Gravity Waves in the Middle Atmosphere (a modeler's perspective)

Charles McLandress
University of Toronto
charles@atmosp.physics.utoronto.ca

GCC Summer School Banff, Alberta May 2004

Outline of Lecture

- Part 1 (Theory and Modelling)
 - 1. Importance of small-scale gravity waves
 - 2. Basic theory (simple)
 - 3. Parameterization in GCMs
 - 4. Results from the CMAM
- Part 2 (Observations)
 - 1. Measurement techniques
 - 2. Sampling issues
 - 3. What modelers need
- Summary

Importance of small-scale GWs

- 1. GWs keep the mesosphere far from radiative equilibrium.
 - radiative equilibrium:
 - ⇒ temperature highest where heating strongest & vice versa.
 - ⇒ summer pole should be warm, winter pole should be cold.
 - observations show the opposite:
 - → summer pole is cold
 - \rightarrow winter pole is warm.

Why?

- → GWs deposit zonal momentum in the mesosphere.
- \rightarrow this GW force (or drag) is negative in the winter hemisphere and positive in the summer hemisphere.
- \rightarrow drag must be balanced by Coriolis force $(f\bar{v}) \Rightarrow$ flow from summer pole to winter pole.
- \rightarrow meridional wind (\bar{v}) generates a vertical wind (\bar{w}) by mass continuity.
- \rightarrow downwelling $(\bar{w} < 0) \Rightarrow$ adiabatic compression \Rightarrow warming (winter pole).
- \rightarrow upwelling $(\bar{w} > 0) \Rightarrow$ adiabatic expansion \Rightarrow cooling (summer pole).
- \rightarrow this is dynamical heating and cooling.

- zonal winds computed from radiativeequilibrium temperature:
 - → are much stronger than observed winds
 - \rightarrow do not reverse in mesosphere.

Figure 2

 strong radiative-equilibrium wind is understood from thermal wind equation:

$$rac{\partial ar{U}_r}{\partial z} \propto -rac{1}{f}rac{\partial ar{T}_r}{\partial \phi}$$

- ightarrow in NH winter $\partial \bar{T}_r/\partial \phi < 0$ and f > 0
- $\Rightarrow U_r$ increases with height.

2. GWs warm winter polar stratosphere.

- downwelling (\bar{w}^*) produced by breaking GWs in the mesophere extends into the stratosphere.
 - downwelling ⇒ adiabatic compression⇒ warming.
 - polar winter stratosphere is cold and dark.
 - \Rightarrow long radiative relaxation time scale $(1/\alpha)$.
 - : $\bar{w}^* < 0$ and small $\alpha \Rightarrow$ large departure from radiative equilibrium, since from thermodynamic equation have that

$$(\bar{T} - \bar{T}_{rad}) \approx -\alpha^{-1} N^2 \bar{w}^*$$
 .

- "downward-control" impact of GWs is stronger in SH winter stratosphere since planetary wave drag is weaker.
- absence of drag in GCMs in SH winter is referred to as the "cold-pole problem."
 - → alleviated using GW drag parameterizations
 - \rightarrow or higher horizontal resolution.

3. GWs help drive the equatorial QBO.

Figure 5

- in the presence of tropical upwelling, planetary waves are unable to drive QBO.
 - → small-scale GWs provide the required extra drag (Dunkerton, 1997).

Figure 6

 most GCMs do not naturally produce a QBO from resolved waves ⇒ and must use parameterized GWs to get one.

Basic theory (simple)

- 1. Hydrostatic GWs without rotation (see Andrews et al., 1982)
 - use hydrostatic approximation ⇒ pressure gradient equals gravitational force.
 - neglect the rotation of the Earth.
 - assume background atmosphere with constant zonal wind (U) and buoyancy frequency (N); allow only density (ρ_o) to vary with height.
 - consider small-amplitude case
 ⇒ governing equations can be linearized.
 - assume wavelike perturbations proportional to $\exp[i(kx+mz-\omega t)]$, where k is the horizontal wavenumber (i.e., only east-west propagation), m is the vertical wavenumber, ω is the (ground-based) frequency.

 <u>dispersion relation</u> for the resulting set of equations* is

$$m^2 = \frac{N^2 k^2}{\widehat{\omega}^2}.$$

- ullet $\hat{\omega} \equiv \omega kU$ is the intrinsic frequency .
 - \rightarrow It is the frequency of the wave measured in a reference frame moving with the background wind (or <u>Doppler-shifted</u> frequency).
- vertical propagation:
 - since m^2 is positive, m is real and the wave is vertically propagating.
 - for upward energy propagation (i.e., upward group velocity) phase lines tilt:
 - \rightarrow eastward with height for $\hat{\omega} > 0$,
 - \rightarrow westward with height for $\hat{\omega} < 0$.

^{*}It has been assumed that the vertical scale of the wave is much less than the density scale height, i.e., the Boussinesq approximation.

amplitude growth with height:

 to conserve energy the amplitude of a vertically propagating wave increases exponentially with height[†].

• momentum flux:

- a vertically propagating wave transports horizontal momentum upward.
- this can be seen by computing the momentum flux (τ) .
 - \rightarrow it is easy to show that for our simple example $\tau = \rho_o \overline{u'w'}$ is constant.
- It is important to note that the sign of the momentum flux depends on the direction of horizontal propagation:[‡]

$$\Rightarrow \tau > 0 \text{ for } \hat{\omega} > 0,$$

 $\tau < 0 \text{ for } \hat{\omega} < 0.$

[†]This follows from the exponential decrease of back-ground density.

[‡]The continuity equation in pressure coordinates indicates that u' and w' are approximately in phase for $\widehat{\omega} > 0$ and out of phase for $\widehat{\omega} < 0$.

2. Rotation and nonhydrostatic effects (see Gill, 1982)

- the previous example was for hydrostatic GWs and did not include the effects of the Earth's rotation.
- when these effects are included, the dispersion relation becomes

$$m^2 = \frac{(N^2 - \hat{\omega}^2)k^2}{\hat{\omega}^2 - f^2}$$

where f is the Coriolis parameter.

• whether a wave is vertically propagating now depends on the intrinsic frequency, since $m^2>0$ requires

$$|f| < |\widehat{\omega}| < N.$$

- for $m^2 < 0$, the wave is vertically trapped.
 - → amplitude decreases exponentially with height.
 - \rightarrow momentum flux is zero.

• example: mountain waves ($\omega=0$) propagate vertically into the stratosphere only if $\lambda>(2\pi U)/N\approx 10$ km for typical values of U and N.

 \Rightarrow small-scale mountain waves, where $\lambda < (2\pi U)/N$, are vertically trapped (lee waves).

3. Gravity wave drag

- in the above examples (where the waves are steady, linear, and undamped), the momentum flux is independent of height.
- since the flux divergence is zero, such waves do not alter the background flow:

$$\frac{\partial U}{\partial t} + \dots = -\frac{1}{\rho_o} \frac{\partial \tau}{\partial z} = 0.$$

- when the GWs are damped they deposit their momentum, which exerts a force on the background flow.
 - \rightarrow This is called *gravity wave drag*.
- wave dissipation occurs when:
 - (1) $\hat{\omega} \rightarrow 0$ (a <u>critical line</u>), where the vertical wavelength gets very small, or
 - (2) amplitude gets large enough that the wave breaks (like a wave on a beach).

Parameterization of GWs in GCMs

1. Resolved vs unresolved GWs

- a GCM cannot resolve horizontal scales smaller than a model grid box.
 - $\rightarrow \sim$ 300-500 km for most GCMs.
- neglecting unresolved GWs leads to erroneous results as seen in Figure 4.
- simulations using high-resolution GCMs show that the momentum flux spectrum in the mesosphere is very shallow.

- \Rightarrow extremely high resolution is required to resolve most of the wave momentum flux \rightarrow this is not currently possible.
- ⇒ these GWs must be parameterized.

2. GWD parameterizations

- GW quantities are expressed in terms of the background (i.e., resolved) winds and temperatures.
- simplifying assumptions are made to make the problem computationally feasible.
- features common to all parameterizations:
 - GW propagation is governed by a linear dispersion relation and conservation of (pseudo-) momentum.
 - only vertical propagation of energy is allowed ⇒ a GW is assumed to remain in a grid box.
 - background quantities are assumed to vary only in height, and to vary more slowly in height than wave quantities.
 - a GW is removed at a critical level (i.e., <u>critical level filtering</u>).

- a <u>GW source</u> is specified in the troposphere for a discrete or continous spectrum of waves:
 - → momentum flux as a function of horizontal wavenumber and frequency.
- features which differentiate all parameterizations:
 - dissipation mechanism when wave amplitudes are large (<u>saturation criterion</u>).
 - specific details of source spectrum (i.e., momentum flux distribution).

3. Summary of GWD parameterizations

• Lindzen (1981):

saturation criterion: when the amplitude of a GW is large enough that the total (i.e., background plus GW) temperature lapse rate is convectively unstable.

 \rightarrow above the 'breaking height', turbulence damps the GW so as to maintain neutral stability \Rightarrow momentum is deposited over a range of heights.

• Hines (1997):

 saturation criterion: when a GW meets a critical level induced by the combination of the background wind and the wind induced by the entire spectrum of GWs.

 \rightarrow at this height, the GW is obliterated \Rightarrow all the wave's momentum is deposited at once.

- Warner-McIntyre (1996):
 - saturation criterion: when a GW exceeds a prescribed amplitude threshold that is based empirically on the observed GW spectrum in the middle atmosphere.
 - → above this height, the wave amplitude is constrained to remain at the prescribed saturated value.
- Alexander-Dunkerton (1999):
 - saturation criterion: when a GW exceeds convective instability threshold.
 - → at this height, the GW is obliterated, and all of its momentum is deposited.

Results from the CMAM

1. Description of the CMAM:

- ullet a middle atmosphere GCM, which extends from the ground to \sim 100 km.
- a whole slew of physical processes (radiation, chemistry, clouds, hydrologic cycle, etc.).
- details in Beagley et al. (1997).
- T32 horizontal resolution $\Rightarrow \sim 600$ km.
- ullet 65 vertical levels $\Rightarrow \Delta z \sim$ 1.5 km above troposphere.

2. Orographic GWD experiments:

- momentum deposition by unresolved GWs generated by flow over topography \rightarrow parameterization of McFarlane (1987).
- spatial pattern of the GW source is well known → it's the topography.
- separate Earth's topography into resolved $(\lambda_x > 600 \text{ km})$ and unresolved $(\lambda_x < 600 \text{ km})$ parts \Rightarrow for a T32 model.
 - \rightarrow use standard deviation of unresolved topography to specify the amplitude of the GW.
- single GW, with zero frequency and propagation direction opposite to horizontal wind vector at each GCM grid point.
- saturation criterion of Lindzen (1981).

Figure 10

summary of orographic GWD experiments:

- no impact in the summer stratosphere or mesosphere. Why?
 - \rightarrow because of critical-level filtering of the stationary GW by the stratospheric easterlies (i.e., where U=0).
- greater impact in NH winter than in SH winter.
 - \rightarrow because there are more mountains in the NH.
- no reversal of the zonal mean zonal wind in the mesosphere.
 - \rightarrow because a stationary GW can only decelerate winds to zero, not reverse them.

3. Non-orographic GWD experiments:

- non-orographic GWs are generated by mechanisms other than topography:
 - \rightarrow convection, wind shear, etc.
- sources are difficult to characterize:
 - \rightarrow highly variable in space and time.
 - → generation mechanisms poorly understood.
- because of these uncertainties,
 modellers assume the simplest form:
 - \rightarrow a source that is uniform in space and time.
- we will examine 2 non-orographic GWD parameterizations described earlier:
 - (1) Hines (1997)
 - (2) Warner-McIntyre (1996).

- the GW source for both is identical:
 - \rightarrow "isotropic" in intrinsic frequency (momentum flux is distributed symmetrically about $\hat{\omega} = 0$).
- aspects we will examine:
 - (1) saturation mechanism

Figure 12

(2) GW launch level

Figure 13

- summary of non-oro GWD experiments:
 - details of saturation mechanism not important to the time mean flow. Why?
 - → because by rescaling the saturation criteria, different parameterizations can produce similar results.
 - → the simulation using only criticallevel filtering makes this point most clearly.
 - this means that the heated debate over "whose parameterization is right?" is irrelevant to modellers.
 - what is important is:
 - (1) the height at which the GWs deposit their momentum,
 - (2) the momentum flux distribution at the source height.

4. Resolved GWs in GCMs:

- GCMs generate a broad spectrum of resolved GWs as a result of tropospheric processes like convection, flow over (resolved) topography.
- these disturbances can propagate vertically, grow in amplitude, dissipate, and deposit their momentum.
- we have seen evidence of resolved waves in the CMAM simulation with only criticallevel filtering (Figure 12).
 - \rightarrow Are they GWs?
- to answer this a more quantitative analysis is required:

Figure 15

Figure 16

- \Rightarrow Koshyk et al. (1999) paper demonstrates that GCMs with upper boundaries above \sim 80 km have enhanced KE spectra in mesosphere:
- \rightarrow divergent (i.e., gravity wave) component of KE as large as rotational.
- \rightarrow power at wide range of spatial scales.
- → CMAM is the most energetic model.
- Which of the GCMs is most realistic?
 - \rightarrow We don' know \rightarrow no global observations of these horizontal scales.

resolved GWs in the tropics:

- deep convection in the tropics causes condensation of water ⇒ release of latent heat.
 - → heating generates waves with a wide range of spatial and temporal scales.
- more waves are able to propagate vertically since the Coriolis force is small.
 - \rightarrow see dispersion relation.
- waves generated by convective heating propagate upward and interact with the zonal mean flow.
 - → dissipating waves drive zonal wind oscillations like the QBO in the lower stratosphere and the SAO in the stratosphere and mesosphere.

- deep convection cannot be resolved in GCMs ⇒ must be parameterized.
- there are various convective parameterizations used in models: moist convective adjustment, mass-flux schemes, etc. (details unimportant here).
- the ability of GCMs to simulate the QBO and SAO depend crucially on these resolved equatorial waves and consequently on the convection parameterizations.
- a careful GCM intercomparison of convective parameterizations and corresponding wave spectra was performed by Horinouchi et al. (2003).

- their results explain why a GCM like SKYHI can generate a QBO-like oscillation without parameterized GWs, while the CMAM cannot:
 - → SHYHI uses a convection scheme which is very "active" and generates a broad spectrum of frequencies.
 - → CMAM uses a parameterization that does not.
- unclear which is more realistic:
 - → lack of global measurements.
 - → uncertainty in interpreting satellitederived proxies of tropical latent heating (Horinouchi, 2002).

Part 2 (Observations)

- 1. Measurement techniques
- 2. Sampling issues
- 3. What modelers need

1. Measurement techniques

overview of several techniques:

- airglow imagers:

- → measure emission from photo-chemically excited species in the upper mesosphere and lower thermosphere.
- \rightarrow sensitive only to GWs with long λ_z and relatively short $\lambda_x \Rightarrow$ nonhydrostatic GWs \rightarrow often vertically trapped or ducted waves.

Figure 19

- *lidars*:

- \rightarrow measure backscattered laser radiation \Rightarrow air density (\sim 30-60 km).
- \rightarrow ideal gas law and hydrostatic equilibrium \Rightarrow temperature profile.
- \rightarrow high vertical resolution.

– radars:

- \rightarrow winds in middle atmosphere.
- \rightarrow high temporal frequency.
- → comparison of MF radar to CMAM:

Figure 21

- → CMAM has a much steeper KE spectrum than does radar.
- → due to numerical damping of high frequency waves in CMAM.

– pressurized balloons:

- \rightarrow drift along in prevailing wind.
- → measure horizontal and vertical wind components, temperature, etc.
- \Rightarrow able to measure momentum fluxes and intrinsic frequency \rightarrow very important.

- <u>satellites:</u>

- \rightarrow optically thick limb radiances from Microwave Limb Sounder on UARS \Rightarrow proxy for temperature along satellite track.
- \rightarrow high horizontal resolution.
- \rightarrow technique sensitive to long λ_z .
- \rightarrow also sensitive to direction of GW propagation (orientation of wave phase lines with instrument line of sight).
- \rightarrow global information about convective sources in tropics:

2. Sampling issues

- each measurement technique is sensitive to a portion of the GW spectrum.
 - ⇒ no one technique can measure the entire spectrum!
 - \rightarrow in order to compare observations and model results, must first apply an "observational filter" to the simulated spectrum. \rightarrow this mimics the instrument sensitivity (Alexander, 1998).
- Alexander (1998) also explains that GW intermittency complicates the interpretation of the measurements:
 - → intermittent sources will generate wave packets.
 - \rightarrow packets with long λ_z will propagate rapidly upward through the atmosphere.
 - \Rightarrow these waves will be difficult to see.
 - \rightarrow packets with short λ_z propagate slowly upward and so are much more likely to be observed.

3. What modelers need

- observational constraints on the source spectra for GWD parameterizations.
- observational constraints on the resolved GWs in the mesosphere.