the probability density function px(x) above can be converted to a Gaussian

probability density function p
�

x(x) of the form

p
�

x(x) =
1p
2��

exp

"
�(x� � x

�

0
)2

2�2

#

where � = s�, and

x
�

0 = � ln(
x0




)

This justi�es the name log{normal distribution for px(x), since the logarithm of its

variable is normally distributed.

6. According to what we have seen in the previous exercise, let v an n{dimensional

normally distributed r.v., de�ned as v � N (�v;P). The vector with components wj

de�ned as wj = exp(vj) for j = 1; � � � ; n is said to be distributed log{normally and it

is represented by w � LN (�w;R) where �w is its mean and R its covariance. Show

that

Efwjg = exp

�
Efvjg+ 1

2
Pjj

�
;

and

Rjk = EfwjgEfwkg(ePjk � 1) :

(Hint: Utilize the concept of characteristic function.)

7. Computer Assignment: (Based on Tarantola [126]) Consider the experiment of mea-

suring (estimating) the value of a constant quantity corrupted by \noise". To simulate

this situation, let us use Matlab, to generate 101 measurements of the random variable

y as follows:

Enter: y = 21 + rand(101,1) ; the intrinsic Matlab function rand generates a uni-

formly distributed r.v. in the interval (0; 1)

Enter: x=20:0.1:23 ; to generate an array with 31 points in the neighborhood of 21

Enter: hist(y,x) ; this will show you a histogram corresponding to this experiment

Now using the Matlab functions median, mean, max and min, calculate the median,

mean and mid{range values for the experiment you have just performed. What did

you get? Three distinct values! Can you tell which of these are the closest value to

the true value?

8. Computer Assignment: Ok, you probably still can't answer the question above. So

here is the real assignment:
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(a) Construct a Matlab function that repeats the experiment of the previous exercise

20 times, for the given value of the scalar under noise. For each successive

experiment, increase the number of samples used by 100, calculating and storing

the values their corresponding median, mean, and mid{range. At the end of the

20 experiments, plot the values obtained for the median, mean and mid{range

in each experiment. Can you guess now which one of these is the best estimate?

(b) To really con�rm your guess, �x the number of samples at 100 and repeat the

experiments 200 times, collecting the corresponding median, mean and mid{

range values for each experiment. (It is a good idea, if you do it as another

Matlab function.) In end of all 200 experiments, plot the histograms for each of

these three quantities. Which one has the least scatter? Is this compatible with

your guess from of the previous item?

(c) Repeat items (a) and (b) for the same constant, but now being disturbed by a

normally distributed random variable with mean zero and unity variance. That

is, replace the Matlab function rand by the function randn. Caution: when

construction the histogram in this item chose a relatively large interval for the

outcome counting, e.g., x=18:0.1:24 . This is necessary because the Gaussian

function has very long tails.
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