Exploring Geospace Using NASA Sounding Rockets

Canadian Space Agency Workshop

Robert F. Pfaff, Jr.
Project Scientist, NASA Sounding Rocket Program
Goddard Space Flight Center
Greenbelt, MD, USA

Boucherville, QC, Canada
April 15, 2010
Outline of Presentation

• General Features of NASA’s Sounding Rocket Program

• Science Discipline Requirements and Examples of Accomplishments
 -- Astronomy / Planetary / Solar
 -- Geophysics
 -- Microgravity
 -- Special Projects (e.g., Re-entry tests, Aerobraking, etc.)

• SR Technology Roadmap -- Future Prospects
 – Small Mesospheric Payloads
 – High Altitude Sounding Rocket

• Summary
NASA Rocket Program -- General Remarks

• For over 4 decades, NASA’s Sounding Rocket Program has provided an essential ingredient of the agency’s exploration and science initiatives.

• Sounding Rocket Program rests solidly on 3 critical elements:
 -- Unique, cutting-edge science missions
 -- Platform for development and test of new technology
 -- Education and training of students, young researchers, and engineers

• Two important features of the program:
 -- Low Cost
 -- Rapid, quick response
Success of NASA Sounding Rocket Program implementation rests on a strong three-way partnership:

- P.I.
- Sounding Rocket Program Office (Wallops)
- NASA HQ

An important aspect of the program is that the P.I. is firmly in charge of the mission -- from proposal to payload design to making the launch decision to the data analysis and publication of results.

-- Very appealing aspect of SR program to scientists.
-- P.I. must work within an agreed-upon science budget with no contingency.
-- Scope of project must stay within “envelope” outlined in proposal approved by both HQ and SRPO.
-- Excellent, “real world” training for P.I., particularly with respect to managing a scientific investigation.
Program serves numerous scientific disciplines at NASA:

-- Astronomy
 UV Astrophysics
 High Energy Astrophysics

-- Planetary

-- Solar

-- Geospace
 Magnetosphere (Auroral Acceleration and other Plasma Physics)
 Ionosphere/Thermosphere/Mesosphere

-- Microgravity

-- Special Projects (e.g., Aero-braking and Re-entry Studies)
Sounding Rocket Vehicles
NASA Sounding Rocket Vehicle Performance

Typical Altitudes, Weights of Auroral Physics Payloads

Typical Altitudes, Weights of Astronomy, Planetary, Solar, and Microgravity Payloads

Note: Many Lower Ionosphere payloads are too long for surplus vehicles making them unstable. Hence, single stage Black Brants are frequently used instead.
Payload Design and Sub-systems -- Provided by Wallops Flight Facility

Mechanical
- Nosecones
- Diameters range from 4 to 22 inches
- Deployments
- Sub-payloads

Power
- +28 V, ±18 V, + 9 V typical
- 10-100 Watts typical (from batteries)

Telemetry, Timers, Commands
- Multiple links up to 10 Mbps typical
- Serial, parallel, analog data accepted
- GSP provides trajectory
- Uplink command for events, joy-stick control
- Timing typically with < 0.1 sec accuracy

Attitude Control and Knowledge
- Coarse pointing along or perp to B or V
- Fine pointing to ~0.1 arcsec

Recovery sub-systems
- Land, Water, Air

Trajectory and Performance Analysis
Sounding Rocket Launch Sites Used by NASA in last 25 years

• US Fixed
 – Wallops Flight Facility
 – White Sands Missile Range
 – Poker Flat Research Range

• Foreign Fixed
 – Sweden
 – Norway (Andoya & Svalbard)
 – Canada (Churchill)*

• Mobile
 – Australia
 – Brazil
 – Puerto Rico
 – Greenland
 – Peru
 – Kwajalein
 – Hawaii

* No Longer Routinely accessible
Sounding Rocket Mission Categories

Requirements

Examples of Accomplishments

1. Astronomy -- Planetary -- Solar

2. Geospace
Sounding Rocket Mission Categories

Disciplines: UV Astronomy, X-Ray, Planetary, Solar

Remote sensing (Telescopes)

• Main requirements:
 1. Observing platform above earth’s atmosphere
 2. Fine pointing of payloads (sub-arc second usually required)

• Features:
 3. Real-time, joy stick uplink command positioning available
 4. Payload recovery/re-flights are routine (launches are at White Sands)
 5. Southern Hemisphere launch location (Australia) used on campaign basis
 6. Ability to observe sources close to the sun (e.g., comets, Mercury, Venus)
Strongest Ever Carbon Monoxide Production Discovered in Coma of Comet Hale-Bopp

Comet Hale-Bopp -- 6 April 1997
JHU-NASA Sounding Rocket 36.156 UG

Image of Comet Hale-Bopp, courtesy W. Johnasson.

- Remaining emissions are bands of the carbon monoxide Fourth Positive system.
- Carbon abundances may simply result from photodissociation of CO.
- Observations gathered very close to perihelion; Comet was very active.

New X-Ray Detector Developed on Sounding Rockets

- 1st Detection of diffuse emission in 172 Å Fe lines
- Observations demonstrate soft X-ray background is thermally produced.
- Detector to be deployed on Astro-E2, Constellation-X, XEUS

Data and photos: D. McCammon, Univ. of Wisc.
Planet Imaging Concept Testbed Using a Rocket Experiment

Goal 1: Directly image an extrasolar planet using telescope flown on a sounding rocket

Goal 2: Demonstrate nulling interferometer technology for future NASA missions

Status: In Development; first launch in summer ‘07

Accurate pointing (<0.1 arc sec) needed.

Expected Image, Planet Contrast: 5×10^{-8}

Lightweight primary mirror; 0.5m dia, 4.5 kg

Carbon fiber telescope structure

S. Chakrabarti, Boston University, P.I.
http://newsroom.spie.org/x3847.xml
High Time and Spatial Resolution Reveal New Features of Solar Physics

Images of sun using normal incidence, multi-layer optics revolutionized high resolution studies of the corona and paved the way for EIT on SOHO.

Image: Moses, NRL

Sounding rocket measurements of the solar corona in/outflow that formed the basis for Rottman et al. 1982 Ap J. article was a primary motivation for the SOHO mission.

EUNIS [Rabin et al., 2006] measured both upflows and downflows of up to 40 km s⁻¹ in a coronal bright point at temperatures in excess of 2 x 10⁶ K, the highest temperatures at which flows have been reported in a bright point and a challenge to existing models.
High Time and Spatial Resolution in Lyman α Reveal New Features of Solar Chromosphere

- Highest Spatial resolution achieved to date (<0.3 arc sec)
- Simultaneous measurements with SoHo, TRACE enable different layers of the sun to be observed of the same region

Very high Angular resolutions ULtraviolet Telescope (VAULT), Naval Research Lab

Data: C. Korendyke, NRL
Solar Physics Experiments on Sounding Rockets

Instruments that contributed significantly to Orbital Missions

Bruner, Walker, Golub, Moses, Rabin: EUV Multilayer Normal Incidence Optics for High Resolution
- SOHO EIT, TRACE, STEREO EUVI, SDO AIA, Hinode

Davis, Moses: Soft X-ray Grazing Incidence and CCD detectors
- Yohkoh, Hinode X-ray telescopes

Neupert, Davila: EUV Spectroscopy
- SOHO CDS, Hinode EIS

Brueckner, Bruner, Korendyke: VUV Spectroscopy
- SOHO SUMER, TRACE

Cole: UV Spectroscopy of the Corona
- SOHO UVCS

Woods, Judge: EUV Irradiance Monitor
- SOHO, SDO EUV instrument
Sounding Rocket Mission Categories

Geospace (Magnetosphere, Ionosphere, Thermosphere, Mesosphere)

In situ measurements (general)

- Main requirements/features:
 1. Access to altitudes too low for satellite *in situ* sampling (25-125 km region)
 2. *Vertical* profiles of measured phenomena (cf. satellite *horizontal* profiles).
 3. Slow vehicle speeds enable new phenomena to be studied; payloads “dwell” in regions of interest
 4. Launches are frequently in geophysical “Targets” (e.g., aurora, cusp, thunderstorms, ionospheric turbulence at equator, noctilucent clouds, electrojets, ionospheric metallic layers, etc.)
 5. SR Portability provides access to remote geophysical sites (high, middle, low latitudes)
 6. Launches in conjunction with ground observations (e.g., radars, lidars, etc.)

(Continued)
Sounding Rocket Mission Categories

Geospace (Magnetosphere, Ionosphere, Thermosphere, Mesosphere)

In situ measurements (general)

- Main requirements/features (continued):

 7. Multiple payloads (clusters) launched on single rocket
 8. Multiple, simultaneous launches (high and low apogees, different azimuths, etc.)
 9. Luminous trails to serve as tracers of geophysical parameters such as winds
 10. Flights in conjunction with orbital missions (e.g., Dynamics Explorer, TIMED)
 11. Tether capabilities (e.g., 2 km tethers between payloads have been flown)
 12. Collection of stratosphere/mesosphere samples (e.g., 24 underflights of UARS)
Higher altitude rockets with high resolution instruments opened the door to a whole new class of auroral physics phenomena.

- Field Aligned Electron Bursts
- Ion Conics
- Lower Hybrid Solitary Structures
- Large Amplitude Alfvén Waves
- Intense Langmuir Waves
- Shock-Like Electric Fields

New Physics

Early Rocket Observations (1960’s, 70’s)

Discovered the source of auroral light is due to keV electron beams

Explored auroral optical emissions, Ionosphere fields, currents, effects, etc.
Auroral Zone Rocket Discoveries Formed the Springboard for NASA’s FAST Satellite

- Auroral physics discovered on sounding rockets formed the basis of FAST Small Explorer Satellite
- FAST in-situ instruments were developed on rockets (e.g., “Top Hat” electrostatic detectors, plasma wave Interferometers)
- FAST experimenters, including P.I., had extensive prior experience with sounding rockets
Dual-Rocket Observations of Electrostatic Shocks in the Auroral Zone

[Boehm et al., JGR, 1990]
NASA’s first “Tailored” Trajectory
Reveals Vertical, Horizontal Winds over Auroral Arc

- HEX project (Univ. Alaska) measured vertical winds by deploying a near-horizontal chemical trail over a large horizontal trajectory that traversed a stable auroral arc.
- This required actively re-orienting the rocket prior to 3rd-stage ignition. (First for NASA.)
- Results revealed downward winds in the vicinity of the arc, defying the usual presumption that Joule heating would drive neutral upwelling near arcs. Downward wind was also accompanied by an unexpectedly large divergent velocity gradient in the zonal direction.
- Results a complete surprise, suggest upper atmosphere gravity waves dominate physics.
Vertical Profiles of Electrodynamics at Onset of Equatorial Spread-F Reveals \(E \times B \) Shear, Bottomside Waves believed to “Trigger” instability

- Vertical electric fields prove the existence of strong shear flow and retrograde drifts in the bottomside F-region prior to onset of ESF.
- Rocket data show that bottom-type irregularities reside in valley region, below where the density gradient is steepest.
- Bottom-type irregularities shown to be viable “seeds” of equatorial spread-F.
- Dave Hysell, Cornell University, P.I.
Observations include several significant “Firsts”:

- Polarization DC electric field that drives the equatorial electrojet
- High altitude (>800 km) DC and wave electric fields gathered in a Spread-F plume
- Neutral wind gradients associated with enhanced E-fields at sunset
- Gravity wave breaking in the equatorial mesosphere
- Primary two-stream wave spectra and phase velocities in electrojet.
Direct Penetration of Lightning Electric Fields in the Ionosphere, High T/M Reveals new Wave Physics

Ground Receiver, WFF
Thunderstorm Electric Fields

High Rocket at 142 km
Low Rocket at 88 km
Balloon at 23 km
Ground Receiver

[Kelley et al., JGR, 1985]

Detailed wave measurements show how sferics with parallel E-fields convert to whistler mode.

High T/M rates (~10 Mbps) make this possible.
Rocket Measurements of Noctilucent Clouds (NLC): A Near-Earth Icy, Dusty Plasma

- NLC located in high latitude summer mesosphere.
- Lowest neutral temperatures in atmosphere.
- Possible indicators of anthropogenic change.
- Region of very intense radar echoes.
- Complex aerosol chemistry, dynamics, electrical charge distributions.

Data from rocket flight into NLC with intense radar echoes from Andoya, Norway.

[see Goldberg et al., GRL, 2001.]
Multiple Payloads on Single Rocket

- Increasingly used for Auroral Studies where revealing spatial and temporal variations is important to understand physics
- 4-5 small “daughter” or sub-payloads have been flown (Lynch).
- Sub-payloads can be fired on small “rockets” to increase separation (Lessard)
- Multiple chemical releases on sub-payloads separated with high velocities reveal new wind information

CASCADES-2 Rocket (K.Lynch) includes 4 sub-payloads to examine arc structures, shears, Alfvén waves
Very High Telemetry reveals new phenomena
(Note: 180 Mbps flown from Poker in Feb. 2010 by LaBelle)

\[f_{uh} \approx 2f_{ce} \]

[from: Samara, LaBelle, Kletzing, and Bounds, 2004]
Dual Rockets Launched on Same Azimuth, different apogees

TRICE
Kletzing, 2007

ACES,
Bounds, 2008
Rocket Underflights of Satellite Missions provide critical calibrations and correlative measurements

TIMED Calibration (Univ. Colorado, Woods) -- 5 Flights, Also anticipated for SDO

Primary Objective:

Provide an underflight calibration for the Solar EUV Experiment on TIMED

Secondary Objectives
– Provide an underflight validation for the TIMED GUVI measurements of the FUV airglow
– Provide validation for the TIMED measurements of the neutral densities (O, O2, N2)

Rocket Ly-α Image

SOHO Magnetogram

• EGS degradation determined with these rocket results
 - 10-20% changes observed
• XPS degradation
 - < 1% degradation for most XUV photometers
• Long-term accuracy for the SEE solar irradiances is improved by about a factor of 2 because of the rocket results
Sounding Rocket Mission Categories

Microgravity

• Main requirements/features:
 1. Long periods of “zero-G” relative to airplanes, drop towers
 2. Recovery usually required (launches are at White Sands)
 3. Rockets provide very low acceleration, disturbance rates relative to STS, ISS

Special projects

• Aerobraking tests, re-entry technology testing, etc.

 Large descent velocities (afforded by high apogee) usually sought to simulate re-entry tests.
Technology Roadmap

Technology Roadmap developed jointly by WFF and the Sounding Rocket Working Group

- Small Mesospheric “Dart” payload
- High Altitude Sounding Rocket
- Recovery of high altitude sounding rocket payloads
New Technology Initiative --
Wallop Small Rocket Will Enable Systematic Sampling of Mesosphere

Example: Falling Spheres on Small Rockets
This is the *only* reliable technique to observe winds from 50-80 km

Neutral Winds (80-140 km) -- Large, variable, *not* understood

[Courtesy, F. Schmidlin, R. Goldberg, GSFC]

Wind Data

[Courtesy, F. Schmidlin, R. Goldberg, GSFC]

Model Results

[Larsen et al., 2000]
High Altitude Sounding Rocket

50 inch diameter
Payload Wt: 1000 lbs
Apogee: 3500 km
Observing time: 40 min
High Altitude Sounding Rocket Science Applications

• Astronomy / Planetary / Solar
 – Increased “hang time” and sensitivity -- observe for ~ 40 minutes with larger diameter (~ 1m) telescopes
 – Near-Sun observations of comets, inner planets
 – Observe temporal evolution of solar phenomena
 – IR observations (payload has time to cool down)
 – Observation of faint targets including “near-sun” observations of comets, inner planets

• Geospace Science
 – Penetrate the auroral and cusp acceleration region (> 3000 km)
 – Observe high altitude regions with constellations of well-instrumented sub-payloads
 – Observe M-I coupling resonances and wave interactions with periods of 10’s of minutes
 – Study inner radiation belt and slot region from Wallops

• Mission to Planet Earth
 – Hurricane Observations with New Imaging Technology

• Microgravity
 – Combustion experiments for considerably longer periods in “ideal microgravity”

• Exploration
 – 6-7 km/sec entry velocity available for planetary probe testing
 – Entry, Descent, and Landing Technology Demonstrations
Summary

- NASA Sounding Rocket Program provides a wide range of technical capabilities including unique launch vehicles, payload capabilities, and range operations.
- Commonality building on previous designs keep costs low.
- Missions are tailored to meet scientific needs of experiment.
- Program has served space science exceedingly well.
- Sounding rockets look forward to continued innovation and show great promise for the future.
Back up Slides
Sounding Rocket User Web Site --

http://rscience.gsfc.nasa.gov