

Magellan / Bristol Suborbital Rocket Capabilities

Background

- Bristol designs and manufactures the Black Brant sounding rocket, including the rocket motor(s) and associated hardware components.
- Bristol has also built more than 130 Black Brant payloads over the 50 years of Black Brant history.
- Bristol can provide all levels of support for a sounding rocket mission, from simple provision of the motors to full mission prime activities.
- Bristol also designed and builds the Excalibur motor which supports a smaller sounding rocket.
- Bristol has other rocket motors in production which could be adapted for mini-sounding rockets (CRV7, CL289)

CSAR-1

MAGELLAN A E R O S P A C E

CSAR-2

OEDIPUS-A and OEDIPUS-C

GEMINI

ACTIVE

ACTIVE

GEODESIC

GEODESIC

Anatomy of a Sounding Rocket Trajectory

Black Brant Family

How High?

How Long?

Excalibur

Excalibur Performance

Mission Activities Previously Undertaken by Bristol

- Work with the mission science team to define the requirements of the vehicle and payload support systems that will meet the science team suborbital mission objectives
- **Define interfaces** from payload support systems to payload
- Develop **new support systems** as necessary to fill in gaps when off the shelf support systems do not fully meet the mission objectives.
- **Perform vehicle flight dynamics analysis** to support vehicle design considerations
- Conduct the **mission integration and test activity**, including launch range vehicle integration
- Provide mission **liaison to the launch range** to assess range launch support capabilities and range safety requirements
- Collect, process and distribute post-flight data

Launch Sites

- North America
 - WSMR
 - PFRR
 - WFF
 - Churchill
 - remote sites

- Major International
 - Andoya, Norway
 - Esrange, Sweden

Rocket Payload Capabilities

data acquisition and telemetery sequencing power tracking environmental testing recovery attitude / rate control Others as required

Typical Payloads

Modular buildup

Doors, bulbous section, upleg guidance

Integrated instrument bus

Tracking

- skin
- transponder
- not available everywhere

• TRADAT

- closed loop ranging
- TM antenna pointing
- up to 0.1 km positional accuracy
- GPS
 - < 100 meters</p>

Power

- bus normally provides all power
- battery based system
- standard +ve and -ve buses, shared, +28V, -18V
- full protection, instrument to instrument
- special requirements;
 - low bus noise, dedicated sources
 - high power requirements; 15kW

Real-time Monitoring & Control

- payload pointing, corrections
- instrument mode control
- instrument sensitivity control
- charge detonation (Waterhole)
- trajectory event initiation

Diagnostics

- accelerations
- vibrations
- temperatures
- full payload support system diagnostics
- support for instrument diagnostics
- full vehicle diagnostics

Data Acquisition and Telemetery

- Data rates to 10 Mbps
- Composite PCM downlinks
 - Analog data interface
 - Serial digital interface
 - Parallel digital interface
 - Counters
- Dedicated PCM links for instruments

- TV links
- FM/FM multiplex systems
- Onboard data storage (recovered payloads)
- Multiple TM downlinks (5)

Sequencing/Control

- centralized instrument and bus control, some autonomy
- time based events
- redundant implementation
- vehicle control, pyrotechnics
- IMU based control, altitude
- uplink control

STARS

Payload Controller -Software -Timers

Power Interfaces - control, distribution, monitoring of external power/battery

Diagnostics -Accelerometers -Magnetometers -Thermistors -Microswitches -GPS interface

Power Switches

Pyro Switches

Environment

	Environment*	Test Specs
Vibration	0.5 - 6.0 grms	12.7 grms
Femperature	$\pm 10^{\circ}$ C max	0 - 60°C
Acceleration	-3 to +23g	25g, 3 axis
Vacuum	$>10^{-6}$ torr	10^{-6} torr
Shock	<25 g	50 g, 11 ms

* Environment is very dependent on payload structural design and on location in the payload.

Established Capabilities Pointing Systems

- Inertial pointing
 - - <1 deg
- Magnetic pointing
 - < 1 deg</p>
- Solar pointing
 - arc minute
- Stellar pointing
 - arc second

Established Capabilities Cameras, Attitude Determination

Established Capabilities

Doors; Re-closable & Deploying

- boom deployments
- instrument viewing ports
- dust tight
- re-entry protection
- recovery protection, payload cleanliness

Established Capabilities Booms

Established Capabilities Tethers

Established Capabilities Bulbous payloads

Established Capabilities - Recovery

Established Capabilities Impact protection

Payload Support Components

Payload Support – ACS/RCS/Guidance

- Saab S-19 system used when required for upleg
- Previously procured exoatmospheric ACS/RCS systems from US, now have developed capability in-house via satellite programs

Student participation

Parting Thoughts...

- Sounding rockets come in a variety of shapes and sizes
- Budgets influenced not only by size of rocket
 - Complexity of payload
 - Standardized equipment
 - Repetition
 - PA approach
- If \$5M gets a 500 kg BB9 payload to 250 km; then
 - \$10K / kg to DESIGN, BUILD, TEST and FLY
- Shared missions have to go both ways...
- Infrastructure largely exists in Canada
- Bristol supports small payload program at CSA
 - Commercial benefit
 - Staff development

