Chapter 1

Fundamental Concepts of
Probability Theory

1.1 Probability Space

1.1.1 The Probability Triplet

The probability space is formally defined through the probability triplet (€2, B, P) where,

e 2 is the sample space, which contains all possible outcomes of an experiment.

e 3: is a set of subsets of 2 (a Borel field — a closed set under operations of: union,
intersection and complement)

e P: is a scalar function defined on B, called the probability function or probability
measure.

Each set B € B is called an event, that is, B is a collection of specific possible outcomes.
In what follows, the mathematical details corresponding to the field B will be ignored (e.g.,
see Chung [26], for a detailed treatment). The values w € Q are the realizations, and for
each set B € B, the function P(B) defines the probability that the realization w is in B.
The quantity P is a probability function if it satisfies the following axioms:

1. 0< P(B)<1,forall BeB

3. P(UZ, Bi) =322, P(B,), for all disjoint sequences of B; € B.



1.1.2 Conditional Probability

If A and B are two events and P(B) # 0, the conditional probability of A given B is
defined as
P(A|B) = P(An B)/P(B) (1.1)

The events A and B are statistically independent if P(A|B) = P(A). Consequently, P(AN
B) = P(A)P(B).

Analogously,
P(BNA)
P(B|A) = 1.2
(1) = S5 (1.2)
for all P(A) # 0.
Combining the two relations above we have:
P(BJA)P(A)
P(A|B) = ————— 1.

which is known as Bayes rule (or theorem) for probabilities. This relation is useful when
we need to reverse the condition of events.

1.2 Random Variables

A scalar x(w) random variable (r.v.) is a function, whose value z is determined by the result
w of a random experiment. Note the typographical distinction between both quantities. In
other words, an r.v. x(w) attributes a real number z to each point of the sample space.
The particular value # assumed by the random variable is referred to as a realization. A
random variable is defined in such a way that all sets B C 2 of the form

B={w:x() <) (1.4)

are in B, for any value of £ € R'.

1.2.1 Distribution and Density Functions

Each r.v. has a distribution function defined as
Fr(a) = P{w:x(@) < a}). (15)
which represents the probability that x is less than or equal to z.

It follows, directly from the properties of the probability measure given above, that Fx(z)
should be a non-decreasing function of z, with Fx(—oo) = 0 and Fx(co) = 1. Under
reasonable conditions, we can define a function called a probability density function, derived
from the distribution function:

puley = D

(1.6)



Table 1.1: Properties of probability density functions and distribution functions

Fx(—00) =0 (a)
Fyx(4o0) =1 (b)
Fx(zy) < Fx(ag) , forall 2y <azy (¢
px(z) >0 for all (d)
7 px(z)dz =1 (e)

Consequently, the inverse relation

Fy(z) :/ px(s) ds, (1.7)

— 00

provides the distribution function. The probability density function should be non-negative,
and its integral over the real line should be unity. Table 1.1 presents a summary of the
properties of probability density functions and distribution functions.

A few examples of continuous distribution functions are given below:

(I) Uniform:

1
— e @ S x S b
px(@) = { 0 otherwise (1.8)
0 x<a
Fx(z) =< 7= a<z<b (1.9)
1 x>b
(i) Exponential:
le—z/a <y
px() = { otherwise (1.10)
0 <0
FX(x) - { 1— e—ac/a x>0 (111)
(iii) Rayleigh:
0 <0
px(z) = { 2o=/27 4> (1.12)
0 <0
FX($) = { 1_ 6_12/2&2 . 2 0 (113)
(iv) Gaussian:
1 (v —p)?
= —_ 1.14
o) = o [ (114

Fx(z) = erf (x — “) (1.15)

o
where erf(z) is the error function (Arfken [5], p. 568):

erf (x V2 dy (1.16)

=l



Remark: An r.v. with Gaussian distribution is said to be normally distributed, with
mean u and variance o? (see following section) and is represented symbolically by

x~ N (p,0%).

(iv) x? (Chi-Square):

1 vf2—le—x/2 4 >0
= ¥t 1.17
=1 2 " (117

1 xr
Px(r) = = | u?/*le/2d 1.18
X($) 2y/2F(V/2) /0 U € U ( )
where I'(v) is the gamma function (Arfken [5], Chapter 10):
() = / et d (1.19)
0

Remarks: An r.v. that is x? distributed has the form: y? = X% + X% 44 XZ, with the
variables x;, for ¢ = 1,2, .-, v, being normally distributed with mean zero and unity
variance.

1.2.2 Expectations and Moments

The mean of an r.v. x is defined as
£ix) = / 2 px(z) do . (1.20)

In this course we will use interchangeably the expressions expected value and expectation
as synonyms for mean. There are extensions of this definition for those cases in which
the probability density px(z) does not exist; however in the context that interests us, the
definition above is sufficient. Any measurable function of an r.v. is also an r.v. and its

mean is given by:
o0

Uy = [ f(e) px(a)da. (1.21)

— 00

In particular, if f(x) = a = const., E{a} = a, due to property (e) in Table 1.1.

If f(x) = a191(x) + a292(x) then
E{argi(x) + azg2(x)} = a1&{g1(x) } + a2E{g2(x) }- (1.22)

A function of special interest is f(x) = x", where n is a positive integer. The means
£{x") = / epx(2)de (1.23)

define the moments of order n of x. In particular, £{x?} is called the mean—square value.
The expectations

E{x-&&P) = /OO (x — E{x})"px(2)dx , (1.24)

— 00
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define the n—th moments of x about its mean (n—th central moment).

The second moment of x about its mean is called the variance of x, and is given by:

var(x) = E{(x — E{x})?} = E{x*} — 26{xE{x}} + (E{x})?
= &{x*} - (E{x})?. (1.25)

That is, the variance is the mean—square minus the square of the mean. Finally, the standard
deviation is defined as the square—root of the variance:

o(x) = /[var(x)]. (1.26)

It is worth mentioning at this point that in many cases, the mean value of an r.v. is used
as a guess (or estimate) for the true value of that variable. Other quantities of interest in
this sense are the median, the mid-range, and the mode values. The median uy is given by

(231 o0 1

/ px(z) de = / px(z)de = =, (1.27)

—o0 m 2

the mid-range p, is given by

max,(z) + ming ()
2

foo = (1.28)

and the mode m is given by

dpx ()
dz

The median divides the probability density function in two, each one covering the same area.
The mode corresponds to values of the random variable for which the probability density
function is maximum, that is, it corresponds to the most likely value. The importance, and
more general meaning, of these quantities will become clear as we advance.

=0 (1.29)

r=m

1.2.3 Characteristic Function

An r.v. can be represented, alternatively, by its characteristic function which is defined as
ox(u) = E{ exp(iux)}, (1.30)
where ¢ = 4/—1.

According to the definition (1.20) of mean we see that the characteristic function is nothing
more than the Fourier transform of the density function:

o0
ox(u) = / exp(iuz)px(z) dz , (1.31)
— 00
from this it follows that the probability density is the inverse Fourier transform of the
characteristic function, that is,
o0

() = (1/27) / exp(—iuz)dy(u) du . (1.32)

— 00
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Let us now take the derivative of the characteristic function (1.31) with respect to u:

%QEU) - % /_O; exp(iua)px(2) dz
= /:: de%fzux)px(x) dz
= it fxexpliun)}, (1:33)

where we used the definition of characteristic function to get the last equality. Notice that
by choosing calculate the expression above for at u = 0 we have
d¢x(u)
du

= i&{x}, (1.34)

u=0
or better yet,

7 (1.35)

u=0

which give an alternative way of calculating the first moment, if the characteristic function
is given. As a matter of fact moments of order n can be calculated analogously, by taking n
derivatives of the characteristic function and evaluating the result at v = 0. This procedure
produces the equation

EHx"} = — ———= 1.36
{X } Zn du” u=0 ? ( )
for the n—th moment.
1.3 Jointly Distributed Random Variables
1.3.1 Distribution, Density Function and Characteristic Function
The r.v.’s xq¢,---,X, are said to be jointly distributed if they are defined in the same
probability space. They can be characterized by the joint distribution function
Fx,.x, = Plw:xi <zy,-- %, < 2} (1.37)
where
{wixy<ap,-x, <zt ={xi(w) <z} n---N{x,(w) < a,} (1.38)
or alternatively, by their joint density function:
1 Tn
Fy,.x, (x1, @) E/ / Pxyx, (T, 2l daly - dal (1.39)
from which it follows that
871
XX, ($17 teey $n) = mFxl“'Xn ($17 teey $n) (140)
assuming the existence of the derivatives.
The characteristic function of jointly distributed r.v.’s xy,---,x, is defined as:

Oxyx, (U1 ooy uy) = E{ exp ( Z u]X]) (1.41)



1.3.2 Expectations and Moments

If fis a function of jointly distributed r.v.’s xq,---,x,, and
y= f(Xh o '7Xn)7 then

E{v} E/_O:O/_O:o flae, - 20)pxyx, (21, @) day - - - day, (1.42)

The expected value of zy is given by

E{xr} E/ / TEPx, X, (X1, 0, 2p) dey - day, (1.43)

and its second-order moment is given by

E{Xz} E/ / xszl...xn(wl, sy xy)day - day, (1.44)

Moments of higher order and central moments can be introduced in analogy to the defini-
tions in Section 1.2.2. Joint moments and joint central moments can be defined as:

E{x¢xy (1.45)

and

E{l — Efxu}]™ [xe — E4x317), (1.46)
respectively, where oo and (3 are positive integers.
Notice that the characteristic function, of the jointly distributed r.v.’s, gives a convenient

way of computing moments, just as it did in the scalar case. Taking the first derivative of
the characteristic function (1.41) with respect to component uj we have

Jug

IPxyx, (U5 - -5 ) = 1E{xy exp (iium) b (1.47)
7=1

Evaluating this derivative at (u1,---,u,) = (0,---,0) provides a way to compute the first
moment with respect to component xg, that is,

1 0¢x,... cee Uy
fx) = + Oxixa (i) (1.48)
? Ju (1,++n) =(0,-+0)
Successive n derivatives, with respect to arbitrary n components of (uy,---,u,) produce
the n—th non—central moment
1 O0ox,.x, (U1, -, u,
E{xpxg-} = — 2 AC ) : (1.49)
L 8uk8ul . e (U1,"'7un):(07"'70)

Of fundamental importance is the concept of covariance between x; and x4, defined as:
cov(xg, x¢) = E{[xk — E{xx ] [xe — E{x¢}]} - (1.50)
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We have that

cov (X, x¢) = E{xpxe} — E{xp FE{x¢} (1.51)
and also,
cov(Xg, X)) = var(xg) . (1.52)
The ratio ( )
_cov(Xp, Xy
p(Xk,x¢) = oo (xe) (1.53)

defines the correlation coefficient between xj and x,. Therefore, p(xg, xx) = 1.

It is of frequent interest to obtain the probability distribution or density function of a
random variable, given its corresponding joint function. That is, consider two r.v.’s x; and
Xg, jointly distributed, then

1 o0
Fx, (21) = Fx,x, (21,00) = / / Px, %, (81, 52) dsidsz (1.54)

and analogously, Fx,(z2) = Fx,x, (00, z2), where Fx, (z1) and Fx,(z3) , are referred to as
marginal distribution functions. The marginal density function is then given by

OF T1,00 o0
1) = 2B [ () ds (1.55)

It is convenient, at this point, to introduce a more compact notation utilizing vectors. Define
the vector random variable (or simply the random vector) in n dimensions as:
— T
X = (X1Xg - - Xp) (1.56)

where lower case bold letters refer to vectors, and T refers to the transposition operation.
By analogy with the notation we have utilized up to here, we will refer to the value assumed
by the random vector x as & = (2122 - - -wn)T. In this manner,

pX(:B) EpX1X2~~~Xn($17$27"'7$n) (157)
Likewise, the probability distribution can be written as
x
Fe(z) = / px(z)dz’
1 Tn
_ / / Dy (@ ) - d, (1.58)

where we call attention for the notation de = dxy---dx,, and similarly the probability
density function becomes

_ O"Fy(z)  0"Fx(z)

x = 1.59
Px(@) Ox dwy---0x, ( )
The marginal probability density can be written as
0Fx, (x o0
P (TK) = % = / px(@’) dx’ ), (1.60)
Tk —00



where de_j, = day - - -dep_qdagyq - - dxy,.

According to the definition of mean of a random variable, the mean of a random vector is
given by the mean of its components:

E{x1} 2 wpx(2)da’
&x} = : = : (1.61)
et | L (el
Analogously, the mean of a random matrix is the mean of the matrix elements. The matrix

formed by the mean of the outer product of the vector x — £{x} with itself is the n x n
covariance matrix:

Py = &x-&{x)x-{x)"}

var(zy)  cov(xy,za) -+ cov(ay,z,)
cov(xg, 1 var(zy e cov(zy, @,
S (162
cov(z,, 1) cov(zy,x2) oo var(z,)

Notice that Py is a symmetric positive semi-definite matrix, that is, yPxy? > 0, for all
y € R".

Two scalar r.v.’s x and y are said to be independent if any of the (equivalent) conditions
are satisfied:

Fxy(z,y) Fx(x)Fy(y) (1.63a)
pxy(z,y) = px(x)py(y) (1.63b)
E{fx)g(y)} = S{f(x)}EL9H)} (1.63c)

Analogously, two vector r.v.’s x and y are said to be jointly independent if

Pxy (%, y) = px(2)py (y) (1.64)

We say that two jointly distributed random vectors x and y are uncorrelated if
cov(x,y)=0, (1.65)

since the correlation coefficient defined in (1.53) is null. As a matter of fact, two r.v.’s are
said to be orthogonal when

E{xy'}=o0. (1.66)

This equality is often referred to as the orthogonality principle.

The n r.v.’s {xy,--+,x,} are said to be jointly Gaussian, or jointly normal, if their joint
probability density function is given by

1

pe(®) = Gy P | @ —m P @ =) (1.67)
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where the notation |P| stands for the determinant of P, and P~! refers to the inverse of
the matrix P. The vector x is said to be normally distributed or Gaussian, with mean
p = E{x} and covariance P, and is abbreviated by x ~ A (p, P). Observe that, in order
to simplify the notation, we temporarily eliminated the subscript x referring to the r.v. in
question in g and P.

Utilizing the vector notation, the joint characteristic function (1.41) can be written as:

dx(u) = E{ exp(iu’x) }. (1.68)

In this way, the characteristic function of a normally distributed random vector can be
calculated using the expression above and the transformation of variables @ = P2y + p,
that is,

_ o wlax _ 1
oxlw) = /oop"(m)e dw = (27)"/2|P|1/2

< [ explogyTy) exp [T (PUy + )] acle(w)llldy (1.69)

— 00

where ||Jac[z(y)]|| is the absolute value of the determinant of the Jacobian matrix, defined
as

oy Oz, dny
Jaclz(y)] = 5 7 = et o (1.70)
Qxy  Ozy . Dzp
9y1 92 Iyn
of the transformation. Using the fact that
Jaclz(y)]| = [P"/? = [P|'/? (1.71)
we can write
. 1 o 1 .
¢x(u) = exp(luTu)W/ exp [—§(yTy —2iu"P'y)| dy (1.72)

Adding and subtracting (1/2)u’Pu to complete the square in the integrand above, we
obtain:

¢x(u) = exp(iuTu—%uTPu)

0 1 1
X /_ CoE exp [—§(yTy —2iu’P/?y — uTPu)] dy

1
= exp(iul p— §uTPu)

00 1 1 . .
X /_ )2 exp [—§(y — P 2u)T (y - zPl/zu)] dy (1.73)

and making use of the integral

/OO exp (—%yTy) dy = /(27)" (1.74)

— 00



we have that
T 1 T
¢dx(u) = exp(iu’ p — Ju Pu), (1.75)

is the characteristic function for a Gaussian distribution.

In the calculation of the integral above we defined the vector y as a function of the random
vector x and transformed the integral in to a simpler integral. This gives an opportunity for
us to mention a theorem relating functional transformation of random variable (vectors) and
their respective probability distributions. Consider two n—dimensional random vectors x
and y (not related to the characteristic function calculated above), that are related through
a function f as y = f(x), such that the inverse functional relation x = f~!(y) exists. In
this case, the probability density py(y) of y can be obtained given the probability density
px(x) of x by the transformation:

py(y) = pxlf (@) [Jac([f~ (»)]]] (1.76)

where ||Jac([f~1(y)]|| is the absolute value of the determinant of the Jacobian of the inverse
transformation of x in to y. A proof of this theorem is given in Jazwinski [84], pp. 34-35.

1.3.3 Conditional Expectations

Motivated by the conditional probability concept presented in Section 1.1.2, we now in-
troduce the concept of conditional probability density. If x and y are random vectors, the
probability density that the event x occurs given that the event y occurred is defined as

Pxy (337 y)

Pxly(®ly) = (1.77)
v py(y)
Analogously, reversing the meaning of x and y,
Pylx(ylz) = Py (@,9) : (1.78)
px(T)
and Bayes rule for probability densities immediately follows:
Pylx (y|2)px(®)
Py (aly) = T (L.79)

py(y)

Based on the definition (1.77) we can define the conditional expectation (or mean) of an
r.v. X given an r.v. y as:

eixly} = [ apay(aly) da. (1.80)

Now remember that the unconditional mean is given by
£ix) = / 2pe(z) d, (1.81)
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and that the marginal probability density px () can be obtained from the joint probability
density pxy(x,y) as,

px(x) :/ Pxy (2, y) dy. (1.82)
Considering the definition (1.77) we can write,
px () :/ Pxly (Z|y)py (y) dy (1.83)

and substituting this result in (1.81) we have that
Ex} = / / zpyy (z|y)py (y) dyde

= /_OOE{XIy}py(y)dy
= &{&{xly}}, (1.84)

where we used definition (1.80) of conditional expectation. The expression above is some-
times referred to as the chain rule for conditional expectations. Analogously we can obtain:

L y)) = E{E{f(x )yt (1.85)

We can also define the conditional covariance matrix as

Py = &{lx - Efxly)lx - Efxly}) Iy}, (1.86)

xly 18 @ random matrix, contrary to what we encountered when we
defined the unconditional covariance matrix (1.62).

where we notice that P

We will now prove the following important result for normally distributed r.v.’s: the con-
ditional probability of two normally distributed random vectors x and y, with dimensions
n and m respectively, is also normal and is given by:

1 1 .

—_ J— J— T - J—
px|y(w|y) - (277)n/2|Px|y|1/2 eXp _Q(w Mx|y) Px|y(w Mx|y) 9 (187)
where
Bxy = Bx + Py Py (Y — py), (1.88)
and
P,y = Px — P P,'PL . (1.89)

Now consider the following vector z = [x” y?]7 of dimension (n-+m). This vector has mean
u, given by

_ _ | E{x) B
B, =&{z} = &y} 1ty (1.90)
and covariance P, that can be written as
PZ = g{(z - /'l’z)(z - I’LZ)T}
[ e )= )" Ex - )y — 1) ") ]
E{(y = my)(x = )"} E{y — my)(y — 1y)"}
_ l If’)fy If’;fyy ] . (1.91)

12



Let us make use of the following equality (simple to verify):

-1 -1
I —Py Py P, _Il . 0 _ I PPy
0 I Py Py, 1 0 I
| Px—PxyPyiPyy Py
0 P,
— Pyy O
= [ 0 P, ] ) (1.92)
where Py, is defined as in (1.89), and we are assuming that P;l exists. From this expres-

sion, it follows that the determinant of the covariance matrix P, is

[Pl = [Pxiyl [Pyl
= |Px—P,,P; 1PT||Py| (1.93)

(Householder [83], p. 17). Moreover, we have that

1 _
p-l _ I P, 0 I —P,PJ!
. ~-P,'P, I o P;l||o I
-1 -1 -1
— P | _PX|yPXyPy (194)
—-P;'PLP !l Py'PLP_ PP, + P!
x|y x|y y

Therefore, multiplying P, ' by (z — p,)7 on the left and by (z — u,) on the right, we have

(2= 1) P (2= y) = (2 1) Py (@ — )
— (2 1) P PPy (y — py)
— (y—ny)"PYIPLPL (@ — py)
+ (y—ny) Py PGP P P (y — py)
+ (¥ —ny) Py — my) (1.95)

and using the definition (1.88) we can write

(@ = puy) P (@ = ) = [(@ = 1) = Py Py (y — 1y )ITPLL
< [(x — py) = Pxy P (y — py)]
T - I'I’X)TP;|1y(w — )
@ — py) P Py Pyt (y — )
) IPT x|y( — Bx)
y'PPL P

y_l'l’y

(
(
(
(

Y- Ky y Py Py (Y — )

(1.96)

so that (1.95) reduces to
(Z - MZ)TPZ_I(Z - /'l’z) = (ZIZ - /*l’x|y)T]':.):|1y(a3 - Mx|y) + (y - /'Ly)TP;l(y - /'l’y) (197)

13



By the definition of conditional probability we have

pxy(wvy) _ pz(z)
Py (y) py(y)

Pxly (£B|y)

_ 1 |Py|1/2 exp[—%(z - MZ)TPZ_I(Z - /'l’z)] (1 98)
(27)"/2 [Py |12 exp[—§(y — py) TPy (y — py)
and utilizing (1.93) and (1.97) we obtain
(xly) :
P T an) [Py — Py Py PL 172
1 _ _
X exp[—§(a: - /'l’x|y)T[PX - PXyPyley] l(m - N’x|y)]
(1.99)

which is the desired result. The assumption made above that the inverse of Py exists
is not necessary. When this inverse does not exist, it is possible to show (Kalman [89])
that the same result is still valid, but in place of the inverse of Py, we should utilize the
pseudo-inverse Py .

The calculation above involved construction of the joint probability distribution p,(z) of the
random vector z = [x7yT]T. Let us assume for the moment that the two random vectors
x and y are uncorrelated, that is, Py = 0. Hence, referring back to (1.88) and (1.89) it
follows that,

l'l’x|y = Hx (1100)
Px|y = Px (1101)

which is intuitively in agreement with the notion of independence. Introducing these results
in (1.97) we have

(2= 1) P (z = py) = (2 — 1) TP (@ — ) + (¥ — 1y) Py Yy — ) (1.102)
Moreover, it follows from (1.93) that for uncorrelated random vectors x and y,
[Ps| = |Px| [Pyl (1.103)

Thus, the joint probability density function p,(z) can then be written as

1 1 1 -
pz(z) = (277)(71+m)/2 |P |1/2 exp[—§(z - I'I’Z)TPZ l(z - l'l’z)]
1 1

(QT)(n-I—m)/Q |PX|1/2|Py|1/2

< expl 3 (@ — ) PR @~ ) — 3y~ 1) P )]

2
1 1 1 _
= WW eXP[—§(fB - Nx)Tle(fB - Mx)]
1 1 1 _
= px(@)py(y) (1.104)
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This shows that two normally distributed random vectors that are uncorrelated are also
independent. We have seen earlier in this section that independence among random vari-
ables implied they are uncorrelated; the contrary was not necessarily true. However, as we
have just shown, the contrary is true in the case of normally distributed random variables
(vectors).

EXERCISES

1. Using the definition of Rayleigh probability density function given in (1.12): (a) cal-
culate the mean and standard deviation for a r.v. with that distribution; (b) find the
mode of the r.v., that is, is most likely value.

2. (Brown [19], Problem 1.40) A pair of random variables, x e y, have the following joint
probability density function:

(2, y) = 1 0<y<2ze0<2<1
Pyl 97 =11 0 em everywhere else

Find &{x|y = .5}. [Hint: Use (1.77) to find pxy(z) for y = 0.5, and then integrate
zpx|y (¢) to find E{x|]y = .5}.]

3. Consider a zero-mean Gaussian random vector, with probability density and charac-

teristic functions .

P Gy

1
——:BTP_laz] ,

exp 5

9

¢x(u) = exp [—%HTPU

respectively. Show that the following holds for the first four moments of this distri-
bution:

E{Xk} =0 E{kal} = Pkl
E{kalxm} =0 g{XkX[Xan} = Pklen + Pkmljln + Pknljlm

where x;,7 € {k, [, m, n}, are elements of the random vector x, and P;;, 4, j € {k,{, m,n},
are elements of P.

4. Show that the linear transformation of a normally distributed vector is also normally
distributed. That is, show that for a given normally distributed vector x, with mean
tx and covariance Ry, the linear transformation

y=Ax+b

produces a normally distributed vector y with mean puy = Apux + b and covariance
Ry, = AR4AT.

5. The log—normal distribution is defined by

() 1 1 1 (1 x)2
T) = —exp |[—= |In —
px oIms T P75 Zo

Show that:
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(a) its mean and variance are
= $0€52/2
var(z) = $(2)652 (652 - 1)
respectively;
(b) introducing the variable
z
2* = fln(—)
v

the probability density function px(z) above can be converted to a Gaussian
probability density function p%(z) of the form

* 1 ($* — xS)Q
Px(r) = ——exp [— oz
where ¢ = s, and
vy = BIn(22)
’ ¥

This justifies the name log—normal distribution for px(z), since the logarithm of its
variable is normally distributed.

. According to what we have seen in the previous exercise, let v an n—dimensional
normally distributed r.v., defined as v ~ A (uy,P). The vector with components w;
defined as w; = exp(v;) for j =1,---,n is said to be distributed log—normally and it
is represented by w ~ LN (uw,R) where py, is its mean and R its covariance. Show
that

Efwi} = exp e+ 575

and

R = E{Wj}g{wk}(epﬂk -1).
(Hint: Utilize the concept of characteristic function.)

. Computer Assignment: (Based on Tarantola [126]) Consider the experiment of mea-
suring (estimating) the value of a constant quantity corrupted by “noise”. To simulate
this situation, let us use Matlab, to generate 101 measurements of the random variable
y as follows:

Enter: ‘y = 21 4 rand(101,1) |, the intrinsic Matlab function rand generates a uni-

formly distributed r.v. in the interval (0, 1)
Enter: |x=20:0.1:23|; to generate an array with 31 points in the neighborhood of 21

Enter: | hist(y,x) |; this will show you a histogram corresponding to this experiment

Now using the Matlab functions median, mean, maxz and min, calculate the median,
mean and mid-range values for the experiment you have just performed. What did
you get? Three distinct values! Can you tell which of these are the closest value to
the true value?

. Computer Assignment: Ok, you probably still can’t answer the question above. So
here is the real assignment:
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(a)

Construct a Matlab function that repeats the experiment of the previous exercise
20 times, for the given value of the scalar under noise. For each successive
experiment, increase the number of samples used by 100, calculating and storing
the values their corresponding median, mean, and mid-range. At the end of the
20 experiments, plot the values obtained for the median, mean and mid-range
in each experiment. Can you guess now which one of these is the best estimate?

To really confirm your guess, fix the number of samples at 100 and repeat the
experiments 200 times, collecting the corresponding median, mean and mid—
range values for each experiment. (It is a good idea, if you do it as another
Matlab function.) In end of all 200 experiments, plot the histograms for each of
these three quantities. Which one has the least scatter? Is this compatible with
your guess from of the previous item?

Repeat items (a) and (b) for the same constant, but now being disturbed by a
normally distributed random variable with mean zero and unity variance. That
is, replace the Matlab function rand by the function randn. Caution: when
construction the histogram in this item chose a relatively large interval for the

outcome counting, e.g., |x=18:0.1:24|. This is necessary because the Gaussian

function has very long tails.
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