
Chapter 7

Four-Dimensional Variational

Assimilation

With 3-dimensional methods of data assimilation, such as 3DVAR or OI, the problem is under-
determined, so prior information is needed. This prior information or background often comes
from a short term forecast. The background error covariance matrix determines the scales in the
analysis. As modelled by OI, the smallest scales that can be represented with seasonal averag-
ing of innovations is about 300 km. This scale reflects the smallest distance between radiosonde
stations in North America and the fact that the flow has been averaged over 1 or more months.
In addition, the background error correlation matrix is often modelled using homogeneous and
isotropic assumptions. How can we relax some of these assumptions? Some fields such as ozone
can exhibit very sharp gradients when it is merely passively transported in the upper troposphere.
It can be shown that correlations are conserved between two points as they are advected. Thus the
background errors can be very anisotropic, forming fine filaments. The background errors clearly
have energy at small scales as evidenced by the sharp gradients. A more blatant example of the
need for anisotropic correlations is the fact that the wind typically has a larger component in the
zonal rather than meridional directions. Clearly, it would be useful to be able to analyse smaller
scales in the analysis than 300 km since global NWP forecast models can represent scales to 50 km.
It would also be useful to be able to have flow dependent background error covariances since the
forecast error is flow dependent. If this were possible, then observations taken from within a high
pressure centre could be analysed differently (barotropically) than those originating in a frontal
zone (which could have baroclinic structures).

In this section, we shall see that 4D methods and in particular, 4DVAR, can provide both
smaller scales in the analysis and flow dependent structures.

7.1 Introduction to 4DVAR

The general idea behind 4DVAR is to find the initial conditions which lead to the best fit to
observations which are spread over a time interval. The notion of “best” is defined by a scalar cost
function:

J =
1

2

∫ T

0
< (x(t)− z(t)), (x(t)− z(t)) > dt. (7.1)

143

As before, x(t) is the model state vector, but now it is varying continuously with time. Similarly,
the observation vector is given by z(t) which varies continuously in time. Note that the model and
observation vectors are the same dimension, in this discussion. The operator < a,b > refers to some
inner product. For model states in grid point space, the obvious choice of an inner product is the
scalar or dot product. Let’s define the initial model state vector by x(0) = x0. For a deterministic
model, once the initial conditions, boundary conditions and model parameters are specified, the
state evolution can be determined. Thus the cost function may be viewed as a function of initial
state, boundary conditions and model parameters only. If we assume the model parameters and
boundary conditions are known, then J is a function of initial state alone. Therefore, the obvious
question is: how does J change when the initial state is changed? Because the initial state is a
vector of many dimensions, the answer depends on which components of the initial state vector are
changed. An arbitrary change to the ith component of x0 will result in a change in J . This change
divided by the perturbation to the ith component defines the sensitivity of J to that perturbation.
In general, an arbitrary change to the initial state, δx0 will result in a change in J called the
directional derivative of J at x0 in the direction δx0. The gradient of J is related to the directional
derivative, δJ by

δJ =< ∇x0
J, δx0 >, (7.2)

where

∇x0
J =















∂J
∂x0,1
∂J
∂x0,2

...
∂J

∂x0,n















Ultimately, the initial state we are interested in, is the one which minimizes J . The adjoint method
involves the calculation of ∇x0

J . This alone will not determine the minimum of J , but some
iterative procedure can be defined which leads to a better guess (of initial state) which has lower
cost (or better fits the observations). Thus, one can proceed iteratively until one is sufficiently close
to the minimum.

The key step in 4DVAR is the calculation of the gradient of J about the initial state for an
arbitrary direction. If one were to consider a brute force method, one could try finite differences.
Thus for the ith component of the gradient vector, one could try

∂J

∂x0,i
=

J(x0 + αei)− J(x0)

α
,

where ei is a vector of zeros except for the ith element which is 1, and where α is a small positive
scalar. For realistic applications in which n is O(107), it is clear that this method is impractical,
especially when one considers that the gradient is needed at every iteration of the descent method.
The beauty of the adjoint method is that this gradient is obtained with a single integration of the
adjoint model backward in time. As we shall see, the adjoint model is simply the adjoint of the
Tangent Linear Model (TLM) with respect to a particular inner product. Because the adjoint model
runs backward in time, people sometimes confuse it with the inverse model. However, for a weather
forecast model, the inverse model doesn’t exist. Processes such as diffusion are numerically unstable
when the time direction is reversed. Moreover, processes such as precipitation are irreversible. The
adjoint model does exist, however. This is clear when one realizes that the whole role of the adjoint

144

model is simply to calculate the gradient of the cost function with respect to the initial state.
This derivative exists except when there are discontinuous (or threshold) processes such as rainout.
If such discontinuities can be smoothed, then the adjoint exists. (In practice, it is necessary to
simplify or smooth physical processes with thresholds or on-off switches for the purpose of the
adjoint calculation. The full nonlinear processes are used in the forward model however.)

In summary, the adjoint method is an iterative scheme which involves searching for the mini-
mum of a scalar cost function with respect to a multi-dimensional initial state. The algorithm is
called a descent method, and requires the derivative of the cost function with respect to arbitrary
perturbations of the initial state. This derivative is obtained by running an adjoint model backward
in time. Once the derivative is obtained, a direction which leads to lower cost has been identified,
but the step size has not. Therefore, further calculations are needed to determine how far along
this direction one needs to go to find a lower cost. Once this initial state is found, the next iteration
is started. The algorithm proceeds until the minimum of the cost function is found.

It should be noted that the adjoint method is used in 4DVAR to find the initial conditions
which minimize a cost function. However, one could equally well have chosen to find the boundary
conditions, or model parameters. For the case of tropospheric pollutants, initial conditions are
not so important in determining the chemical state. What is more important is the emissions or
sources of pollution. Thus the data assimilation problem for tropospheric pollution is concerned
with finding the sources (which can be viewed as model error) based on observations of constituents.
Finally, for limited area models, variation of the cost function with respect to boundary conditions
is also important.

Adjoint methods can be useful whenever the sensitivity of a scalar cost function with respect
to model inputs is required, and has application in fields outside of data assimilation, such as
predictability (using singular vectors) or ensemble forecasting, or targeting observations (finding
where to place observations for most impact on the forecast).

7.2 A simple continuous problem

It is useful to first consider a 4DVAR problem for a low-order model. With a simple model, one
can easily demonstrate that there are actually three ways of finding the derivatives of model output
with respect to the input: (1) classical variational methods which involve the derivation of Euler-
Lagrange equations, (2) the control theory approach of LeDimet and Talagrand (1986), and (3) the
Lagrange multiplier approach of Thacker and Long (1988). The following discussion is from Lewis
(1990).

Let us consider a highly truncated model of the atmosphere. We will use Platzman’s (1964)
truncated solution to Burger’s equation (1D nonlinear advection-diffusion equation):

du1
dt

= −
1

2
u1u2 (7.3)

du2
dt

=
1

2
u21. (7.4)

Here u1 and u2 are spectral amplitudes which are continuous functions of time. The model state
is given by

x =

[

u1
u2

]

,

145

so the model can be written in vector notation as

dx

dt
= M(x). (7.5)

The problem is to find the optimal initial state (t=0) such that the functional

J =
1

2

∫ T

0
< (x(t)− z(t)), (x(t)− z(t)) > dt. (7.6)

is minimized, subject to the constraint, dx/dt = M(x). Here z(t) represents the observed spectral
amplitudes which are continuous functions of time:

z =

[

uobs1

uobs2

]

,

7.2.1 The classical variational method

Instead of minimizing J , we can form the Lagrangian using

L = J +

∫ T

0
λ1(

du1
dt

+
1

2
u1u2)dt+

∫ T

0
λ2(

du2
dt
−

1

2
u21)dt, (7.7)

where λ1 and λ2 are arbitrary Lagrange multipliers which are continuous functions of time. To
minimize J , we require that the variation of L be 0. Thus,

δL = δJ +

∫ T

0
λ1(

dδu1
dt

+
1

2
δu1u2 +

1

2
u1δu2)dt+

∫ T

0
λ2(

dδu2
dt
− u1δu1)dt. (7.8)

Now we can substitute for δJ and integrate the time derivative terms by parts to obtain:

δL =

∫ T

0
[(u1 − uobs1)δu1 + (u2 − uobs2)δu2 − δu1

dλ1
dt
− δu2

dλ2
dt

+
1

2
λ1δu1u2

+
1

2
λ1u1δu2 − λ2u1δu1]dt+ (λ1δu1|

T
0 + λ2δu2|

T
0).

To get rid of the boundary terms, we must let λ1(T) = λ1(0) = 0 and λ2(T) = λ2(0) = 0 since δu1
and δu2 are arbitrary. In this case, we can simplify the above, and upon gathering terms, obtain:

δL =

∫ T

0
δu1(u1 − uobs1 −

dλ1
dt

+
1

2
λ1u2 − λ2u1)dt

+

∫ T

0
δu2(u2 − uobs2 −

dλ2
dt

+
1

2
λ1u1)dt = 0.

Since δu1 and δu2 are arbitrary, δL vanishes when

dλ1
dt

+ λ2u1 −
1

2
λ1u2 = u1 − uobs1 (7.9)

dλ2
dt
−

1

2
λ1u1 = u2 − uobs2 . (7.10)

Thus to solve for the minimum, we must solve these two equations (Euler-Lagrange equations)
along with the two constraints, (7.3) and (7.4) and the boundary conditions λ1(T) = λ1(0) = 0
and λ2(T) = λ2(0) = 0. This is not always easy to do, especially with a complex numerical model.

146

7.2.2 Optimal control theory

For optimal control theory, we first need to know how arbitrary perturbations of the intial condition
evolve in time. Why? Ultimately, we want to compute the derivative of J with respect to the initial
state, x0. However, we are going to do this using the chain rule:

dJ

dx0
=

dJ

dx

dx

dx0
.

The second term refers to the variation of the output of the model with respect to the input. This is
given by the Tangent Linear Model or TLM. For the model given by (7.5), arbitrary perturbations
evolve according to:

dδx

dt
=

dM(x)

dx
δx. (7.11)

Let us consider the specific equations, (7.3) and (7.4). We shall expand the state in terms of a
basic state and perturbation:

x = x̄+ δx.

Note that this mean state is evolving in time (unlike the case of usual stability analysis problems
in atmospheric dynamics courses), and is often referred to as the mean or background trajectory.
Expanding (7.3) and (7.4) yields:

d

dt
(ū1 + δu1) = −

1

2
(ū1 + δu1)(ū2 + δu2) (7.12)

d

dt
(ū2 + δu2) =

1

2
(ū1 + δu1)

2. (7.13)

Now assuming the mean trajectory satisfies the equations:

dū1
dt

= −
1

2
ū1ū2 (7.14)

dū2
dt

=
1

2
(ū1)

2, (7.15)

we can subtract these from (7.12) and (7.13) to get:

d

dt
(δu1) = −

1

2
(ū1δu2 + ū2δu1 + δu1δu2)

d

dt
(δu2) = ū1δu1 +

1

2
(δu1)

2

Now, in the definition of the derivative dx/dx0, we are interested in changes to x in the limit of
infinitessimally small changes in x0. So, for infinitessimally small δx0, the above system becomes

d

dt
(δu1) = −

1

2
(ū1δu2 + ū2δu1) (7.16)

d

dt
(δu2) = ū1δu1. (7.17)

In matrix notation, we can write

dδx

dt
=

[

−1
2
ū2 −

1
2
ū1

ū1 0

] [

δu1
δu2

]

=Mδx. (7.18)

147

This is the Tangent Linear Model or TLM. The TLM describes how arbitrary perturbations of the
initial conditions evolve in time. Note that variations of the cost function are given by

δJ =
1

2

∫ T

0
[< x̄+ δx− z, x̄+ δx− z > − < x̄− z, x̄− z >]dt

=

∫ T

0
< x̄− z, δx > dt. (7.19)

Again, because we are interested in infintessimally small perturbations (consistent with the defini-
tion of a derivative), we have dropped the second order terms.

Now consider the inner product of the Tangent Linear system with an arbitrary vector, p.
Then, integrate by parts.

∫ T

0
<

dδx

dt
,p > dt = < δx(T),p(T) > − < δx(0),p(0) > −

∫ T

0
< δx,

dp

dt
> dt. (7.20)

Let us insist that p(T) = 0. Then, using the TLM equation, we have that

∫ T

0
<Mδx,p > dt = − < δx(0),p(0) > −

∫ T

0
< δx,

dp

dt
> dt. (7.21)

or on rearranging:

− < δx(0),p(0) >=

∫ T

0
<Mδx,p > dt+

∫ T

0
< δx,

dp

dt
> dt. (7.22)

Now, using the definition of an adjoint operator:

< x,Ly >=< L∗x,y >

we can rewrite the first term to obtain

− < δx(0),p(0) > =

∫ T

0
< δx,M∗p > dt+

∫ T

0
< δx,

dp

dt
> dt.

=

∫ T

0
< δx,M∗p+

dp

dt
> dt. (7.23)

Let us require that

dp

dt
+M∗p = x̄− z (7.24)

where p(T) = 0. This linear equation defines the adjoint model. Then,

− < δx(0),p(0) >=

∫ T

0
< δx, x̄− z > dt = δJ. (7.25)

Since, by definition,
δJ =< ∇x0

J, δx0 >,

it is clear that
∇x0

J = −p(0).

148

Thus, we now know how to obtain the gradient of the cost function with respect to arbitrary
changes in the initial condition: you simply integrate the adjoint equation (7.24) backward in time
from the initial condition p(T) = 0, with forcing by the misfit between the mean trajectory and
the observations.

Using a brute force method to obtain the sensitivity of the model output with respect to the
input would require running the TLM n times for an initial state of dimension n, This would give
the n components of the gradient vector, ∇x0

. The beauty of the adjoint method, is that you can
obtain this derivative by simplying integrating the adjoint model backward in time, forced by the
misfit between the background trajectory and the observations. Thus, obtaining the gradient is
now tractable for large scale problems as when n is O(107).

In the control theory derivation, the TLM and variations of the cost function involved lineariza-
tion (or the dropping of nonlinear terms). Therefore, you may be wondering if some approximations
have been made. The answer is no. The method is exact, because the linearization was done to
obtain a derivative, and the definition of a derivative involves infinitessimal changes. Thus when
we dropped nonlinear terms, it is absolutely consistent with the definition of a derivative.

Compared to the classical variational method, the adjoint method required the initial condition
p(T) = 0. The classical method required λ1(T) = λ1(0) = 0 and λ2(T) = λ2(0) = 0. For the
adjoint method, p(0) is nonzero in general, since it only defines the gradient with respect to the
initial condition. However, it is zero when the minimum of the cost function has been found. Thus
the adjoint method uses the current estimate of the state (i.e. the background trajectory), whereas
the Euler-Lagrange equations have a form which assumes the state at the minimum.

7.2.3 Lagrange multiplier method

Consider the Lagrange multiplier,

Λ(t) =

[

λ1(t)
λ2(t)

]

and form the Lagrangian:

L = J +

∫ T

0
< Λ,

dx

dt
−M(x) > dt. (7.26)

Variations of the Lagrangian yield

δL = δJ +

∫ T

0
< δΛ,

dx

dt
−M(x) > dt+

∫ T

0
< Λ,

dδx

dt
−Mδx) > dt. (7.27)

The last term on the right hand side can be expanded as

∫ T

0
< Λ,

dδx

dt
−Mδx) > dt =

∫ T

0
< Λ,

dδx

dt
> dt−

∫ T

0
< Λ,Mδx) > dt

= < Λ(T), δx(T) > − < Λ(0), δx(0) > −

∫ T

0
<

dΛ

dt
, δx > dt−

∫ T

0
< Λ,Mδx) > dt

= < Λ(T), δx(T) > − < Λ(0), δx(0) > −

∫ T

0
<

dΛ

dt
, δx > dt−

∫ T

0
<M∗Λ, δx) > dt

= −

∫ T

0
<

dΛ

dt
+M∗Λ, δx) > dt (7.28)

149

where we have used the natural boundary conditions, Λ(T) = Λ(0) = 0. Since we’ve already
determined δJ from (7.19), we can write

δL =

∫ T

0
< x̄− z, δx > dt+ < δΛ,

dx

dt
−M(x) > dt−

∫ T

0
<

dΛ

dt
+M∗Λ, δx) > dt

=

∫ T

0
< −

dΛ

dt
−M∗Λ+ (x̄− z), δx > dt+ < δΛ,

dx

dt
−M(x) > dt

= 0. (7.29)

At the minimum of L, for arbitrary variations in δx and δΛ, we must have that

dx

dt
= M(x),

dΛ

dt
+M∗Λ = x̄− z. (7.30)

The first equation is the forward nonlinear model, and the second equation is exactly the adjoint
model, (7.24), derived above. However, we have only defined the solution at the minimum. To
get to the solution, the exact procedure of the previous section is used. Start with a first guess
of the initial state, integrate to obtain the trajectory, then run the adjoint equation backwards in
time, starting from Λ(T) = 0. Then Λ(0) is obtained by directly integrating (7.30). The solution

is obtained by assuming solutions of the form: Λ = Λ̃e−M
∗
t. Then

−Λ(0) =

∫ T

0
eM

∗
t∇xJ = ∇x0

J.

Thus after the adjoint integration backward in time, Λ(0) gives us exactly what we want: the
negative gradient of the cost function with respect to the initial state. Then using this, a step size
must be determined and a new initial state with lower cost is obtained. Then the iterations are
repeated.

The Lagrange multiplier method is identical to the adjoint method in practice since the iterative
procedure and the adjoint model are the same. The only difference is in the derivation of the
algorithm. By comparing the derivations, it is clear that the adjoint variable of the control theory
method is actually the Lagrange multiplier.

Before we finish this section, we should write down the adjoint model equations. Let

Λ =

[

λ1
λ2

]

,

The adjoint model is given by the transpose of the TLM transition equation, (7.18):

dΛ

dt
+M∗δΛ =

[

dλ1/dt
dλ2/dt

]

+

[

−1
2
ū2 ū1

−1
2
ū1 0

] [

λ1
λ2

]

=

[

ū1 − ūobs1

ū1 − ūobs1

]

(7.31)

This is also the adjoint equation for the control theory method. Comparing to (7.9) and (7.10), we
see that these are also identical to the adjoint equations derived in the classical variational method.

150

Figure 7.1: The 4DVAR algorithm. 4DVAR seeks the initial state which when integrated in time
best fits the observations in a time interval.

7.3 The 4DVAR algorithm

Consider a set of observations distributed over a time interval or assimilation period from t0 to tN .
This situation is depicted in Fig. 7.1. The model state has dimension n but is depicted in only
1 dimension, in this figure. The model state at t0 is x0. The idea of the 4DVAR algorithm is to
find the initial state, x0, which produces a model trajectory (when integrated in time using the
forecast model) that “best” fits the observations. Here, “best” means that a scalar cost function is
minimized. Mathematically, in 4DVAR, we want to find the state xa that minimizes:

J(x0) =
1

2
[x0 − x

f
0]
T(Pf

0)
−1[x0 − x

f
0]

+
1

2

N
∑

i=1

[zi −H(xi)]
TR−1[zi −H(xi)]. (7.32)

At each model time step, the innovation (difference between model and observed states evaluated
at observation locations) is squared and weighted by the inverse of the observation error variance.
Thus accurate observations (small variances) are given greater weight than poor observations. The
initial state x0 is called the control variable because it is the variable with respect to which the
minimization will be performed.

At each time step, the model state, xi, is related to the model initial state, x0, through the
forecast model itself:

xi = M(xi−1) = M(M(. . .M(x0))).

However, in reality, knowledge of the model state at t0 does not give an accurate description of
atmospheric state at a later time ti, because the forecast model is imperfect. This departure from
the truth is called model error and arises due to a number of sources: numerical discretization error,
omission of processes, parameterization errors, representativeness errors, etc. Thus, in 4DVAR
we use the forecast model as a strong constraint on state evolution. The advantage of doing so
is that complex nonlinear relationships can develop between analysis variables. (Recall that in
3D schemes, we were limited to linear relationships to define physical balances between analysis

151

variables.) Another advantage of relating model states in time using a forecast model is that instead
of having N times n unknowns, we have only n unknowns, namely, x0. Thus the underdeterminacy
problem (more unknowns than knowns/observations) is reduced. However, the drawback of this
assumption is that we are essentially assuming the forecast model is perfect. This is never going to
be the case. If we invoke a 4DVAR algorithm, then we are hoping that this is approximately the
case.

Now consider the 4DVAR algorithm in more detail. The cost function, (7.32), is a scalar. This
number is computed by summing over all time steps, the norm of the misfit between observations
and model states and the norm of the departure from the initial state. This function is supplied
to a packaged software routine designed for large scale problems. Typically, such software also
required the gradient of the cost function. To calculate the gradient with respect to the control
variable we first note the connection between model states at different time steps:

xk+1 = M(xk). (7.33)

The variation in a state is related to that at another time step by:

δxk+1 =
dM

dx
(xk)δxk =Mkδxk. (7.34)

The operator Mk is called the Tangent Linear Model and is a complete linearization of the
forecast model with respect to the control variables (model state variables). This Tangent Linear
Model (hereafter called the TLM) describes the evolution in time of perturbations about the initial
state. The model is linear in terms of the variations since the nonlinear evolution of perturbations
involve higher order terms:

δNLxk+1 = M(xk + δxk)−M(xk)

= Mkδxk + higher order terms. (7.35)

Now the adjoint of a linear operator, Mk, is defined as:

<Mkx, z >=< x,M∗
kz > . (7.36)

In our case, the adjoint of the TLM is a full model called the adjoint model. If a nonlinear model
is roughly quadratic in nonlinearity, then the Tangent Linear Model involves two terms for every 1
term in the forecast model and will thus be twice as expensive. It turns out that for NWP forecast
models, the cost of the TLM is between 1 and 2 times the cost of the nonlinear model (or NLM).
The cost of the adjoint model (or ADJ) is roughly the same as the cost of the TLM. Once we
have developed the TLM and ADJ models of our forecast model, we can proceed with the 4DVAR
algorithm.

Variations in the cost function due to variations in the initial state (control variable) are given
by:

δJ =
N
∑

k=0

〈∇xk
J, δxk〉

=
N
∑

k=0

〈∇xk
J,Mk−1Mk−2 . . .M0δx0〉

152

=
N
∑

k=0

〈

M∗
0M

∗
1 . . .M

∗
k−1∇xk

J, δx0
〉

=

〈

N
∑

k=0

M∗
0M

∗
1 . . .M

∗
k−1∇xk

J, δx0

〉

= 〈∇x0
J, δx0〉 . (7.37)

Equating the last two lines in the above yields:

∇x0
J =

N
∑

k=0

M∗
0M

∗
1 . . .M

∗
k−1∇xk

J. (7.38)

The gradient of the cost function (7.32) with respect to the state at time tk is very easy to calculate.
However, (7.38) says that we can easily relate this gradient to the one we want– the gradient with
respect to the initial state. We simply have to integrate the adjoint model backward in time with
a forcing of ∇xk

J (which is easy to calculate). The output of the adjoint model is the gradient of
the cost function with respect to the initial state. Because the TLM is a linear model, the adjoint
model does not have to be run backwards for each time step tk to compute the contribution of the
innovation at tk to the gradient at t0. Instead, as we run backward in time, we can simply add in the
gradient with respect to xk and continue. Thus we need to integrate the adjoint model backward
in time, only once, to get the impact of the initial perturbation on the fit to the observations at all
time steps.

4DVAR can be seen to be an iterative algorithm. For iteration i, we will

1. Run the nonlinear model with initial conditions, xi0, from t0 to tN .

2. Compute the cost, J(xi0).

3. Compute the gradient with respect to the initial state, ∇
x

i
0

J , to find out the direction of
steepest descent.

4. Choose a descent direction, si, based on the direction of steepest descent, and choose a step
size, ρi.

5. Modify the initial state: xi+10 = xi0 − ρisi.

This iteration is continued until the minimum of the cost function is found. The minimum occurs
when the norm of the gradient of the cost function is zero. However for finite arithmetic with
numerical error, we can only reduce the gradient norm to a small positive number. How small
is small? This is not clear. Moreover, it may be too expensive to proceed until the minimum is
found. Thus, an arbitrary stopping criterion is chosen, such as a preset number of iterations, or a
reduction in the gradient norm by 2 orders of magnitude.

In summary, the 4DVAR algorithm searches for the initial state which, when integrated in time,
produces a model trajectory that best fits the observations. “Best” here refers to the minimization
of a scalar cost function. The number of unknown model states in the assimilation interval is N
(where N is the number of model time steps in the assimilation period) but by insisting that each
state be related to the initial state through the forecast model integration, the number of unknowns
is reduced to 1 times the dimension of the model state, n. Thus forecast model is assumed to be

153

perfect. 4DVAR is expensive to develop since two new, complex models must be coded: the Tangent
Linear (TLM) and adjoint (ADJ) models. Thus the data assimilation scheme is now intimately
tied to a particular forecast model and cannot be easily attached to a different forecast model. On
the other hand, the future may bring solutions to this problem since adjoint compilers are being
developed. Thus the TLM or ADJ model could be obtained by running the NLM through this
type of compiler. Another possibility occurs when a forecast model is written in an object oriented
language such as Fortran 90. In this case, adjoint and tangent linear operators can be easily defined
(without taking the adjoint or derivative of the nonlinear model, line-by-line).

Clearly 4DVAR is expensive. Each iteration of the descent algorithm involves a forward model
run (to evaluate the cost function), and an adjoint model run (to evaluate the gradient). If the ADJ
model is 2 times the CPU of the nonlinear model, then one iteration of 4DVAR involves 3 times
the cost of the nonlinear model. If there are 30 iterations to reach the minimum, then 4DVAR is
30x3=90 times the cost of running the forecast model alone during the assimilation period. Once
the initial state is obtained, then the full suite of forecasts (from 1 to 14 days) can be issued.

Since 4DVAR is expensive, why is there such interest in 4DVAR for large scale problems?
4DVAR was implemented operationally at ECMWF (European Center for Medium Range Weather
Forecasts) in Nov. 1997 and is being developed for operation NWP forecasting purposes at MSC,
at the British Met Office and at NCEP (USA). The reason is that 4DVAR is very powerful.
Like 3DVAR, observations need not be of model variables. But unlike, 3D schemes, temporal
information of observations can be used to infer spatial information. Thus the influence of data
is flow dependent. In addition, observations can be assimilated at the time of observation. This
flow dependence means that increments from observations in a frontal zone can be baroclinically
distributed while those from observations in a high center can be distributed barotropically. The
greatest impact of 4DVAR operationally was found to be the better depiction of growing baroclinic
disturbances. If a storm is missed, forecast scores over the whole month can be affected. With
the implementation of 4DVAR, the likelihood of missing a storm was greatly reduced, improving
forecast scores in the midlatitude regions.

7.3.1 Adjoint Operator for Euclidean norm

How do you compute an adjoint model? This was done by hand, (coding the adjoint line-by-line)
for CMC’s forecast model, GEM, by Monique Tanguay and myself. (Automatic adjoint compilers
were not sufficiently developed by 1996). The adjoint of a linear operator is defined with respect
to a specific inner product. For a grid point model, a convenient inner product is the Euclidean
norm:

< a,b >= aTb.

In general, a TLM can be written as:

Lx = y.

The adjoint model is then:

x̂ = L∗ŷ

The input variable of the TLM is x which is similar to the output variable of the ADJ. However,
the ADJ variables are marked with hats to indicate that they are NOT the TLM variables. They
do not even have the same units as the TLM variables. Rather, x̂ is better interpreted as the
“sensitivity” of the cost function to the variable x.

154

The adjoint operator is defined as:

< Lx,y >=< x,L∗y > .

The adjoint operator is defined with respect to a particular linear operator, L, and a particular
inner product, <>.

Now, for the Euclidean norm, < a, b >= aTb, then

< Lx,y >= xTLTy =< x,LTy > .

Thus, for the Euclidean norm,

L∗ = LT.

For a particular subroutine of a TLM, each operation can be viewed as a matrix operation. Then
the ADJ routine will involve taking the transpose of each matrix operation, but in the reverse
order. Writing ADJ code may seem mysterious, but it is actually very mechanical (so compilers
can be written to do this) and simple, once you’ve done a few examples. For a large model, an
automatic procedure is recommended. Even for small models, adjoint compilers or tools such as
AMC by Ralf Geiring could be useful. Older versions of AMC are available for free from Ralf, but
newer versions are not.

7.3.2 Adjoint coding examples

Although I recommend using automatic routines to obtain adjoint code, it is sometimes simpler
to do it by hand. The other main advantage of knowing how to write adjoint code is that it is no
longer seen as mysterious. Furthermore, you would be able to check the output of automatic tools
(which require some knowledge anyway. They cannot be used as black boxes).

The basic recipe for writing adjoint code line-by-line is to start with the TLM code and work
module by module, testing each bit as you go. The general pattern is to copy the TLM code,
reverse the order of steps, but keep the main trajectory calculation at the beginning, as in the
TLM code. Then you simply transpose each statement. The idea of transposing statements will
become obvious after a few examples.

Example 7.1 DO LOOP 130

DO 130 I=1,N-1

130 X(I)=a*Y(I+1)

Here X and Y are N dimensional vectors. The matrix form of the above DO LOOP is













X(1)
X(2)
...
X(N − 1)













=













0 a 0 · · · 0 0
0 0 a · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 a

























Y (1)
Y (2)
...
Y (N)













(7.39)

155

Note that the matrix is rectangular with dimension (N − 1) × N . The adjoint of this equation is
easily obtained by transposing the matrix:













Y (1)
Y (2)
...
Y (N)













=





















0 0 · · · 0
a 0 · · · 0
0 a · · · 0
...

... · · ·
...

0 0 · · · 0
0 0 · · · a

































X(1)
X(2)
...
X(N − 1)













(7.40)

The equivalent code is simply

DO 130 I=1,N-1

130 Y(I+1)=a*X(I)

Example 7.2 DO LOOP 140

DO 140 I=1,N-1

140 X(I)=X(I)+a*Y(I+1)

In matrix form, this DO LOOP is













X(1)
X(2)
...
X(N − 1)













=













1 0 0 · · · 0 0 a 0 0 · · · 0 0
0 1 0 · · · 0 0 0 a 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0 0 0 0 · · · 0 a



































X(1)
...
X(N − 1)
Y (1)
...
Y (N)























(7.41)

Note that the matrix is rectangular with dimension (N − 1)× 2N − 1. The adjoint of this equation
is easily obtained by transposing the matrix:























X(1)
...
X(N − 1)
Y (1)
...
Y (N)























=









































1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0
a 0 0 · · · 0 0
0 a 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 a





















































X(1)
X(2)
...
X(N − 1)













(7.42)

The equivalent code is simply

DO 140 I=1,N-1

140 Y(I+1)=a*X(I)

DO 141 I=1,N-1

141 X(I)=X(I)

156

Of course the second DO LOOP could be omitted. Then the result of both examples 1 and 2 are
identical. The adjoint of LOOP 130 has two solutions:

DO 1000 I=1,N-1

1000 Y(I+1)=a*X(I)

or

DO 2000 I=1,N-1

2000 Y(I+1)=a*X(I) + Y(I+1)

If the values of Y(I) are reused after the DO loop 130 in example 1 in the TLM, the adjoint of the
DO LOOP 130 should be DO LOOP 2000. On the other hand, if the values of Y(I) are not reused
after DO LOOP 130 in the TLM, the adjoint loop should be 1000.

Example 7.3 Recursion

DO 121 I=2,N

121 X(I)=b*X(I-1)

To get the adjoint of LOOP 121, the order of the loop must be reversed. This can be done in
general, but is not necessary when the order doesn’t matter, as in the above examples. The adjoint
is then

DO 121 I=N,2,-1

121 X(I-1)=X(I-1)+b*X(I)

Example 7.4 Find the adjoint of the following TLM code:

DO 120 K=1,3

120 D(K+1)=D(K)+A(K)*C(K)+E*B(K)

where A(K),B(K) are constants. The adjoint code is

E = 0.0

DO 101 K=1,3

101 C(K)=0.0

DO 120 K=3,1,-1

120 D(K+1)=D(K)+A(K)*C(K)+E*B(K)

E = E+B(K)*D(K+1)

C(K) = C(K) + A(K)*D(K+1)

D(K) = D(K) + D(K+1)

120 CONTINUE

The initialization of E and C(K) is not needed if these variables exist in the adjoint code preceding
loop 120.

157

7.3.3 Tangent Linear Hypothesis

In the 4DVAR algorithm, a TLM was defined (but never directly used). What does this linearization
imply? By using a TLM, we are saying that arbitrary perturbations to the initial state evolve
approximately linearly in time. This assumption can and should be tested before applying 4DVAR
to any given problem.

For a nonlinear Model (NLM),
dx

dt
= M(x),

if x = x̄+ δx satisfies the NLM then to first order:

d(δx)

dt
=

∂M(x̄)

∂x
δx =M(x̄)δx.

On the other hand, the nonlinear evolution of perturbations is given by

M(x̄+ δx)−M(x̄).

When the nonlinear evolution is similar to the linear evolution of perturbations, the tangent linear
hypothesis is valid. Thus, the TLM is valid when:

||M(x̄+ δx)−M(x̄)−M(x̄)δx||

||M(x̄)δx||
¿ 1.

The nonlinear evolution of perturbations involves second and higher order terms. These should be
small compared to the linear term if the tangent linear hypothesis is to be valid.

The range of validity of a TLM must be tested for each particular problem. For NWP forecast
models, the TLM was found to be valid for 2 days for an f-plane shallow water model (Lacarra and
Talagrand 1988), 2 days for a T21L19 primitive equations model on a sphere (Rabier and Courtier
1992) and 1-1.5 days for a mesoscale primitive equations model (Vukicevic 1991).

Clearly, the assimilation period for 4DVAR must not exceed the range of validity of the TLM.
The assimilation period must be chosen so that perturbations evolve approximately linearly. If the
assimilation period is too long, the final state will be too sensitive to small perturbations in the
initial state and we cannot uniquely determine an initial perturbation that moves the state closer
to observations.

In choosing as assimilation period, does the principle, “the shorter the better” apply? Interestly,
this is NOT the case. There is an optimal assimilation period for a given problem. This was
demonstrated by Tanguay et al. (1995) using a barotropic vorticity equation model. In this
model, there was a downscale energy cascade so that defining large scales of the model state
would lead to some recovery of smaller scales that were not observed simply through the downscale
cascade of information. Choosing a very short assimilation period does not allow for nonlinear scale
interactions so that the recovery of smaller, unobserved scales is limited.

7.4 A scalar 4DVAR example

Consider the simple example illustrated in Fig. 7.2. The assimilation period is 8 time steps. There
is a single observation at time step 2. The background is of course available at the initial time,
time step 0. What is the analysis at time step 2?

158

0 1 2 3 4 5 6 7 8
Time
step

0 TTime

x
0

b
x

2

obs

Figure 7.2: A scalar 4DVAR example

The scalar 4DVAR cost function is:

J(x0) =
1

2

(x0 − xb0)
2

σ2b
+

1

2

N
∑

k=0

(xk − xobsk)2

σ2r
.

Since there is only 1 observation at time step 2, this simplifies to

J(x0) =
1

2

(x0 − xb0)
2

σ2b
+

1

2

(x2 − xobs2)2

σ2r
.

The minimum occurs when J′(x0) = 0. i.e. when

(x0 − xb0)

σ2b
+

(x2 − xobs2)

σ2r

dx2
dx1

dx1
dx0

= 0. (7.43)

In order to determine, dx2/dx1 and dx1/dx0, we must define a specific forecast model. Therefore
assume a simple, linear forecast model of the form:

dx

dt
= −γx.

This model can represent the chemical decay of a species, i.e. x(t) = x(0)e−γt. Discretize using an
upstream scheme:

x(t+∆t)− x(t) = ∆t[−γx(t+∆t)]

which leads to:

x(t+∆t) =

(

1

1 + γ∆t

)

x(t)

or

xk+1 = M(xk) = cxk. (7.44)

where

c =

(

1

1 + γ∆t

)

.

For the scalar, linear forecast model, xk+1 = cxk, (7.43) becomes

(x0 − xb0)

σ2b
+

(x2 − xobs2)

σ2r
c2 = 0. (7.45)

159

Solving for x0 and then deducing x2 from (7.44) gives

x0 = xb +
c2σ2b

c4σ2b + σ2r
[xobs2 − c2xb0].

x2 = c2xb +
c4σ2b

c4σ2b + σ2r
[xobs2 − c2xb0].

Consider some special cases. Case 1: if γ → 0, then c → 1. The model becomes a steady-state

model, xk+1 = xk. The solution then becomes the 3D solution, namely, x0 = xb+
σ2

b

σ2

b
+σ2

r
[xobs2 −x

b
0].

If the model is steady state, one can simply use all observations whatever time they occur, as in
the 3D case.

Another extreme is when γ → ∞ and c → 0. The model then becomes xk+1 = 0 with the
initial condition, x0 = xb. There is no dynamical link between states at two different timesteps.
The initial chemical is depleted so quickly that it is removed by the first time step. Thereafter, its
concentration is nil. Now, if the observation is perfect, σ2r=0, x2 = xobs2 but x0 is undefined. The
information at x0 cannot be spread backward in time because there is no dynamical connection
between states at two different times.

7.4.1 A scalar Kalman filter example

Now for comparison, let us redo the simple scalar example with a Kalman filter. The stochastic-
Dynamic model is

xtk+1 = M(xtk) + εqk

xobsk = xtk + εrk

where εqk is N(0,σ2q), ε
r
k is N(0,σ2r), x

t
0 − xb0 is N(0,σ2b)

The Kalman Filter steps are then:
1) Forecast step:

xfk+1 = M(xak) = cxk

P f
k+1 = c2P a

k + σ2q

2) Analysis step:

xak = xfk +K(xobsk − xfk)

K = P f
k (P

f
k + σ2r)

−1

P a
k = (1−K)P f

k = (
1

P f
k

+
1

σ2r
)−1

3) Initial conditions:

xa0 = xb0

P a
0 = σ2b

Now, let us begin at k = 0.

160

Step 1: Forecast, k=0

xf1 = M(xa0) = cxb0

P f
1 = c2σ2b + σ2q

Step 2: Analysis, k=1 (No obs, K = 0)

xa1 = xf1 = cxb0

P a
1 = P f

1 = c2σ2b + σ2q

Step 3: Forecast, k=1

xf2 = M(xa1) = c2xb0

P f
2 = c2P a

1 + σ2q = c4σ2b + (c2 + 1)σ2q

Step 4: Analysis, k=2

xa2 = xf2 +K(xobs2 − xf2)

K = P f
2 (P

f
2 + σ2r)

−1 =
c4σ2b + (c2 + 1)σ2q

c4σ2b + (c2 + 1)σ2q + σ2r

P a
2 = (

1

P f
2

+
1

σ2r
)−1

To summarize, the solution is:

xa2 = c2xb0 +
c4σ2b + (c2 + 1)σ2q

c4σ2b + (c2 + 1)σ2q + σ2r
(xobs2 − c2xb0)

Case 1: Perfect model: σ2q = 0, KF and 4DVAR solutions same at k=2

Case 2: γ → 0, c → 1, → 3D sol’n: xa2 = xb +
σ2

b
+2σ2

q

σ2

b
+2σ2

q+σ
2
r
[xobs2 − xb0].

Case 3: γ → ∞, c → 0, xa2 =
σ2

q

σ2
q+σ

2
r
xobs2 . If model is perfect, σ2q = 0 and xa2 = 0. If obs is

perfect, σ2r = 0 and xa2 = xobs2 .

7.5 4DVAR background error covariances

We have earlier claimed that 4DVAR allows for flow dependent influence of the data. This in turn
can allow for the anisotropic, spreading of information and also the analysis of small scales. With
3D schemes, columns of the background error covariance matrix were plotted to get an idea of
how the information of an observation is spread. However, in 4DVAR, we are actually running the
forecast model forward in time and the adjoint model backward in time to spread the information of
the observations. Thus we cannot simply examine the Pf matrix, which is modelled for stationary
processes. However, we can see the influence of the data directly by running 4DVAR with a single
observation.

Recall that 3DVAR solves:

xa = xb +PHT(HPHT +R)−1[z−H(xb)]

161

Then for a single observation, H = h, a scalar function. Let h = dh/dx. In this case, R is a
scalar, σ2r , and HPH

T = σ2b is also a scalar. σ2b is the background error variance at the observation
location. The analysis increment can then be written as

xa − xb = PhT
(

z − h(xb)

σ2b + σ2r

)

. (7.46)

In 4DVAR, H includes transport from t0 to tN by the TLM, M:

xa(t0)− x
b(t0) = PM

ThT

(

z − h(xb(tN))

σ2b + σ2r

)

(7.47)

where σ2b = hMPMThT. σ2b is the background error variance at the time, location and variable of
the observation. At tN the analysis increments are:

xa(tN)− xb(tN) = M(xa(t0)− x
b(t0))

= MPMThT

(

z − h(xb(tN))

σ2b + σ2r

)

. (7.48)

Note that MPMT appears in the direct propagation of the forecast error covariance matrix in
the Kalman filter and represents the evolution of initial errors through the model dynamics. Thus
in 4DVAR, we implicitly evolve the forecast error covariances through the assimilation period.
However, because this calculation is not done explicitly, we do not have the updated covariance
matrix at the end of the 4DVAR assimilation. Note also that unlike the Kalman filter, no model
error term (Q) is involved since the model was assumed to be perfect.

Thépaut et al. (1996) show some very nice examples of structure functions (the spreading
of information of a single observation) in 4DVAR. Compared to 3DVAR, 4DVAR is shown to
permit flow dependent spreading of information of observations. In particular, in a frontal zone, an
observation can influence the analysis in a complex, dynamically consistent way. The analysis can
then retain smaller scales compared to a 3DVAR analysis. As the assimilation period is decreased,
there is less time for the flow to advect the initial 3DVAR covariances Pb so that the structure
functions more closely resemble those of 3DVAR.

7.6 The conditional density viewpoint

Let us consider 4DVAR from a conditional density viewpoint. The problem is: what is the best
estimate of a sequence of N model states, Xk = (x0,x1, . . . ,xk)

T, given that the observation
sequence, Zk = (z0, z1, . . . , zk)

T, has occurred? Let us assume that the true system obeys

xk+1 = φkxk +wk, (7.49)

zk = Hkxk + vk. (7.50)

wk is the model error and vk is the observation error. The n-vector model state at time tk is xk,
while the observed state is zk, an m-vector. The transition matrix is φk and the observation oper-
ator is Hk. The model error and observation errors are assumed unbiased, white and independent

162

of each other. i.e. For all k, l,

< wk >= 0, < wk(wl)
T >= Qkδ

k
l

< vk >= 0, < vk(vl)
T >= Rkδ

k
l

< wk(vl)
T >= 0. (7.51)

The observation, model and initial state errors are all assumed to be Gaussian.

As we know, we would like to estimate the conditional density of the trajectory Xk (during the
assimilation period, [t0, tN]) given the observed trajectory, Zk:

pXk|Zk
(Xk|Zk).

Let’s write this p.d.f. in terms of quantities we can evaluate.

pXk|Zk
(Xk|Zk) =

pZk|Xk
(Zk|Xk)pXk

(Xk)

pZk
(Zk)

. (7.52)

Now

p(Zk|Xk) = p(zk,Zk−1|Xk)

= p(zk|Xk)p(Zk−1|Xk)

= p(zk|xk,Xk−1)p(Zk−1|xk,Xk−1)

= p(zk|xk)p(Zk−1|Xk−1) (7.53)

where we used the fact that the observation error is white in time to get the 2nd and 4th lines.
Thus p(Zk−1|Xk−1) can be expanded by recursively applying (7.53):

p(Zk|Xk) = p(zk|xk)p(zk−1|xk−1) . . . p(z0|x0) (7.54)

Also, we can expand

p(Xk) = p(xk,Xk−1) = p(xk|Xk−1)p(Xk−1)

= p(xk|xk−1)p(Xk−1). (7.55)

The assumption that xk is Markov was used to obtain the second line. Applying (7.55) recursively
yields

p(Xk) = p(xk|xk−1)p(xk−1|xk−2) . . . p(x1|x0)p(X0)

= p(xk|xk−1)p(xk−1|xk−2) . . . p(x1|x0)p(x0) (7.56)

Because the observation, model and initial state errors are Gaussian we can write the complete
p.d.f.s we require. Then from chapter 4 (Todling p. 65) we have that the conditional p.d.f. (7.54)
is

p(zk|xk) ∼ N(Hkxk,Rk)

so that

p(Zk|Xk) ∼ N(Hkxk,Rk)N(Hk−1xk−1,Rk−1) . . . N(H0x0,R0).

163

Similarly, we can deduce that

p(xk|xk−1) ∼ N(φk−1xk−1,Qk−1)

so that

p(Xk) ∼ N(φk−1xk−1,Qk−1)N(φk−2xk−2,Qk−2) . . . N(φ0x0,Q0)N(x̂f0 ,P
f
0).

The numerator of the a posteriori p.d.f. (7.52) can thus be written as:

pZk|Xk
(Zk|Xk)pXk

(Xk) ∝ exp

{

−
1

2

N
∑

k=0

(zk −Hkxk)
TR−1

k (zk −Hkxk)

−
1

2

N−1
∑

k=0

(xk − φk−1xk−1)
TQ−1

k−1(xk − φk−1xk−1)

−
1

2
(x0 − x̂

f
0)

T(Pf
0)

−1(x0 − x̂
f
0)

T

}

. (7.57)

To maximize (7.52) with respect to Xk, we can simply maximize the numerator of (7.52) and this
is equivalent to minimizing the negative of the argument of the exponent in the above. Thus, the
mode estimation of the a posteriori p.d.f., for Gaussian errors leads to the minimization of the cost
function:

J(Xk) =
1

2

N
∑

k=0

(zk −Hkxk)
TR−1

k (zk −Hkxk)

+
1

2

N−1
∑

k=0

(xk − φk−1xk−1)
TQ−1

k−1(xk − φk−1xk−1)

+
1

2
(x0 − x̂

f
0)

T(Pf
0)

−1(x0 − x̂
f
0)

T. (7.58)

(7.58) is the general 4DVAR cost function. The control variable is (N + 1)n where N + 1 is the
number of time steps in the assimilation interval and n is the dimension of the model state. If n is
typically O(107) and N is O(10), clearly, this problem is too big to solve. However, if the forecast
model is very good, then the time evolution of the true state is known:

xk+1 = φkxk.

Thus all states, xk can be related to the initial state x0 using this relationship. The number
of unknowns is thus reduced to simply n- the same as in the case of 3DVAR, but now we have
observations in the whole assimilation period. For the case of a perfect model, wk=0 in (7.49) and
(7.58) reduces to:

J(x0) =
1

2

N
∑

k=0

(zk −Hkxk)
TR−1

k (zk −Hkxk)

+
1

2
(x0 − x̂

f
0)

T(Pf
0)

−1(x0 − x̂
f
0). (7.59)

The minimization problem (7.58) is called weak constraint 4DVAR, while (7.59) is the 4DVAR
problem using the forecast model as a strong constraint. It is 4DVAR with a strong constraint

164

(perfect model assumption) that was implemented operationally at ECMWF (European Center for
Medium Range Weather Forecasting) in 1997 and is planned to be implemented operationally at
CMC (Canadian Meteorological Centre).

An interesting thing about 4DVAR is that the minimization process requires the cost function
and its gradient with respect to the state vector. Thus for nonlinear models and observation
operators we need the derivatives of the transition matrix and Hk with respect to the state. These
derivatives are called the “Tangent Linear” Models (TLMs). The adjoint of this linear operator,
with respect to a given inner product is called the “adjoint” model. The adjoint of the Tangent
Linear Forecast model runs backward in time, but is not an inverse model. Rather, the adjoint
model is the derivative of J with respect to the initial state. Or, the adjoint model can be viewed
as the sensitivity (as measured by a particular cost function) of the model to the initial state.

Note that 3DVAR is a special case of 4DVAR, for which N=0 in (7.59). Thus observations are
available only at the same time as the analysis and background fields.

REFERENCES

1. Klinker, E., F. Rabier, G. Kelly, J.-F. Mahfouf, 2000: The ECMWF operational imple-
mentation of four dimensional variational assimilation. Part III: Experimental results and
diagnostics with operational configuration. Q. J. R. Meteorol. Soc., 126, 1191-1215.

2. Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a
barotropic model. Tellus, 40, 91-95.

3. Ledimet, F. X. and O. Talagrand, 1986: Variational algorithms for analysis and assimilation
of meteorological observations: Theoretical aspects. Tellus, 38A:97-110.

4. Lewis, J., 1990: Introduction to the adjoint method of data assimilation: Parts I and II. In
Mesoscale Data Assimilation, 1990 NCAR Summer Colloquium, p. 297-319.

5. Platzman, G. W., 1964: An exact integral of complete spectral equations for unsteady one-
dimensional flow. Tellus, 16: 422-431.

6. Rabier, F. and Ph. Courtier, 1992: Four-dimensional assimilation in the presence of baroclinic
instability, Q. J. R. Meteorol. Soc., 118(506), 649-672.

7. Rabier, H. Järvinen, E. Klinker, J.-F. Mahfouf, A. Simmons, 2000: The ECMWF operational
implementation of four dimensional variational assimilation. Part I: Experimental results with
simplified physics. Q. J. R. Meteorol. Soc., 126, 1143-1170.

8. Tanguay, M., P. Bartello, P. Gauthier, 1995: Four-dimensional data assimilation with a wide
range of scales Tellus, 47A, 974-997.

9. Thacker, W. C. and B. R. Long, 1988: Fitting dynamics to data. J. Geophys. Res., 93:1227-
1240.

10. Thépaut, J.-N., P. Courtier, G. Belaud and G. Lemâitre, 1996: Dynamical structure functions
in a four-dimensional variational assimilation: A case study. Q. J. R. Meteorol. Soc., 122,
535-561.

165

11. Vukicevic, T., 1991: Nonlinear and linear evolution of initial forecast errors. Mon. Wea.
Rev., 119(7), 1602-1611.

7.7 Problem Set 7

1. (a) Consider the 3-component Lorenz equations:

dx

dt
= σ(y − x), (7.60)

dy

dt
= ρx− y − xz,

dz

dt
= xy − βz,

where σ, ρ and β are real constants. The cost function which defines the misfit between
model state and observations is given by

J =
1

2
[(x− xobs)2 + (y − yobs)2 + (z − zobs)2.]

What is the adjoint system of equations? First write the Tangent Linear system, then take
the transpose of the transition matrix and add forcing by the gradient of the cost function,
J .

(b) Consider the nonlinear advection-diffusion in one-dimension:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 (7.61)

over the domain [0, L]× [0, T]. The cost function is given by:

J =
1

2

∫ T

0

∫ L

0
(u− uobs)2dxdt.

We are now going to derive the adjoint equation following the control theory method of section
7.2.2.

(i) Write the TLM equation.
(ii) Write the expression for δJ .
(ii) Multiply the TLM equation by an arbitrary variable p(x,t) and integrate over the domain
in x and t. For the time derivative term, integrate by parts first in time. For the x derivative
term, integrate by parts in x first. For the term involving a second derivative, you will need
to integrate by parts twice. Eliminate some terms using the following boundary conditions
on p:

p(x, T) = 0, p(0, t) = p(L, t),
∂p

∂x
(0, t) =

∂p

∂x
(L, t)

Define the adjoint equation including forcing by the gradient of J.

2. Find the adjoint of dum.m by reversing the code. Test the adjoint routine and verify that it
is correct to at least 14 digits. You will receive dum.m by email, but here are the contents
of this file:

166

function y=dum(x,n)

y=zeros(1,n);

z=zeros(1,2*n);

for i=1:n-1

y(i)=x(i+1);

end

for i=1:n

z(i)=x(i);

end

for i=1:n

z(i+n)=x(i);

end

for i=1:n

y(i)=y(i) + 11*z(i) + 6*z(n+i);

end

3. Scalar 4DVAR. Consider the following scalar system:

xk+1 = mxk +wk (7.62)

zk = Hxk + vk (7.63)

Let P0 be the initial state error variance and R be the obs error variance. Then the cost
function is given by:

J(x0) =
1

2P0
(x0 − xf0)

2 +
1

2R

K
∑

k=1

(zk −Hxk)
2.

The gradient is given by

∇x0
J =

1

P0
(x0 − xf0)−

K
∑

k=1

m0m1 . . .mk−1HR−1(zk −Hxk)

where we used the fact that the transpose of a scalar is the scalar itself.

In this problem, we will write a MATLAB script to run the 4DVAR scheme. The assimilation
period will be timesteps.

1. What is the Hessian of J? You may use the fact that m is independent of timestep k.

2. Show by hand that the adjoint test is passed. In other words, let x be the model input
and y be the model output after k time steps, while x̂ is the adjoint model output and ŷ is
the adjoint model input. Then show that

< x, x̂ >=< y, ŷ > .

167

3. Here are some steps to help you write the 4DVAR script. Note that the first 2 steps
(initialization statements) are the same as in the scalar KF problem of the last chapter. Note
also that the instructions may seem laborious (given that simplifications are possible due to
the specific model used) but this will give you the basic 4DVAR coding recipe for any model.

(a) Define parameters and constants.

(b) Define initial conditions for the background and truth.

(c) Loop in time for nk timesteps. First generate the obs by perturbing the truth. Then
propagate the truth in time

(d) Compute the cost function. To do this, define a separate function to evaluate the cost
given an initial state. This will involve integrating the background state in time.

(e) Compute the gradient.

i. First copy your script to evaluate the cost function, renaming it to the gradient
function.

ii. Take the derivative of the background term.

iii. Set the adjoint variable at nk+1 to zero. Set the gradient equal to the adjoint
variable at nk+1.

iv. run the model to get the background trajectory.

v. loop backwards in time from nk to 1. Within the loop (i) add the contribution to
the gradient for time step k, then (ii) run the adjoint model backward one timestep
using the current gradient as the initial condition. Overwrite the gradient with the
output.

(f) Obtain the solution using Newton’s method. Use the Hessian obtained in (a). Because
the cost function is purely quadratic, Newton’s method will obtain the minimum in 1
iteration.

(g) Integrate the solution to get the final trajectory (the analysis).

(h) Plot background, true and obs as a function time step. Plot the actual error (|xak − xtk|)
as a function of time.

(i) Be prepared to hand-in a printout of your code, or email it to Lisa.

4. Run the 4DVAR script for R=H=P0=m=1. Let Q=0 and nk=50. Explain the results.
Now try Q=1. Explain what is happening in the plots and how the solution differs from the
scalar KF example for the same parameters. Note that the model is assumed to be perfect.

5. Now see what happens when the model is not perfect. When you generate the obs, use
mt = m + 0.05 = 1.05. Explain the results. Keep the parameter values used in part 4 with
Q=1.

6. Finally, imagine what would happen with a different assimilation period, say np=10. Then
there would be 5 cycles during the 50 time steps. (You may assume the model is perfect.)
Without actually coding anything (it would be too much work I think), draw a schematic of
what you think the plot of analysis, truth and obs would look like. After each cycle, the initial
background would be taken from the analysis at the last time step of the previous cycle.

168

4. MATLAB: Passive advection in 1D using 4DVAR. Let us return to the advection problem of
Ch. 3, prob. 4. and Ch. 5 prob. 3. This time we will run 4DVAR instead of a KF or OI
algorithm. To run 4DVAR you will need the additional MATLAB scripts: testadj.m, cost.m,
gradcost.m, upwindad.m, 4dvar.m.

(a) Note that the forecast model (for the 1D passive advection) is linear. Thus, there is no
need to linearize the model. However, we need an adjoint model for 4DVAR. This is provided
in upwindad.m . Once an adjoint is developed, we need to test it to see that it is correct to
machine precision. To test the adjoint you will need to run testadj.m. However, you must
first complete this code. Two lines near the bottom have been commented out. Uncomment
these and complete the equations. Run testadj.m. Provide a hardcopy of your results when
you have verified that the adjoint is correct.

(b) Cost function and gradient. Because our model is linear, the cost function is purely
quadratic:

J(x0) =
1

2

N
∑

k=0

(zk −Hxk)
TR−1(zk −Hxk) + (x0 − x̂

f
0)

T(Pf
0)

−1(x0 − x̂
f
0). (7.64)

The cost function is coded in cost.m. Read through this code and then complete the missing
two lines. The gradient of this cost function is

∇J(x0) = −
N
∑

k=0

MT
0M

T
1 . . .M

T
k−1H

TR−1(zk −Hxk) + (Pf
0)

−1(x0 − x̂
f
0). (7.65)

where we assumed the model was linear and given by:

xk = Mk−1xk−1

= Mk−1Mk−2 . . .M0x0 (7.66)

and the adjoint model is

δxk−1 =M
T
k−1δxk (7.67)

or

δx0 =M
T
0M

T
1 . . .M

T
k−2M

T
k−1δxk (7.68)

for a Euclidean norm (adjoint = transpose). Read through gradcost.m and complete the
missing two lines of code.

(c) Gradient test. Note that the gradient test is already in the var4d.m code. Run var4d(0,1,0.95,0) .

Try various observation frequencies:20, 10, 5, 2, 1. Choose an observation pattern of 1, (obs ev-
ery grid point), and an obs error of 0.02. Look for the output of the gradient test. Mathemati-
cally explain what this test is doing. (Hint: Consider a Taylor expansion of J(x+αδx)−J(x).
Then choose δx = ∇J(x).) Why do we need this test, if we already tested the adjoint for
accuracy?

(d) 4DVAR minimization. Normally, we can use some packaged software (based on a quasi-
Newton or conjugate gradient method for example) for the minimization. MATLAB’s basic

169

package does not have an optimization routine that also uses the gradient information. How-
ever, because our cost function is purely quadratic, we can write our own minimization algo-
rithm based on Newton’s method. Read the section below on Newton’s method. Newton’s
method requires knowledge of the Hessian of the cost function. To approximate the Hessian,
we simply perturbed the gradient. We approximate the jth column of the Hessian matrix by
a finite difference:

(J ′′)ej =
1

α
[∇J(xg + αej)−∇J(xg)] (7.69)

where xg is the guess or background state. ej is the jth column of the identity matrix. I used
α=10−3.

(e) Run the 4DVAR by typing var4d(0,1,0.95,0) . The Courant number will now be fixed

at 0.95 and Tfinal=1 as in the OI problem. The same three questions will be asked. Hitting
”return” will give the default. First enter observation frequency of 5 (obs every 5 time steps),
an observation sparsity of 1 (obs at every gridpoint), and ”return” for the obs error standard
deviation. This will give the default value of 0.02. How does the analysis compare with the
truth? Note that there is no error estimate. A bit more work is required to come up with an
error estimate and this was not done. Unlike the KF, the analysis error covariance matrix is
not part of the algorithm for 4DVAR.

(f) Now let’s make the problem a little harder. Again type var4d(0,1,0.95,0) , but provide

an obs error of 0.2. Keep the obs frequency of 5 and the obs sparsity of 1. Compare your
results with those of the Kalman filter.

(g) Now let’s see what happens when there are data gaps. Type var4d(0,1,0.95,0) , but

answer ”return” to all questions. This gives an obs every time step, over the left half of the
domain with a std deviation of 0.02. How the analysis fare? Now decrease the observation
frequency by typing first 2 then 5 and keeping the obs pattern and error std dev the same
as before. Now what happens to the solution? Why? Again compare your results to the KF
solution and discuss what you see.

Newton method solution for a quadratic cost function

Consider a quadratic cost function:

J(x) =
1

2
xTAx+ bTx+ c. (7.70)

The gradient is
∇J(x) = Ax+ b. (7.71)

The Hessian or second derivative is
J ′′(x) = A. (7.72)

Since we want to minimize (7.70), we want to solve for ∇J(x) = 0. Now for an initial guess
xg, we have that

∇J(xg) = Axg + b (7.73)

while at the solution, x̂, the gradient is zero, i.e.

∇J(x̂) = 0 = Ax̂+ b. (7.74)

170

Subtracting (7.73) - (7.74) yields:

∇J(xg) = A(xg − x̂). (7.75)

Solving for x̂, we obtain
x̂ = xg −A

−1∇J(xg) (7.76)

or on substituting the Hessian for A:

x̂ = xg − (J ′′)
−1
∇J(xg). (7.77)

171

