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Conservation of Fluid in  2D 

The flow entering a small volume 𝛿𝑥 𝛿𝑦 at 𝑥 in 𝑥 − 𝑑𝑖𝑟: 𝜌𝑢 𝛿𝑦  

 

The flow leaving a small volume 𝛿𝑥 𝛿𝑦 at 𝑥 + 𝛿𝑥 in 𝑥 − 𝑑𝑖𝑟 : 𝜌𝑢(𝑥 + 𝛿𝑥) 𝛿𝑦  

 

The flow rate per unit area: 𝜌𝑢(𝑥 + 𝛿𝑥) 
 

𝑓 𝑥 ≈ 𝑓 𝑎 +
𝑓′(𝑎)

1!
𝑥 − 𝑎 +

𝑓′′(𝑎)

2!
𝑥 − 𝑎  

2
+ . . . Taylor expansion 

𝑓 𝑥 + 𝛿𝑥 ≈ 𝑓 𝑥 +
𝑓′(𝑥)

1!
𝑥 + 𝛿𝑥 − 𝑥 + . . . 

𝑢 𝑥 + 𝛿𝑥 = 𝑢(𝑥) +
𝜕𝑢

𝜕𝑥
𝛿𝑥   

 

The net flow passing through the volume  

(entering and leaving) in x-direction: 

 

𝜌 𝑢 𝑥 +
𝜕𝑢

𝜕𝑥
𝛿𝑥 − 𝑢 𝑥 𝛿𝑦 = 𝜌

𝜕𝑢

𝜕𝑥
𝛿𝑥𝛿𝑦  

 

Similarly in 𝑦 − 𝑑𝑖𝑟 : 
 

𝜌 𝑣 𝑥 +
𝜕𝑣

𝜕𝑦
𝛿𝑦 − 𝑣 𝑦 = 𝜌

𝜕𝑣

𝜕𝑦
𝛿𝑦𝛿𝑥  

Flow across the surfaces of an infinitesimal  

rectangular element. 

 𝑉/𝑡 ,  𝑡 = 1  

𝜌𝑉 
A = 1 

𝑉𝑜𝑙 = 𝑉𝐴 

Schubert, Turcotte & Olson, Mantle convection in the Earth and Planets, 2001;  Turcotte & Schubert, Geodynamics, 2002 
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Conservation of Fluid in  2D 

The total net flow through the volume: 

: 

 

𝜌
𝜕𝑢

𝜕𝑥
𝛿𝑥𝛿𝑦 + 𝜌

𝜕𝑣

𝜕𝑦
𝛿𝑦𝛿𝑥 = 𝜌

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
𝛿𝑦𝛿𝑥  

 

If the flow is steady (time-independent), and there are no density variations, then 

there will be no net flow into or out of the volume. 

The conservation of fluid or continuity equation is:  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0    or     div V =  𝛻 ∙ 𝑉 = 0      Mass Conservation 

 

In 3D:     
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0,   𝑉 ≡ 𝑉(𝑢, 𝑣, 𝑤) 

 

In spherical coordinate : 
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Momentum Equation 

Elemental Force Balance 
 

The forces acting on the small volume element are: 

1) Pressure force 

2) Viscous force 

3) Gravity force (body force) 

4) Inertial force 

 

The Earth’s mantle behave as a highly viscous fluid on geologic time scales.  

 
The viscosity of mantle is ~ 𝜇 = 1021𝑃. 𝑠 

Its density is ~ 𝜌 = 4000 𝑘𝑔/𝑚3 

And its thermal diffusivity is ~ 𝜅 = 10−6 𝑚/𝑠 

 

The Prandtl number:  𝑃𝑟 =  
𝜐

𝜅
  

𝜅 =
𝐾

𝜌𝐶𝑃
   𝑚2/ 𝑠    𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦   

𝜈 =
𝜇

𝜌
   𝑚2/ 𝑠         𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦  

 

 𝑃𝑟𝐸𝑎𝑟𝑡𝑕~1023  

𝜇       𝑃𝑎. 𝑠     𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦   

𝐾      𝑊/(𝑚𝐾)       𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦   

𝐶𝑃      𝐽/(𝑘𝑔𝐾)       𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑕𝑒𝑎𝑡   
𝜌       𝑘𝑔 / 𝑚3        𝑑𝑒𝑛𝑠𝑖𝑡𝑦  
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Momentum Equation 

 

At high Prandtl numbers the inertial forces can be neglected: 

 
𝜕𝑉

𝜕𝑡
≈ 0  

 

𝐹𝑃 + 𝐹𝑣𝑖𝑠𝑐 + 𝐹𝑔 = 0  

 

The force acting at 𝑥 in 𝑥 − 𝑑𝑖𝑟 on 𝛿𝑦 − 𝑒𝑙𝑒𝑚𝑒𝑛𝑡: 𝑝(𝑥) 𝛿𝑦  

 

The force acting at 𝑥 + 𝛿𝑥 in 𝑥 − 𝑑𝑖𝑟 on 𝛿𝑦 − 𝑒𝑙𝑒𝑚𝑒𝑛𝑡: 𝑝(𝑥 + 𝛿𝑥) 𝛿𝑦  

 

The net pressure force on the element in the x-dir. per unit area of the fluid element:  

 
𝑝 𝑥 𝛿𝑦−𝑝(𝑥+𝛿𝑥)𝛿𝑦

𝛿𝑥𝛿𝑦
= −

𝑝 𝑥+𝛿𝑥 −𝑝(𝑥)

𝛿𝑥
  

By virtue of a simple Taylor series expansion   −
𝜕𝑝

𝜕𝑥
  

 

Similarly for the pressure force on the element in the y-dir. Per unit area of the 

element:  −
𝜕𝑝

𝜕𝑦
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Momentum Equation 

The gravitational force acting on the volume element: 

 

𝐹𝑔 = 𝑚𝑔 = 𝜌𝛿𝑥𝛿𝑦 𝑔  

 

𝐹𝑔 = 𝜌 𝑔      𝑡𝑕𝑒 𝑛𝑒𝑡 𝑔 − 𝑓𝑜𝑟𝑐𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 

  

Viscus Foces 
 
The net viscous force in the x-dir. Per unit volume: 
 
𝜏𝑥𝑥 𝑥+𝛿𝑥 𝛿𝑦−𝜏𝑥𝑥(𝑥)𝛿𝑦

𝛿𝑥𝛿𝑦
+

𝜏𝑦𝑥 𝑦+𝛿𝑦 𝛿𝑥−𝜏𝑦𝑥(𝑦)𝛿𝑥

𝛿𝑥𝛿𝑦
   

 

Expanding 𝜏𝑥𝑥 𝑥 + 𝛿𝑥  and 𝜏𝑦𝑥 𝑦 + 𝛿𝑦  around x and y, respectively (using Taylor 

series expansion): 

 
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
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Momentum Equation 

Similarly, the net viscous force in the y-dir. Per unit volume of the element: 

 
𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
 

 

For an ideal Newtonian viscous fluid, the viscous stresses are linearly proportional to 

the velocity gradients: 

 

𝜏𝑥𝑥 ≡ 𝜏11= 2𝜇
𝜕𝑢

𝜕𝑥
,   𝜏𝑦𝑦 ≡ 𝜏22= 2𝜇

𝜕𝑣

𝜕𝑦
 

 

𝜏𝑥𝑦 ≡ 𝜏12= 2𝜇
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
,   𝜏𝑥𝑦 = 𝜏𝑦𝑥 

 

In general: 

𝜏𝑖𝑗 = 2𝜇
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
  

 

where 𝜇 is the dynamic viscosity.  
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Momentum Equation 

The application of 

 

𝜏𝑥𝑥 ≡ 𝜏11= 2𝜇
𝜕𝑢

𝜕𝑥
  

𝜏𝑦𝑦 ≡ 𝜏22= 2𝜇
𝜕𝑣

𝜕𝑦
                       in 

𝜏𝑥𝑦 ≡ 𝜏12= 2𝜇
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
    

 

yields to; 

2𝜇
𝜕2𝑢

𝜕𝑥2 + 𝜇
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑥𝜕𝑦
 and  2𝜇

𝜕2𝑣

𝜕𝑦2 + 𝜇
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑥𝜕𝑦
 , respectively. 

 

These expressions can be simplified using the continuity equation: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0          

𝜕2𝑣

𝜕𝑥𝜕𝑦
= −

𝜕2𝑢

𝜕𝑥2,  
𝜕2𝑢

𝜕𝑥𝜕𝑦
= −

𝜕2𝑣

𝜕𝑦2      

 

2𝜇
𝜕2𝑢

𝜕𝑥2 + 𝜇
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑥𝜕𝑦
     𝜇

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2  

 

2𝜇
𝜕2𝑣

𝜕𝑦2 + 𝜇
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑥𝜕𝑦
    𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2  

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
    the net viscous force in the x-dir. Per unit volume 

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
    the net viscous force in the y-dir. Per unit volume 
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Momentum Equation 

The force balance equations for an incompressible fluid (𝛻 ∙ 𝑉 = 0): 

 

−
𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0  

−
𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 + 𝜌𝑔 = 0  

 

To eliminate the hydrostatic pressure variation in Equation: 

𝑃 = 𝑝 − 𝜌𝑔𝑦  

 

The pressure 𝑃 is the pressure generated by fluid flow. With this substitution: 

 

−
𝜕𝑃

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0  

−
𝜕𝑃

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 = 0  

 

In compact form and in 3D-geometry: 

 

−𝛻𝑃 + 𝛻2𝑉 = 0      Momentum Conservation 
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Momentum Equation 

The continuity equation for compressible fluid 
  
𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0    Mass Conservation  

 

 

U: Characteristic Vel.        C: Sound Vel. 

                  Gough (1969) 

If  𝑀2 =
𝑈2

𝐶2 ≤ 1       
𝜕

𝜕𝑡
 → 0         𝛻. 𝜌𝑉 = 0        M: Mach number 

 

𝛻. 𝜌𝑉 = 𝜌𝛻. 𝑉 + 𝑉𝛻𝜌  

 

Momentum Equation in More General Form   
 
𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝐹𝑃 + 𝐹𝑣𝑖𝑠𝑐 + 𝐹𝑔  

 

𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = 𝜌
𝜕𝑉

𝜕𝑡
+ 𝑉𝛻 ∙ 𝑉   

 

𝜌
𝜕𝑉

𝜕𝑡
+ 𝑉𝛻 ∙ 𝑉 = −𝛻𝑝 + 𝛻2𝑉 + 𝜌𝑔   
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The Stream Function 

Incompressible 2D-Fluid 
 

Solving the Momentum Equation Using Stream Function Method  

 

Define 𝑢 = −
𝜕𝜓

𝜕𝑦
,    𝑣 = +

𝜕𝜓

𝜕𝑥
 

Substituting in continuity equation: 

 

−
𝜕2𝜓

𝜕𝑥𝜕𝑦
+

𝜕2𝜓

𝜕𝑦𝜕𝑥
= 0   which shows the stream function 𝜓  satisfies the continuity 

equation. 

 

Substituting in momentum equations: 

 
𝜕𝑃

𝜕𝑥
+ 𝜇

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕3𝜓

𝜕𝑦3 = 0  

−
𝜕𝑃

𝜕𝑦
+ 𝜇

𝜕3𝜓

𝜕𝑥3 +
𝜕3𝜓

𝜕𝑦2𝜕𝑥
= 0  
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The Stream Function 

 

For a single differential equation for 𝜓, the pressure can be eliminated from these 

equations by taking the partial derivative of these equations  with respect to y and x, 

respectively: 

 

Substituting in momentum equations: 

 
𝜕4𝜓

𝜕𝑥4 + 2
𝜕4𝜓

𝜕𝑥2𝜕𝑦2 +
𝜕4𝜓

𝜕𝑦4 = 0    biharmonic equation  
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The Stream Function 

Ex. – The flow accord AB? 

 

The flow across AB can be calculated from the flows  

across AP and PB because conservation of mass. 

 

 

The volumetric flow rate across AP into the triangle  

per unit distance normal to the figure is:  𝑢𝛿𝑦  

 

similarly the flow rate across PB out of the triangle is: 𝑣𝛿𝑥 

 

The net flow rate out of PAB is thus:  −𝑢𝛿𝑦 + 𝑣𝛿𝑥 

 

This must be equal to the volumetric flow rate into PAB across AB. 

 

𝑢 = −
𝜕𝜓

𝜕𝑦
     

𝑣 = +
𝜕𝜓

𝜕𝑥
          −𝑢𝛿𝑦 + 𝑣𝛿𝑥 =

𝜕𝜓

𝜕𝑦
𝛿𝑦 +

𝜕𝜓

𝜕𝑥
𝛿𝑥 ≡ 𝑑𝜓(𝑥, 𝑦) the volumetric flow rate between A and B 

 

  𝑑𝜓 = 𝜓𝐴 − 𝜓𝐵
𝐵

𝐴
     for A and B at arbitrary distance 
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Thermal Convection 

Plate tectonics is the consequence of thermal convection in the mantle, driven 

largely by radiogenic heat sources and the cooling of the Earth.  

 

Thermal convection is the consequence of a change in  

density by a change in temperature (thermal expansion).  

This situation is gravitationally instable and  the cool fluid  

tends to sink and the hot fluid rises. 

 

Density variations caused by thermal expansion 

lead to the buoyancy forces that drive thermal 

convection. 

 

𝜌 = 𝜌0 + 𝜌′            𝜌′ = 𝜌 − 𝜌0          𝐹𝐵 = 𝜌′𝑔  

 

𝐹𝑔 = 𝜌0𝑔     𝐹𝑔 + 𝐹𝐵    

 

𝜌0𝑔        𝜌0𝑔 + 𝜌′𝑔         in momentum conservation equation 

 

𝜌′ ≪ 𝜌0    𝜌0:   reference density 

Radiogenic 

Core 
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Thermal Convection 

In all other respects, however, the density variations are sufficiently small so that they 

can be neglected. This is known as the Boussinesq approximation. 

 

 

 It allows us to use the incompressible conservation of fluid equation: 

 

𝛻 ∙ 𝑉 = 0  

 

−
𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0  

−
𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 + 𝜌𝑔 = 0        −
𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 + 𝜌𝑔 + 𝜌′𝑔 = 0  

 

Eliminating the hydrostatic pressure by introducing: 

 

𝑃 = 𝑝 − 𝜌0𝑔𝑦  
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Thermal Convection 

−
𝜕𝑃

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0  

−
𝜕𝑃

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 + 𝜌′𝑔 = 0    

 

𝜌′ = −𝜌0𝛼(𝑇 − 𝑇0)           𝛼:   volumetric coefficient of thermal expansion 

                                         𝑇0: reference temperature 

 

−
𝜕𝑃

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 − 𝑔𝜌0𝛼(𝑇 − 𝑇0) = 0    

 

                                           Buoyancy force per unit volume 

 

To find the velocity field from momentum conservation equations, we need the 

temperature T. Therefore we require the heat equation (energy equation) that 

governs the variation of temperature. 

 

Heat transfer = Conduction + Convection 
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Thermal Convection 

 

Thermal energy per unit volume: 𝜌𝑐𝑇    (𝜌𝑐𝑇𝑢    energy flux or energy flow per unit area) 

Amount of heat transported across  𝛿𝑦 at 𝑥:  𝜌𝑐𝑇𝑢𝛿𝑦 per unit time, crossing 𝛿𝑦  

 

Heat flux at 𝑥 + 𝛿𝑥:  𝜌𝑐𝑇𝑢 +
𝜕(𝜌𝑐𝑇𝑢)

𝜕𝑥
𝛿𝑥 

 

The net energy advected out of the elemental volume  

per unit time and per unit depth due to flow in the 𝑥  

direction is thus: 

 

𝜌𝑐𝑇𝑢 +
𝜕(𝜌𝑐𝑇𝑢)

𝜕𝑥
𝛿𝑥 − 𝜌𝑐𝑇𝑢 𝛿𝑦  

 =
𝜕(𝜌𝑐𝑇𝑢)

𝜕𝑥
𝛿𝑥𝛿𝑦 

Similarly in 𝑦 direction: 

 

𝜌𝑐𝑇𝑣 +
𝜕(𝜌𝑐𝑇𝑣)

𝜕𝑦
𝛿𝑦 − 𝜌𝑐𝑇𝑣 𝛿𝑥  

=
𝜕(𝜌𝑐𝑇𝑣)

𝜕𝑦
𝛿𝑥𝛿𝑦  
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Thermal Convection 

The net rate of heat advection out of the element by flow in both directions is: 

 
𝜕(𝜌𝑐𝑇𝑢)

𝜕𝑥
+

𝜕(𝜌𝑐𝑇𝑣)

𝜕𝑦
𝛿𝑥𝛿𝑦  

 

Heat Conduction 
 

Heat flux in 𝑥 direction at 𝑥: 𝑞𝑥(𝑥) 
Heat flux in 𝑥 direction at 𝑥 + 𝛿𝑥: 𝑞𝑥(𝑥 + 𝛿𝑥) 
 

Heat flux in 𝑦 direction at 𝑦: 𝑞𝑦(𝑦) 

Heat flux in 𝑦 direction at 𝑦 + 𝛿𝑦: 𝑞𝑦(𝑦 + 𝛿𝑦) 

 

The net heat flow rate out of the element is: 

 

𝑞𝑥 𝑥 + 𝛿𝑥  − 𝑞𝑥(𝑥) 𝛿𝑦 + 𝑞𝑦 𝑦 + 𝛿𝑦  − 𝑞𝑦(𝑦) 𝛿𝑥  

=
𝜕𝑞𝑥

𝜕𝑥
𝛿𝑥𝛿𝑥 +

𝜕𝑞𝑦

𝜕𝑦
𝛿𝑥𝛿𝑥 =

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
𝛿𝑥𝛿𝑥    using Taylor expansion 
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Thermal Convection 

Steady State  
 

In steady state  

 
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
= 0  

 

In the presence of internal heating the rate of heat generation in the element is: 

𝜌𝐻𝛿𝑥𝛿𝑥  

 

 and  

 
𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
= 𝜌𝐻    and in 3D:  

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
= 𝜌𝐻  

 

Fourier’s Law of Conduction  
 

𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
,  𝑞𝑦 = −𝑘

𝜕𝑇

𝜕𝑦
,  𝑞𝑧 = −𝑘

𝜕𝑇

𝜕𝑧
       for isotropic medium  

 

 −𝑘
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2 = 𝜌𝐻     or   −𝑘𝛻2𝑇 = 𝜌𝐻  
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Thermal Convection 

We had obtained the advection term: 

 
𝜕(𝜌𝑐𝑇𝑢)

𝜕𝑥
+

𝜕(𝜌𝑐𝑇𝑣)

𝜕𝑦
𝛿𝑥𝛿𝑦  

  

And the conduction term: 

 

−𝑘
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 𝛿𝑥𝛿𝑦   

 

Energy Conservation 
 

The combined transport of energy out of the elemental volume by conduction and 

convection must be balanced by the change in the energy content of the element. 

The thermal energy of the fluid is 𝜌𝑐𝑇 per unit volume. Thus, this quantity changes 

at the rate: 

 
𝜕 𝜌𝑐𝑇

𝜕𝑡
𝛿𝑥𝛿𝑦    
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Thermal Convection 

By combining the effects of conduction, convection, and thermal inertia, we obtain: 

 
𝜕 𝜌𝑐𝑇

𝜕𝑡
− 𝑘

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕 𝜌𝑐𝑇𝑢

𝜕𝑥
+

𝜕 𝜌𝑐𝑇𝑣

𝜕𝑦
= 0       energy balance   

 

 
Rate of change         Conduction                     Convection 

in heat  

 

For constant 𝜌 and 𝑐 and noting that 

 
𝜕 𝑇𝑢

𝜕𝑥
+

𝜕 𝑇𝑣

𝜕𝑦
= 𝑢

𝜕𝑇

𝜕𝑥
+𝑣

𝜕𝑇

𝜕𝑦
+ 𝑇

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 𝑢

𝜕𝑇

𝜕𝑥
+𝑣

𝜕𝑇

𝜕𝑦
  

                                             𝛻 ∙ 𝑉 = 0 

The thermal  diffusion is defined as: 

𝜅 =
𝐾

𝜌𝑐
  

 
𝜕𝑇

𝜕𝑡
+𝑢

𝜕𝑇

𝜕𝑥
+𝑣

𝜕𝑇

𝜕𝑦
=𝜅

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2   

 
𝜕𝑇

𝜕𝑡
+V ∙ 𝛻𝑇 = 𝜅𝛻2𝑇  
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Thermal Convection 

In this derivation we have neglected: 

a) frictional heating in the fluid associated with the resistance to flow   

b) compressional heating associated with the work done by pressure forces in 

moving the fluid 

 



Navier-Stokes Equations 

24 
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We saw that the force balance on an small volume element of fluid leads to the 

equation for conservation of momentum:  

 

𝐹𝑃 + 𝐹𝑣𝑖𝑠𝑐 + 𝐹𝑔 = 0  

−
𝜕𝑝

𝜕𝑥𝑖
+ −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0    ith component 

 

According to Newton’s second law of motion, any imbalance of forces on the fluid 

parcel results in an acceleration of the elemental parcel: 

 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0,    𝑖 = 1,2,3  

 
Inertial                Surface         Body         forces 

 

 where 
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
≡

𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢 (total derivative) 

 

𝐹 = 𝑚𝑎  →        𝜌
𝐷𝑢𝑖

𝐷𝑡
         𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

Navier-Stokes Equations 

Body forces: 

Gravity force 

Electromagnetic force 

Centrifugal force 

Coriolis force 
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Note that: 
𝐷𝑓

𝐷𝑡
=

𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
≡

𝜕𝑓

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑓    for scalar function f 

𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
≡

𝜕𝑢

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢    for the velocity vector u 

𝐷𝐹

𝐷𝑡
=

𝜕𝐹

𝜕𝑡
+

𝜕𝐹

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
≡

𝜕𝐹

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝐹   for vector function F 

 

Note also that: 
𝜕𝑓

𝜕𝑥𝑖

𝑑𝑥𝑖

𝑑𝑡
=

𝜕𝑓

𝜕𝑥𝑖
𝑢𝑖 =

𝜕𝑓

𝜕𝑥1
𝑢1 +

𝜕𝑓

𝜕𝑥2
𝑢2 +

𝜕𝑓

𝜕𝑥3
𝑢3 =

𝜕𝑓

𝜕𝑥1
𝑖 +

𝜕𝑓

𝜕𝑥2
𝑗 +

𝜕𝑓

𝜕𝑥3
𝑘 ∙ 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘 = 𝛻𝑓 ∙ 𝑢  

 

𝑢 ∙ 𝛻 𝐹 = 𝑢𝑖
𝜕

𝜕𝑥𝑖
𝐹         →          𝑢 ∙ 𝛻  𝐹𝑘 = 𝑢𝑖

𝜕

𝜕𝑥𝑖
𝐹𝑘  

 

 

Do not confuse total derivative with mass conservation 
𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0    Mass Conservation  

 

Navier-Stokes Equations 

Total derivative 

Material derivative  

Substantial derivative  

Lagrangian derivative  

𝛻𝑓 =
𝜕𝑓

𝜕𝑥1
𝑖 +

𝜕𝑓

𝜕𝑥2
𝑗 +

𝜕𝑓

𝜕𝑥3
𝑘  
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Also 

𝑢 ∙ 𝛻 𝐹 = 𝑢1𝑖 + 𝑢2𝑗 + 𝑢3𝑘 ∙ 𝑖 
𝜕

𝜕𝑥1
+ 𝑗 

𝜕

𝜕𝑥1
+ 𝑘 

𝜕

𝜕𝑥1
𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 =

𝑢1
𝜕

𝜕𝑥1
+ 𝑢2

𝜕

𝜕𝑥2
+ 𝑢3

𝜕

𝜕𝑥3
𝐹1𝑖 + 𝐹2𝑗 + 𝐹3𝑘 =  

𝑢1
𝜕𝐹1

𝜕𝑥1
+ 𝑢2

𝜕𝐹1

𝜕𝑥2
+ 𝑢3

𝜕𝐹1

𝜕𝑥3
 𝑖 + 𝑢1

𝜕𝐹2

𝜕𝑥1
+ 𝑢2

𝜕𝐹2

𝜕𝑥2
+ 𝑢3

𝜕𝐹2

𝜕𝑥3
 𝑗 + 𝑢1

𝜕𝐹3

𝜕𝑥1
+ 𝑢2

𝜕𝐹3

𝜕𝑥2
+ 𝑢3

𝜕𝐹3

𝜕𝑥3
 𝑘   

  
  

 

Navier-Stokes Equations 
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In the absence of flow, the only surface force is the pressure force: 

 

−
𝜕𝑝

𝜕𝑥𝑖
  

 

With flow, additional deviatoric forces act on the surface of an elemental parcel: 
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
   ~   gradient of the velocities  

 

In 2D 

 

 

 

 

 

             inertial term 

 

𝜀𝑖𝑗 =
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
       strain tensor 

Navier-Stokes Equations 
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Constitutive Law - Newtonian Fluid  
 

Newtonian fluid is a fluid for which the dependence of  𝜏𝑖𝑗 on 𝜀𝑖𝑗 is linear.  

 

In addition if the medium is also isotropic (the constants of proportionality in the 

deviatoric stress–strain rate relation are independent of the orientation of 

coordinate system axes), then 

 

𝜏𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + 𝜆𝜀𝑘𝑘𝛿𝑖𝑗  

 

where 𝜇 is the dynamic viscosity, and 𝜆 is the second viscosity. 

 

      
𝜏𝑖𝑖

3
= 𝜆 +

2

3
𝜇 𝜀𝑖𝑖 ≡ 𝑘𝐵𝜀𝑖𝑖     𝜆 = 𝑘𝐵 −

2

3
𝜇       (𝛿𝑖𝑖 = 𝛿11 +𝛿11 +𝛿11 = 3) 

 
where 𝒌𝑩 is called bulk viscosity, a measure of dissipation under compression or 

expansion. 

 
 

Navier-Stokes Equations 
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Combining these two equations: 

 

𝜏𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + 𝑘𝐵 −
2

3
𝜇 𝜀𝑘𝑘𝛿𝑖𝑗      𝜏𝑖𝑗 = 𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝑘𝐵 −

2

3
𝜇

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗  

 

And the momentum equation: 

 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝑘𝐵 −

2

3
𝜇

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 + 𝜌𝑔𝑖 = 0  

 

For many fluids 𝑘𝐵 is very small.       𝒌𝑩 ≈ 𝟎    Stokes assumption 

 

Constitutive Law with 𝒌𝑩 ≈ 𝟎  
 

With 𝑘𝐵 ≈ 0, the constitutive or rheological law connecting deviatoric stress and 

strain rate becomes: 

𝜏𝑖𝑗 = 2𝜇𝜀𝑖𝑗 −
2

3
𝜇𝜀𝑘𝑘𝛿𝑖𝑗         𝜏𝑖𝑗 = 𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗   

Navier-Stokes Equations 
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The Navier–Stokes equation 
 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 + 𝜌𝑔𝑖 = 0  

 

Incompressible flow 
 

For incompressible flow 𝛻 ∙ 𝑢 =
𝜕𝑢𝑘

𝜕𝑥𝑘
= 0 

 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
𝜇

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝜌𝑔𝑖 = 0  

If the dynamic viscosity (𝜇) is constant: 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 

+
𝜕

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

 

𝜌
𝐷𝑢𝑖

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑗
2 

+ 𝜌𝑔𝑖 = 0  

 

Navier-Stokes Equations 
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Energy Equation 

For a simple case, in the absence of internal heating and viscous dissipation, 

and where the density and heat capacity were constants, we had obtained the 

energy balance equation as: 

 
𝐷𝑇

𝐷𝑡
= 𝜅𝛻2𝑇      or     

𝜕𝑇

𝜕𝑡
+V ∙ 𝛻𝑇 = 𝜅𝛻2𝑇  

 

In the presence of viscous dissipation and internal heat sources, and variable 

thermal conductivity, the energy conservation relation can be written as: 

 

𝜌𝑐𝑃
𝐷𝑇

𝐷𝑡
= 𝛻 ∙ 𝐾𝛻𝑇 + Φ + 𝜌𝐻       Energy balance 

 
Rate of  Change                  By conduction            By dissipation       By internal heating  

In energy 

Where 𝐻 is the rate of internal heat production per unit mass and Φ ≡ 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 is 

viscous dissipative heat.  

 
𝐷𝑇

𝐷𝑡
=

𝜕𝑇

𝜕𝑡
+𝑢 ∙ 𝛻𝑇  

 
                By time           By advection 

Change in velocity  
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Navier-Stokes Equations 

For a Newtonian fluid: 

 

Since 𝜏𝑖𝑗 = 𝜇
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝑘𝐵 −

2

3
𝜇

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗,   then 

Φ = 𝜇
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝑘𝐵 −

2

3
𝜇

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
  

 Φ = 𝑘𝐵
𝜕𝑢𝑘

𝜕𝑥𝑘

2

+ 2𝜇
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

1

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗

2

 

 

If the fluid is incompressible: 

Φ =
𝜇

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖

2

  

 

a) The bulk viscosity 𝑘𝐵 = 𝜆 +
2

3
𝜇  leads to dissipation due to volume changes in 

a deforming fluid.  

b) The dynamic viscosity 𝜇 leads to dissipation through shear. Note that there are 

no volume changes associated with the bracketed tensor in the second term. 

i.e., 
1

2

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

1

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 = 0  for i=j 
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Navier-Stokes Equations 

It can be shown that for compressible flow: 

 

𝜌𝑐𝑃
𝐷𝑇

𝐷𝑡
− 𝛼𝑇

𝐷𝑃

𝐷𝑡
= 𝛻 ∙ 𝐾𝛻𝑇 + Φ + 𝜌𝐻  

 

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
+𝑢 ∙ 𝛻𝑇 − 𝛼𝑇

𝜕𝑃

𝜕𝑡
+𝑢 ∙ 𝛻𝑃 = 𝛻 ∙ 𝐾𝛻𝑇 + Φ + 𝜌𝐻   

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 −

𝛼𝑇

𝜌𝑐𝑃
𝛻𝑃 = 𝛻 ∙ 𝐾𝛻𝑇 + Φ + 𝜌𝐻  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + Φ + 𝜌𝐻  

 

where    𝛻𝑇𝑆 ≡
𝛼𝑇

𝜌𝑐𝑃
𝛻𝑃    Adiabatic temperature gradient  

𝛻𝑃 = 0𝑖 + 0𝑗 +
𝜕𝑃

𝜕𝑧
𝑘 ≈

𝜕(−𝜌𝑔𝑧)

𝜕𝑧
𝑘    𝛻𝑇𝑆 ≈ −

𝑔𝛼

𝑐𝑃
𝑇  

and    Φ ≡ 𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
 

 

𝝆𝒄𝑷
𝝏𝑻

𝝏𝒕
−

𝜶𝑻

𝝆𝒄𝑷

𝝏𝑷

𝝏𝒕
+ 𝒖 ∙  𝜵𝑻 − 𝜵𝑻𝑺 = 𝜵 ∙ 𝑲𝜵𝑻 + 𝝉𝒊𝒋

𝝏𝒖𝒊

𝝏𝒙𝒋
+ 𝝆𝑯  
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Basic Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 

ρ = 𝜌𝑟 1 − 𝛼(𝑇 − 𝑇𝑟) +
1

𝐾𝑇
(𝑃 − 𝑃𝑟) + Δ𝜌𝑖(Γ𝑖 − Γ𝑟𝑖)         i =1,2,3 

 

Γ𝑖 =  
1

2
1 + tanh (𝜋𝑖)   

 

π𝑖 = 
𝑑𝑖−𝑑−𝛾𝑖(𝑇−𝑇𝑖)

𝑕𝑖
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State Equation 

𝜌 𝑃, 𝑇 = ?  
Taylor expansion 

𝜌 𝑃, 𝑇 =  𝜌𝑟 +
𝜕𝜌𝑟

𝜕𝑇 𝑃
𝑇 − 𝑇𝑟 +

𝜕𝜌𝑟

𝜕𝑃 𝑇
𝑃 − 𝑃𝑟          where     𝜌𝑟 ≡ 𝜌(𝑃𝑟 , 𝑇𝑟) 

 
𝑃𝑟: 𝑕𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  
𝑇𝑟: 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  
 

But  
  

𝛼 =
1

𝜌𝑟

𝜕𝜌𝑟

𝜕𝑇 𝑃
 ,  and      𝐾𝑇 = 𝜌𝑟

𝜕𝑃

𝜕𝜌𝑟 𝑇
 

 

𝜌 𝑃, 𝑇 =  𝜌𝑟 1 − 𝛼 𝑇 − 𝑇𝑟 +
𝑃−𝑃𝑟

𝐾𝑇
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State Equation 

𝛻𝜌𝑟 𝑆, 𝑃𝐻 = 
𝜕𝜌𝑟

𝜕𝑆 𝑃𝐻

𝛻𝑆 +
𝜕𝜌𝑟

𝜕𝑃𝐻 𝑆
𝛻𝑃𝐻  

 
Since reference state is adiabatic: 𝛻𝑆 = 0 

and since 𝛻𝑃𝐻 = 0 + 0 +
𝑑𝑃𝐻

𝑑𝑧
𝑘 = −𝜌𝑟𝑔𝑘  

and 𝛻𝜌𝑟 𝑆, 𝑃𝐻 = 0 + 0 +
𝑑𝜌𝑟

𝑑𝑧
𝑘  

 
1

𝜌𝑟

𝑑𝜌𝑟

𝑑𝑧
= −𝑔

𝜕𝜌𝑟

𝜕𝑃𝐻 𝑆
= −

𝑔𝜌𝑟

𝐾𝑠
              where        𝐾𝑆 = 𝜌𝑟

𝜕𝑃𝐻

𝜕𝜌𝑟 𝑆
 

 

Gruneisen’s parameter is defined as: Γ =
𝛼𝐾𝑆

𝜌𝐶𝑃
=

𝛼𝐾𝑇

𝜌𝐶𝑉
  

then:  
1

𝜌𝑟

𝑑𝜌𝑟

𝑑𝑧
= −

𝑔𝛼

Γ𝐶𝑃
= −

1

Γ𝐻𝑇
     where  𝐻𝑇 =

𝐶𝑃

𝑔𝛼
    scale height 

 
This is the well-known Adams-Williamson relation for a chemically homogeneous 

adiabatic density distribution under hydrostatic pressure (Birch 1952). 
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State Equation 

Spiegel & Veronis (1960) gave criteria for the applicability of the 

Boussinesq approximation to compressible fluids: 

 
𝑑

𝐻𝑇
≪ 1   for shallow layers,    𝑑: 𝑐𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑐 𝑙𝑒𝑛𝑔𝑡𝑕  

 

For constant Γ:   
1

𝜌𝑟

𝑑𝜌𝑟

𝑑𝑧
= −

1

Γ𝐻𝑇
       

𝑑𝜌𝑟

𝜌𝑟
= −  

𝑑𝑧

Γ𝐻𝑇

𝑧

𝑑
 

 

ln
𝜌𝑟(𝑧)

𝜌0(𝑧)
=

𝑑−𝑧

Γ𝐻𝑇
     𝜌𝑟 𝑧 =  𝜌0 𝑒𝑥𝑝 𝑑 − 𝑧 Γ𝐻𝑇  

 

where 𝜌0 = 𝜌𝑟(𝑧 = 𝑑) is the density at the upper surface (bottom: z=0). 

 

Γ ≈ 1.1  

𝜌𝑟 𝑧 = 0 =  𝜌0 𝑒𝑥𝑝 𝑑 Γ𝐻𝑇   

𝜌𝑟 𝑧 = 𝑑 = 𝜌0  

∆𝜌 ≈ 0 𝑖𝑓 
𝑑

𝐻𝑇
≪ 1  
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State Equation 

We also have: 

 
1

𝐾𝑇
=

𝛼

𝜌𝑟𝐶𝑣
    and     𝐶𝑉 =

𝐶𝑃

1+𝛼Γ𝑇𝑟
 

 

𝜌 𝑃, 𝑇 =  𝜌𝑟 1 − 𝛼 𝑇 − 𝑇𝑟 +
𝑃−𝑃𝑟

𝐾𝑇
  

𝜌𝑟 𝑧 =  𝜌0 𝑒𝑥𝑝 𝑑 − 𝑧 Γ𝐻𝑇   

 

 𝜌 𝑃, 𝑇 =  𝜌𝑟 1 − 𝛼 𝑇 − 𝑇𝑟 + 𝛼 1 + 𝛼Γ𝑇𝑟 Γ𝜌𝑟𝐶𝑃 𝑃 − 𝑃𝑟   
 

Note that    𝜌𝑟= 𝜌0 𝑒𝑥𝑝 𝑑 − 𝑧 Γ𝐻𝑇  

 

In non-dimensional form    𝜌𝑟′ = 𝑒𝑥𝑝 1 − 𝑧′ 𝐷 Γ     where 𝐷 = 𝑑 𝐻𝑇  

 

𝑧′ = 𝑧 𝑑 ,    𝜌′ = 𝜌 𝜌0,     
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State Equation 

The non-dimensional form can be written as: 

 
𝜌 𝑃, 𝑇 =  𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   

 

𝜇 = 𝛼∆𝑇 , 𝐷 = 𝑑 𝐻𝑇  

  

For liquids:   𝜇 ≪ 1 

For shallow depths:   𝐷 ≪ 1 

For dilute gases:   𝜇 ≈ 1 

 

For Boussinesq approximation:  𝜇 ≪ 1, 𝐷 ≪ 1 

 

𝜌 𝑃, 𝑇 =  𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟   

 

For anelastic liquid approximation: 𝜇 ≪ 1, 𝐷~1 

 

𝜌 𝑃, 𝑇 =  𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
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Basic Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 
𝜌 𝑃, 𝑇 =

 𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
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Anelastic Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 
𝜌 𝑃, 𝑇 =

 𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
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Anelastic Liquid Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 
𝜌 𝑃, 𝑇 =

 𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
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Truncated Anelastic Liquid Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 
𝜌 𝑃, 𝑇 =

 𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
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Extended Boussinesq Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 
𝜌 𝑃, 𝑇 =

 𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
 

𝜌𝑟 = 𝜌𝑠𝑢𝑟𝑓 = 𝐶𝑜𝑛𝑠𝑡.  
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Boussinesq Equations 

𝜕𝜌

𝜕𝑡
+ 𝛻. 𝜌𝑉 = 0  

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 ∙ 𝛻 𝑢𝑖 = −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 = 0  

𝜌𝑐𝑃
𝜕𝑇

𝜕𝑡
−

𝛼𝑇

𝜌𝑐𝑃

𝜕𝑃

𝜕𝑡
+ 𝑢 ∙  𝛻𝑇 − 𝛻𝑇𝑆 = 𝛻 ∙ 𝐾𝛻𝑇 + 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜌𝐻  

 
𝜌 𝑃, 𝑇 =

 𝜌𝑟 1 − 𝜇 𝑇 − 𝑇𝑟 + 𝜇𝐷 1 Γ𝜌𝑟 𝑃 − 𝑃𝑟 + 𝜇2𝐷 Γ 𝑇𝑟 + 𝑇0 Γ𝜌𝑟 𝑃 − 𝑃𝑟   
 

𝜌𝑟 = 𝜌𝑠𝑢𝑟𝑓 = 𝐶𝑜𝑛𝑠𝑡.  
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𝑄𝑆𝑢𝑟𝑓 =  𝑄𝑆𝑒𝑐,𝑀𝑎𝑛𝑡 + 𝑄𝑅𝑎𝑑 + 𝑄𝐶𝑀𝐵,          𝑄𝑆𝑒𝑐,𝑀𝑎𝑛𝑡 = 𝑀𝐶
𝑑𝑇

𝑑𝑡 𝑀𝑎𝑛𝑡𝑙𝑒
  

 

𝑄𝐶𝑀𝐵 = 𝑄𝑆𝑒𝑐,𝐶𝑜𝑟𝑒 + 𝑄𝐿 + 𝑄𝐺                    𝑄𝑆𝑒𝑐,𝐶𝑜𝑟𝑒 = 𝑀𝐶
𝑑𝑇

𝑑𝑡 𝐶𝑜𝑟𝑒
  

 

𝑄𝑆𝑢𝑟𝑓 Surface heat flow (W) 

𝑄𝑆𝑒𝑐,𝑀𝑎𝑛𝑡 Secular cooling of mantle 

𝑄𝑅𝑎𝑑 Radiogenic heat   

𝑄𝐶𝑀𝐵 CMB heat flow  

𝑄𝑆𝑒𝑐,𝐶𝑜𝑟𝑒 Secular cooling of core 

𝑄𝐿 Latent heat flow from the inner core boundary due to solidification  

𝑄𝐺 Gravitational heat flow from the inner core boundary due to solidification  

Energy Regime 
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Dimensionless Numbers 

Rayleigh number  
 
The Rayleigh number (Ra) for a fluid is a dimensionless number associated with 

buoyancy-driven flow that characterises the fluid's flow regime. Lower values denote 

laminar flow; and  higher values denote turbulent flow. Below a  threshold value 

(critical Rayleigh number), there is no fluid motion and heat transfer is by 

conduction rather than convection. 

 

𝑅𝑎𝑇 =
𝜌𝑔𝛼𝑇𝑑3

𝜈𝐾
   

𝑅𝑎𝐻 =
𝑔𝛼𝐻𝑑5

𝜈𝜅𝐾
       𝑅𝑎𝑇 = 107 𝑓𝑜𝑟 𝑚𝑎𝑛𝑡𝑙𝑒 

                                                                                                   𝑙𝑜𝑤 𝑅𝑎           𝐻𝑖𝑔𝑕 𝑅𝑎 

𝜌: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑘𝑔/ 𝑚3) 

𝜈: 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦(𝑚2/𝑠)  𝜇 = 𝜈𝜌: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑃𝑎 ∙ 𝑠;  𝑁 ∙ 𝑠 𝑚2;  𝑘𝑔 (𝑚 ∙ 𝑠)    
𝑑: 𝑐𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑐 𝑙𝑒𝑛𝑔𝑡𝑕 (𝑚)  
𝑔: 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑎𝑐𝑐. (𝑚/ 𝑠2) 

𝑇: 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝐾𝑒𝑙𝑣𝑖𝑛)  
𝛼: 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑣𝑖𝑡𝑦(1/𝐾) 

𝐾: 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑. 𝑊/ 𝑚 /𝐾   

𝜅: 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦(𝑚2/𝑠)    𝜅 =
𝐾

𝜌𝐶𝑃
 

𝑊/ 𝑚 /𝐾

𝑘𝑔/ 𝑚3 𝐽/ 𝑘𝑔 /𝐾
= 𝑚2/𝑠  
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Dimensionless Numbers 

Prandtl number  
 
The Prandtl number (Pr) is a dimensionless number, defined as the ratio of 

momentum diffusivity to thermal diffusivity (after the German physicist Ludwig 

Prandtl) 

 

𝑃𝑟 =
𝜈

𝜅
=

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑖𝑓𝑓.  𝑟𝑎𝑡𝑒

𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓.  𝑟𝑎𝑡𝑒
         𝑃𝑟~

1020

10−6 = 1026 𝑓𝑜𝑟 𝑚𝑎𝑛𝑡𝑙𝑒 

  
𝜈: 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦(𝑚2/𝑠)   

𝜅: 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦(𝑚2/𝑠)    𝜅 =
𝐾

𝜌𝐶𝑃
 

𝑊/ 𝑚 /𝐾

𝑘𝑔/ 𝑚3 𝐽/ 𝑘𝑔 /𝐾
= 𝑚2/𝑠  

For mantle   𝜈 ≫ 𝜅     𝑃𝑟 →  ∞ 

 

𝑃𝑟 ≪ 1: 𝑡𝑕𝑒 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠  

𝑃𝑟 ≫ 1: 𝑡𝑕𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠  

 

Ex. – In liquid mercury the heat conduction is more significant compared to convection. 

For engine oil, convection is very effective in transferring energy (compared to pure 

conduction), so momentum diffusivity is dominant. 
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Dimensionless Numbers 

Nusselt Number  
 
The Nusselt number (Nu) is the ratio of convective to conductive heat transfer at a 

boundary in a fluid. Convection includes both advection (fluid motion) and 

diffusion (conduction).  

 

𝑁𝑢 =
𝑕

𝐾 𝑑 
=

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑕𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓.

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑕𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓.
   

  
𝑑: 𝑐𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑐 𝑙𝑒𝑛𝑔𝑡𝑕 (𝑚)  

𝑕: 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑕𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓. 𝑕 =
𝑞

∆𝑇
       

𝑞: 𝑕𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 (𝑊 𝑚2 )  
∆𝑇: 𝑡𝑒𝑚𝑝𝑎𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝐾𝑒𝑙𝑣𝑖𝑛)  
 

𝑁𝑢 = 1, 𝑝𝑢𝑟𝑒 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛  

𝑁𝑢 = 1 − 10, 𝑠𝑙𝑢𝑔 𝑓𝑙𝑜𝑤  

𝑁𝑢 = 100 − 1000, 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤  

  

 



51 

Dimensionless Numbers 

Reynolds Number  
 
The Reynolds number (Re) is a measure of the flow patterns in a fluid. Laminar 

flow (sheet-like) has low Reynolds number, while turbulent flow has higher values 

of Reynolds number.  

 

𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝑚𝑎

𝜏𝐴
=

(𝜌𝑉)∙𝑑𝑢 𝑑𝑡 

𝜇 𝑑𝑢 𝑑𝑦∙𝐴 
=

𝜌𝑑3∙𝑑𝑢 𝑑𝑡 

𝜇𝑑𝑢 𝑑𝑦 𝑑2 
  

=
𝜌𝑑∙𝑑𝑦 𝑑𝑡 

𝜇
=

𝜌𝑑𝑢

𝜇
=

𝑢𝑑

𝜈
  

  
𝑑: 𝑐𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑐 𝑙𝑒𝑛𝑔𝑡𝑕 (𝑚)  
𝑢: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑚 𝑠 )  
𝜇: 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑃𝑎 ∙ 𝑠    
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Dimensionless Numbers 

Peclet Number  
 
The  Peclet number is defined to be the ratio of the rate of advection to the rate of 

diffusion. 

 

𝑃𝑒 =
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
=

𝑢𝑑

𝜅
= 𝑅𝑒 × 𝑃𝑟  

  

  
𝑑: 𝑐𝑕𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑐 𝑙𝑒𝑛𝑔𝑡𝑕 (𝑚)  
𝑢: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑚 𝑠 )  
𝜅: 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦(𝑚2/𝑠) 
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Dimensionless Numbers 

Mach Number  
 
The Mach number is ratio of convective velocity to sound velocity. 

 

𝑀 =
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒   𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠𝑜𝑢𝑛𝑑  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
=

𝑢

𝑐
  

  

  
𝑢: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑚 𝑠 )  
𝑐: 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑚 𝑠 )  
 

 

 

M2 << 1  a separation of time scales  elastic vibrations irrelevant on convective 

time scales. 


