Why, What, Who, When & Where of Nanosatellites

Alfred Ng
Canadian Space Agency
Outline

- What is a nanosat
- Why nanosatellite?
- When did it start?
- What are the nanosat missions?
- Who is funding it?
- Who is doing it, in Canada and elsewhere?
- Where are they built and launched?
- Conclusions
Satellites are broadly classified into large, small, micro, nano and pico satellites.

Typically, satellite mass is used as the discriminator.

<table>
<thead>
<tr>
<th>SSTL* Classification</th>
<th>Canadian Satellite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>&gt; 400 kg</td>
</tr>
<tr>
<td>Small</td>
<td>100 – 400 kg</td>
</tr>
<tr>
<td>Micro</td>
<td>10 – 100 kg</td>
</tr>
<tr>
<td>Nano</td>
<td>1 – 10 kg</td>
</tr>
<tr>
<td>Pico</td>
<td>0.1 – 1 kg</td>
</tr>
</tbody>
</table>

*SSTL: Surrey Satellite Technology Ltd.
Performance, cost or schedule can also be a discriminator.

- Difference in the implementation approach, e.g. parts, documentation, organization, etc.
First Nanosat

- The 1st Orbiting Satellite Carrying Amateur Radio (OSCAR) was launched on Dec 12, 1961: it weighed 5 kg and worked 50 days.
- The Radio Amateur Satellite Corp. (AMSAT) is an organization of amateur radio operators that promotes "building, launching, and then communicating with each other through non-commercial AR satellites".
- First university satellite was OSCAR-5 in 1970 (University of Melbourne).
Microsat in the 1990s

- University of Surrey launched UoSAT-1 (50 kg) in 1981, based on AMSAT approach. Surrey has launched over 25 satellites since they started.
- These were mostly “microsatellites”.
- In the 1990s, a number of notable universities initiated student microsatellite projects:
  - Weber State University
  - Stanford University
  - University of Colorado
  - Arizona State University
1990’s

- Microsatellites mainly used for education, amateur radio, technology demonstration.
- In 1998, CSA’s MOST project was among the first to radically change the use of microsatellites. MOST was among the first microsatellite to be capable of performing a science mission.
- It is still operational after 6 years in orbit!
Rebirth of Nanosat

- Stanford launched **OPAL** in 2000, carrying five picosatellites.
- Surrey launched **SNAP-1** nanosatellite (6.5 kg) in 2000 for tech demo.
- Prof. Bob Twiggs (Stanford) introduces “CubeSat”
- CalPoly developed the “P-POD” launch tube for direct launch vehicle mating, and establishes CubeSat standards.
Key Features of Nanosats

- Low mass, power and volume
- The revolution in microelectronics is the principal factor contributing to the popularity of nanosats
Cubesat

- CubeSats are defined in three sizes: 1U (10cm cube), 2U and 3U. The P-POD can hold up to three 1U satellites.
- Universities from around the world are encouraged to develop nanosatellites for education following the CalPoly standard, and share launches using P-PODs.
- In 2001, UTIAS Space Flight Lab established the Canadian Advanced Nanospace eXperiment (CanX) program, and begins work on the CanX-1 picosatellite – budget $150K, including launch costs.
First CubeSat Launch (2003)

- MOST launch provided an opportunity for nanosats
- SFL arranged the launch of the first CubeSats: QuakeSat (USA), DTUSat-1, AAUSat-1 (Denmark), and CanX-1
  - Two P-PODs are launched from Russia: QuakeSat was contacted; unfortunately, DTUSat-1, AAUSat-1 and CanX-1 were not contacted. Process experience and lessons learned were a pathfinder for future missions.
- Two Japanese CubeSats: XI-IV, and CUTE-1 were successful using its own separation systems T-POD

AAUSat-1, DTUSat-1, and CanX-1 in SFL
In 2004, proposed CanX-2, a 3U CubeSat for tech demo and atmospheric science: contains experiments for U Calgary, York U, and U Toronto.

Developed the “XPOD Single” – a separate XPOD would be built for each satellite.

In 2005, SFL provided 3 prototype “XPOD Single” for the SSETI Express mission (ESA) to eject 3 CubeSats from a mothership: XI-V (Japan), UWE-1 (Germany), and NCUBE-2 (Norway).

The “XPOD Triple” is developed – a wholly Canadian equivalent to the P-POD that offers a softer ride.

Canada’s XPOD Triple Launch Tube
2007 - 2008

- Nanosatellite Tracking of Ships (NTS), or “CanX-6” – a 6.5 kg nanosatellite for ship detection and monitoring with COM DEV AIS receiver began development in Oct 2007.
- SFL arranged the launch for NTS and CanX-2, along with COMPASS-1 (Germany), AAUSat-2 (Denmark), SEEDS (Japan), CUTE1.7+APDII (Japan), Delfi-C3 (Netherlands).
- Launched on PSLV-C9 in April 2008. All XPODs deploy successfully. All satellites contacted and healthy.
- CanX-2 becomes Canada’s smallest operational satellite.
Nanospace for Tech Demonstration

- The low cost and short development time make nanosat particularly useful as a tech demo platform and risk mitigation for future missions.
  - CanX2 demonstrates nano propulsion system and miniature reaction wheel → CanX4, X5 mission
  - NTS demonstrates AIS payload → M3MSat
University of Tokyo - PRI SM

- One of the nanosats on GoSat launch
- Size: 16 cm × 16 cm × 16 cm
- Mass: 5 kg
- Demonstrate two imaging cameras: narrow angle and wide angle
- Obtain images with ~10m resolution
CanX2 Science Payloads

Argus Spectrometer 1000 provided by York University, Toronto

Spectra of greenhouse gasses taken over Ontario, Canada by CanX-2/Argus 1000 spectrometer
GPS Occultation

- Mapping of water vapour (troposphere) and electron density (ionosphere) can be generated through measurement occulting L2 GPS signals.
GeneSat-1

- NASA Ames launched a 3U CubeSat carrying a biological payload performs assays for genetic changes in E. coli
- Better understanding of the biological effects of the spaceflight environment, particularly space radiation and reduced gravity, which is a critical need for safe long-duration crewed space missions and safe space tourism.
CubeSat - Firefly

- NSF initiated funding program for Cubesat to investigate space weather in 2008
- Firefly is a CubeSat led by NASA GSFC with two universities.
- To determine whether the origin of terrestrial gamma ray is from lightning
**Bright Target Explorer (BRITE)**

- MOST was the first satellite to measure oscillations of stars (asteroseismology)
- BRITE constellation is a follow-on using nanosatellites
- It needs a minimum of 2 pairs of filters
- Austria committed one pair and they are near completion at SFL
- Funding for Canadian pair is imminent
- Recently Poland expressed interest to join in the constellation – that means a constellation of 6 nanosatellites!
  - First international constellation of nanosatellites
  - First international collaboration of satellite based astronomy
**BRI TE Bus**

- Size: 20 cm × 20 cm × 20 cm
- Mass: 6 kg
- Attitude determination: < 10 arcseconds
- Attitude control: < 1 arcmin
- Enabling technology: nano star tracker and miniature reaction wheels
- First pair (Austrian) to be launched in 2011
Answers to W5

- **When**
  - Started in 60s and reborn in the 2000

- **Why**
  - Primary reason is cost and schedule
  - Advances in microelectronics

- **Who**
  - Universities, industries and government space agencies
  - USA, Canada, Japan, The Netherlands, Germany, Switzerland, Norway, Denmark, and many others
Answers to W5

- **Where**
  - Strong domestic capability established at SFL
  - Launch from Rockot, Dnepr, Falcon, Minotaur, μ-V, PSLV, and H2A

- **What**
  - Education and training
  - Science: biology, astronomy, EO, space weather, atmospheric, etc.
  - Tech Demo: imaging, AIS, etc.
Conclusions

- The popularity of nanosat is getting stronger especially in the academia.

- Canada has a successful program that can help launch CubeSats.

- Great opportunities exist for education, technology development, and science to increase Canada’s capacity by leveraging existing capacity to build and launch nanosatellites.

- Low cost, imagination and acceptance of risk are pushing the envelope of nanosat capability and performance.
Statistics and Resources

- Pumpkin CubeSat kit is available for new university programs. www.cubesatkit.com
- EyasSat kit is also a useful tool for classroom education. www.eyassat.com
- Most experienced Canadian nanosat developer is UTIAS/SFL. They offer missions, technology, launches. www.utias-sfl.net
Questions & Comments

- Education
- Nanosat
- Training
- Research