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Thermal Convection



g Conservation of Fluid in 2D —

e
The flow entering a small volume §x 8y at x in x — dir: pu 6y
The flow leaving a small volume §x 8y at x + 6x in x — dir : pu(x + 6x) 8y

The flow rate per unit area: pu(x + 6x)

f(X) ~ f(a) + M(X 500 Cl) o f_@ (X - Cl) 2+ . . . Taylor expansion

f(x+5x)~f(x)+f()(x+5x—x)+ 1
u(x + 6x) = u(x) + a—dx x +6x N
X ¥
The net flow passing through the volume < | -
(entering and leaving) in x-direction: " % 5
y+oy
sy
plu(x) +g—z6x—u(x)] Sy =p3—25x6y v/it, t=1 ‘l'

ov
pV v @63/
Ay { T : A=1
Similarly in y — dir : O
Flow across the surfaces of an infinitesimal

rectangular element.

v ov
p [v(x) t5,00 v(y)] =P, 0yox

Schubert, Turcotte & Olson, Mantle convection in the Earth and Planets, 2001; Turcotte & Schubert, Geodynamics, 2002



Conservation of Fluid in 2D =
/ —

The total net flow through the volume:

,oa 5x5y+,0a 5y5x—p e —]5y5x

If the flow is steady (time-independent), and there are no density variations, then
there will be no net flow into or out of the volume.
The conservation of fluid or continuity equation is:

o + v 0 or divVv=V-V=0 Mass Conservation
dx ady

o aw, w_ -
In 3D: ax+ay+az = V=V(,v,w)

In spherical coordinate :

oV
vV =2 () L, Sin(0))+ -
reor rSin(@) 06 rSin(0) op




7 Momentum Equation ==
// —
Elemental Force Balance

The forces acting on the small volume element are:
1) Pressure force

2) Viscous force

3) Gravity force (body force)

4) Inertial force

The Earth’s mantle behave as a highly viscous fluid on geologic time scales.
The viscosity of mantle is ~ u = 10%1P.s

Its density is ~ p = 4000 kg/m3
And its thermal diffusivity is ~ k = 107® m/s

The Prandtl number: Pr = - #  Pa.s  dynamicviscosity
3 K W/(mK) thermal conductivity
K= = mz/ S  thermal dif fusivit
pCp % Cp ]/(kglg) specific heat
Vv = % mz/ S kinematic viscosity p kg / m density

PrEarth"’lO23



Momentum Equation =
/ —

i

At high Prandtl numbers the inertial forces can be neglected:

Fp + Fyisc + 15 =0
The force acting at x in x — dir on 8y — element: p(x) 6y
The force acting at x + 8x in x — dir on 6y — element: p(x + 6x) 8y

The net pressure force on the element in the x-dir. per unit area of the fluid element:

p)Sy—p(x+8x)8y _  p(x+8x)—p(x)
ox8y ox
By virtue of a simple Taylor series expansion 2> — 27

ox

Similarly for the pressure force on the element in the y-dir. Per unit area of the

5
element: —2£
oy



Momentum Equation =

/
= —
The gravitational force acting on the volume element:
Tyy(y)ﬁx
Fy = mg = poxdy g T
e Ty (Y10
F,=pg thenet g — force per unit volume g Ty )0y
Ty (X + 6x)8y
<

Viscus Foces

Txy(x + 6x)8y

y+6yx+6x x

-

The net viscous force in the x-dir. Per unit volume: Ty ly + 9165 l

oxdy oxd8y

Tyy(y + 8y)ox

Expanding 7,,(x + éx) and t,,(y + dy) around x and vy, respectively (using Taylor
series expansion):

OTyy OTyy
0x dy




Momentum Equation =

/ /
Similarly, the net viscous force in the y-dir. Per unit volume of the element:
dtyy - 0Ty

dy 0x

For an ideal Newtonian viscous fluid, the viscous stresses are linearly proportional to
the velocity gradients:

Aed N ou o o ov
= Zﬂa, Tyy = 1227 2#@
Vo ou . Jdv
Txy = T12= 2U (@ + a)’ Txy = Tyx
In general:

TU % Z'U <an + axi>

where u is the dynamic viscosity.



Momentum Equation

/
The application of
du —_
g e 9 ot
s E H %x ;;;x aix the net viscous force in the x-dir. Per unit volume
oo v - 28
Tyy = Ta2= 205 ay I 0Tyy | OTxy : : : :
the net viscous force in the y-dir. Per unit volume
= y) av |_dy 0x
Txy = T12= 4H 6x
yields to;
0%u 0%u  0%v 0%v . 0%u :
2U— nd 2 . respectively.
“ax2+“(ay +6 ay)ad ‘u +/~‘ 6x2+6x6y P y

These expressions can be simplified using the continuity equation:

u v _ vy o dar i
ox 0y oxdy  9x?’ 0x0y 6y
0%u 0%u . 0%v 0%u , 0%u
<l dx? L (6 = axay) H (6x2 o ayz)
d%v QZpiivigZy 0%v = 9%v
24 oy? i (axz . axay) H (axz = ayz)



y

The force balance equations for an incompressible fluid (7 - V = 0):

NG

ax-+ll<ax24_ay2)-_ )

5 o o
6y+'u(6x2+0y2)+pg_0

To eliminate the hydrostatic pressure variation in Equation:
P=p-—pgy

The pressure P is the pressure generated by fluid flow. With this substitution:

0x 0x%2  0y?
oP S o T R
e (ax2+a 2) 0

In compact form and in 3D-geometry:

—VP + VZV = 0 Momentum Conservation

Momentum Equation —

10



Momentum Equation
/ e

The continuity equation for compressible fluid

g—i + V.(pV) = 0  Mass Conservation

U: Characteristic Vel. C: Sound Vel.

Gough (1969)

2
If M2=%S1 > %—)O 2> V.(pV)=0 M: Mach number

V.(pV) = pV.V +VVp

Momentum Equation in More General Form
Finertiar = Fp + Fyisc + I

Finertia1 = P (?3_: e AT V)

oF e 2 .
p(at+V\7 V)— Vb + V<V + pg

104



The Stream Function —
= / —

Incompressible 2D-Fluid

Solving the Momentum Equation Using Stream Function Method

Defineu=—a—lp, v:+a—¢
ady 0x

Substituting in continuity equation:

i 02y %Y
0xdy t dyodx -
equation.

which shows the stream function y satisfies the continuity

Substituting in momentum equations:

ap a3y Y\ _
0x e (axzay i 6y3) =

oP 3y 3P\ _
oy it (6x3 - ayzax) =0

12



The Stream Function e
/ —

i

For a single differential equation for iy, the pressure can be eliminated from these
equations by taking the partial derivative of these equations with respect to y and x,
respectively:

Substituting in momentum equations:

0%, 5 3 ot _
0x* t+2 0x20y? +t ay* 0

biharmonic equation

13



The Stream Function —
/' ——

Ex. — The flow accord AB?

The flow across AB can be calculated from the flows A
across AP and PB because conservation of mass.

The volumetric flow rate across AP into the triangle
per unit distance normal to the figure is: udy

similarly the flow rate across PB out of the triangle is: véx
The net flow rate out of PAB is thus: —udy + vdx

This must be equal to the volumetric flow rate into PAB across AB.

oY
u=——
ay
Vo= g—lf: = —u5y + vox = (69_13//) 5)/ o+ g—;/: ox = dl/)(x, y) the volumetric flow rate between A and B

14



Thermal Convection ==
Plate tectonics is the consequence of thermal convection in the mantle, driven
largely by radiogenic heat sources and the cooling of the Earth.

Thermal convection is the consequence of a change in
density by a change in temperature (thermal expansion).
This situation is gravitationally instable and the cool fluid
tends to sink and the hot fluid rises.

Density variations caused by thermal expansion

lead to the buoyancy forces that drive thermal L T
convection. Radiogenic
p=potp 2 p'=p-—pg Fp=p'g Core

F,=pg 2F+Fg
Pod - Pog + p’g in momentum conservation equation
p' K po Po: reference density

15



S

Thermal Convection —

In all other respects, however, the density variations are sufficiently small so that they
can be neglected. This is known as the Boussinesq approximation.

It allows us to use the incompressible conservation of fluid equation:

V-V=20

. e

ax+“(ax2+ay2)_0

oy oty = S0y o
—ay+u(ax2+ay2)+pg—0 > ay+u(axz+ayz)+pg+pg—O

Eliminating the hydrostatic pressure by introducing:

P=p—pogy

16



Thermal Convection s

0x 0x%2 ~ dy?
oP 0%v  0%v ;
T (0x2+6y2)+pg_0
p’ = —poa(T v TO) (. volumetric coefficient of thermal expansion
Ty: reference temperature
oP 0y
v +u (6x2 3 ayz) i ?Po“(T 7 TO)l =0

Buoyancy force per unit volume

To find the velocity field from momentum conservation equations, we need the
temperature T. Therefore we require the heat equation (energy equation) that
governs the variation of temperature.

Heat transfer = Conduction + Convection

17



Thermal Convection =
Thermal energy per unit volume: pCT (chu energy flux or energy flow per unit area)

Amount of heat transported across &y at x: pcTudy per unittime, crossing 8y
. d(pcTu)
Heat flux at x + 6x: pcTu + a—5x

The net energy advected out of the elemental volume
per unit time and per unit depth due to flow in the x

direction is thus: povTox
“chu An a(p;:u) 0x ] o= chu] oy y i < ,
d(pcT
= (pac;c u) 5x5y |E;cuT+ % (pcuT)Bx} Sy - 8y oeuToy
Similarly in y direction:
y+oy
x + bx l X
"chU+M5y] —chv] ox 5
ady Eoch+ 3y (pch)By:I Sx

__0d(pcTv)
= e 6x0y

18



Thermal Convection e
rmal Conve ;

The net rate of heat advection out of the element by flow in both directions is:

gy (y)
[a(chu) a(chv)] I
+ 6x0y v
G} )
. i
. |
Heat Conduction g |
|
|
Heat flux in x direction at x: g, (x) B P ol
Heat flux in x direction at x + 6x: q,(x + 6x) 5y S
Heat flux in y direction at y: q,,(y) /’/ qy(y+6y)l )
Heat flux in y direction at y + 8y: qy(y +8y)  7*»" % ¥ .
€ bx Eal

The net heat flow rate out of the element is;

[q,(x + 6%) — g, () 16y + [q, (v + 6Y) —q, () |6x

_ 0dy aqy __(9qx , 94y / :
o oxdx + 3y Oxdx = o o 9y dxO0x  using Taylor expansion

19



P —
Steady State

In steady state

945 , 94y _
0x T ady =

In the presence of internal heating the rate of heat generation in the element is:
pHbOx6x

and
ogy Oy : : dqx , 9qy | 9q; _
6x+6y = pH andin 3D: 6x+6y+az_pH

Fourier’s Law of Conduction

—_ka_T —_ka_T __ka_T R di
qx = ax = 35" q, = 37 or isotropic medium

e e o s
- _k(6x2+6y2+622)_'0H or —kV<T = pH

Thermal Convection =

20



Thermal Convection e
v MM

We had obtained the advection term:

d(pcTu) , d(pcTv)
[ el T ]5x5y

And the conduction term:

Energy Conservation

The combined transport of energy out of the elemental volume by conduction and
convection must be balanced by the change in the energy content of the element.
The thermal energy of the fluid is pcT per unit volume. Thus, this quantity changes
at the rate:

d(pcT)
= 6x0y

21



Thermal Convection =
ey O AAR

P —

—
By combining the effects of conduction, convection, and thermal inertia, we obtain:

d(pcT) 0%T = 0°T d(pcTu) . 9(pcTv)
— — I
v (ax2 4 % 352 o ax o %y 0 energy balance
L J [ J [ J
I T T
Rate of change Conduction Convection
in heat

For constant p and ¢ and noting that

0(Tw) | 9(Tv) _ _+ —+T( ) a_T+ aT
dx ady

The thermal diffusion is deflned as:
K

K
pc

%w- VT = V2T

22



.

In this derivation we have neglected:

a) frictional heating in the fluid associated with the resistance to flow

b) compressional heating associated with the work done by pressure forces in
moving the fluid

Thermal Convection =

23
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Navier-Stokes Equations

24



f Navier-Stokes Equations =
We saw that the force balance on an small volume element of fluid leads to the

equation for conservation of momentum:

Fp + Fyisc + 15 =0
op aTU

P ith t
oy 5% + pg;i = 0 i componen

According to Newton’s second law of motion, any imbalance of forces on the fluid
parcel results in an acceleration of the elemental parcel:

Du; 0 0Tjj :
7t — —ap St = 2 Lo =0 =173 Body forces:
\_lY)t_/ (9Xi Y *j | Gravity force
_ Electromagnetic force
Inertial Surface Body forces Centrifugal force

Coriolis force
where g o f o e + (u * V)u (total derivative)
Dt Ot 9x; dt = Ot

Du;
F=mag = D_t mass X acceleration

29



Navier-Stokes Equations =

o /
= y
| _of  Of . of .

0o axll+ax2]+0x3k
Note that:
D d of dx; 0 i I
Br o df Ohdy = —f +u-Vf forscalar function f Total (.jerlvat_lve.
lD)t gt aaxi Ccllt Material derivative
e + (u-V)u forthe velocity vector u Substantial derivative

Dt~ ot ' dx; dt

DL aF aE dx

= = + (u-V)F for vector function F

Lagrangian derivative

Note also that:

ofdn 9 o o AE Or .
rr I Pt ks S P L T (a L J+ )(u11+u2]+u3k) Vf-u

(u-V)F=(uiaixi)F - (u- \7)Fk—(ula )Fk

Do not confuse total derivative with mass conservation
a9
6_[; AT (pV) = 0  Mass Conservation

26



Navier-Stokes Equations =

/7 Vo s
Also
(u-V)F = [(uli+ u,j + usgk) - (i 61 +jai + l?,aixl)] (Fii + Fyf + Fs3k) =

d
(ula—xl+uza—x2+u36 )(Fll‘l‘Fz]‘l‘ng) =

6F1 6F1 6F1 A 6F2 an 6F2 A 6F3 6F3 6F3 ~
(ulax1+uzax2+u3ax3) l+( 1ax + Uowe Tl T s Yige e Moy El T k

27



Navier-Stokes Equations

In the absence of flow, the only surface force is the pressure force:

P —

op

axi

With flow, additional deviatoric forces act on the surface of an elemental parcel:

a’l'ij
f))Cj

~ gradient of the velocities

In 2D

A Al A ap Ty
/0( = ue— 4 u, "):__’+ ,"_"‘+

dt dx '

Ol + RITE Ol + ap ATy
P (: S u— tuy— :) = -—-:Jl- + — }ﬁ +
| )

ot 0x © oy

; |
inertial term

1 [ duy; auj :
SRR i) M ey strain tensor
t 2 (696]' = axi>

y+dy

(-p+Tyy Jax

—_— txy dx

Tyx dy

T > (-P+Tyy )y




* Navier-Stokes Equations //
Constitutive Law - Newtonian Fluid
Newtonian fluid Is a fluid for which the dependence of 7;; on g;is linear.
In addition if the medium is also isotropic (the constants of proportionality in the

deviatoric stress—strain rate relation are independent of the orientation of
coordinate system axes), then

Tij = Z,UEij + Agkk5ij

where u is the dynamic viscosity, and A is the second viscosity.
Tii 2 it 2

where kg is called bulk viscosity, a measure of dissipation under compression or
expansion.

29



Navier-Stokes Equations o
e er-stokes Et |

Combining these two equations:

2 ou; . ou;j 2 \ou
Tij = Zli«?ij"‘(kB —gﬂ) Eedij 2 Ty =M< +- ]_>+(k3 —gli)—k5ij
And the momentum equation:

D= g0 0 [pow (ks —2p) ks, —
th = axl-+axj ‘u(axj-l_axi)-l_ kB i 6xk6U +pgl_

For many fluids kg is very small. kg =~ 0 Stokes assumption
Constitutive Law with kg = 0

With kz = 0, the constitutive or rheological law connecting deviatoric stress and
strain rate becomes:

i 2 S ou; au—j 2 dug
Lip Zﬂgu 3/"€kk6lj > Tij=H <6xj A dx; 3 0xy 51]

30



Navier-Stokes Equations
— S

i

The Navier—-Stokes equation

Dw; _ _9p , 90 [ (0w , 0% 20u -
,D Dt e 6xi+6xj ,Ll( T 5l]>]+p'gl e

6xj dx; 3 d0xg

Incompressible flow

: : ou
For incompressible flow V- u = a_xk =0
k

D 0p o d RO 0l -
P D 6xl-+axj #(axj_l_axi)] +p'gl =

If the dynamic viscosity (u) is constant:

b g 0%u; 0 o
T axi+“[<ax? +6xl )]_I—p'gl_o

J

3



, Energy Equation e

For a simple case, in the absence of internal heating and viscous dissipation,
and where the density and heat capacity were constants, we had obtained the
energy balance equation as:

DT _ wv2T or L 4v.vT = kW2T
Dt ot

In the presence of viscous dissipation and internal heat sources, and variable
thermal conductivity, the energy conservation relation can be written as:

PCp ? = 37 - (KVT) + ® + pH Energy balance

ki J\ J
Y [ |

Rate of Change By conduction By dissipation By internal heating
In energy

Where H is the rate of internal heat production per unit mass and ¢ = TU% IS

]
viscous dissipative heat. T
DT oT in veloci
andlndd £ ot _I_u % VT Change in velocity
Dty Ot

]\ J
| !

By time By advection

32



f Navier-Stokes Equations =
For a Newtonian fluid:

3

© = (324 52 (ks - 20) oy 3

> 0= (32« 2 32) -3 2
If the fluid is incoTpressibIe:

0= £(3u42)

a) The bulk viscosity kg = (A + Zu leads to dissipation due to volume changes in
3

a deforming fluid.
b) The dynamic viscosity u leads to dissipation through shear. Note that there are
no volume changes associated with the bracketed tensor in the second term.

o i iy =
l.e., (ax]-l_ axi) 3(axk> 8;; =0 for i

. -
Since t;; = u(g—;‘; +a—1;’) (kB —Eu) zu" ij, then

33



Navier-Stokes Equations
/

It can be shown that for compressible flow:

pcpﬂ—aT—_ V- (KVT) + ® + pH

pep (5c+u-VT) —aT (S +u-VP) =V - (KVT) + @ + pH

(0T  aT oP
PCp :at _,DCp 3t el (VT—EVP)] el O (KVT) + P +pH
nCp ‘Z = ;‘CT as ) G VTS)] =V-(KVT) + ® + pH
& P
where VT = pT VP  Adiabatic temperature gradient
P
VP =00+0j+ 2k ~ LB E > pry ~ - L
0z Cp
_ o
and & = Tij axj
aT T OP du;
prel :‘CP —+u- (VT —VTg)| =V (KVT) + 7" -+ pH

34



Basic Equations =
> o

o

L+7.(pV) =0

ou; ___0p , 07 o
p( + (V) = =3 +ax]+pgl—0
[——“—”—P+u- (VT - VT )] =V (KVT) +1;; 2 4 pH
p P pc ot S l] axj ,D
p=p, [1 el T KLT (P — Pr)] + Ap;(T; = Iy) 1=1,2,3
[ = %[1 + tanh(m;)]
di—d—yi(T-T;

Ty w= h;

L15)



tate Equation
/' —
p(P,T) =

Taylor expansion
e e e

P.: hydrostatic pressure
T.: adiabatic temperature

But

_ 1 (0pr i JoP
¢ pr(aT )p : and KT = (ap‘l‘)’[‘

(P—Py)

pEP; 1) = p [1 ol Bk

where p, = p(B.,T,)

36



State Equation =
// e

VoS, Pu) = (),

dpr
Vs + (ap )S P,

H H

Since reference state Is adiabatic VS =0
and since VP; =040 +2ay —p,gk

and Vp,.(S,Py) = 0+ 0 + ddp; k

1 dp, (apr) gpr (6PH)
o = — = where K = —=
pr dz Y 0Py S Ks J Pr dpr S
aKg aKr
Gruneisen’s parameter is defined as: I' = =
pCp  pCy
then:
1d a 1 C :
—ZPr - _9% - __—_  where Hy =-£ scale height
Pr dz FCp FHT ga

This Is the well-known Adams-Williamson relation for a chemically homogeneous
adiabatic density distribution under hydrostatic pressure (Birch 1952).
37



tate Equation _
L

Spiegel & Veronis (1960) gave criteria for the applicability of the
Boussinesq approximation to compressible fluids:

d
= K 1 forshallow layers, d:characteristc length
T

1d 1
ForconstantI: —=2L=_— > [=fr-

dpr z dz

r d-—
In [ZOEZ =5 > (@) = poexp(d - z)/THy

where p, = p,(z = d) is the density at the upper surface (bottom: z=0).

[~ 1.1
pr(z =0) = po exp(d/THr)
pr(z =d) = py

AsziinT«l

38



tate Equation =
/ —

We also have:

1 a C
- and G = ——

p(.T) = pr|1—a(r - T,) + 2]
pr(z) = poexp(d — z)/THr

=2 ,O(P, T) = pr[l — (] — Tr) o1+ aFTr)/(FprCP)](P b Pr)]
Note that p,.= pyexp(d —z)/THy
In non-dimensional form p,.' = exp[(1 — 2z )D/I'| where D = d/H;

z'=z/d, p'=p/po

39



tate Equation =
The non-dimensional form can be written as:
p(P,T) = p|1 = u(T = T) +uD(1/(Tp))(P = B) + p?DIT (T, + To) /(Tp)I(P = P
= aAT ,D =d/H;
For liquids: u <1
For shallow depths: D « 1
For dilute gases: u=1
For Boussinesq approximation: u < 1,D « 1

,O(P, T) = pr[l — u(T - Tr)]

For anelastic liquid approximation: u < 1, D~1
peB ) = p Lk = (T = L)+ gD A Ep, (P — B

40



Basic Equations =
/ —_—

—

L+7.(pV) =0

ou; 0D Oty o
p( + (V) = =3 05 0
[——“—”—P+u- (VT—VT)]=\7-(K\7T)+T L
pP pc ot S l]axj ID

p(P,T) =
pr[l _ ﬂ(T W Tr) + [JD(]./(F,DT))(P . Pr) + .UZD[F (Tr T TO)/(F,DT)](P e Pr)]

41



Anelastic Equations g
P — qus |

L+7.(pV) =0

ou; _a_p BTU
p( + (u- V)u) — +6x]

tpgi =0

du;
0Xj

. P[——“—”—”+u- (VT—VTS)] =V (KVT) + 1, 24 + pH

pcp Ot

p(P,T) =
pr[l _ ﬂ(T W Tr) + [JD(]./(F,DT))(P . Pr) + .UZD[F (Tr T TO)/(F,DT)](P e Pr)]

42



Anelastic Liquid Equations =

—
L+7.(pV) =0

Ou; - 9p Oty -
p( + (V) = =3 05 0

——“—Ta—P+u- (VT—VT)]=\7-(K\7T)+T 28 ol
£tp pcp Ot > Uax, 2

p(P,T) =
pr[l _ .u(T W Tr) + [JD(]./(FPT))(P . Pr) i MZD[F (Tr ¥+ TO)/(FPT)](P 55 Pr)]

43



_Truncated Anelastic Liquid Equations//
e '
L+ 7.(pV) =0

0Tij

ou; ___ -
p( + (u- V)u) - +ax]+pgl—0

e O
- P[_‘pTEH' (VT—VTs)] =V (KVT) + 75—

du;
0 + pH

p(P,T) =
pr[1— (T —T.) + uD(1/(Tp,))(P — B.) + u?D[T (T, + To)/(Tp)](P — B.)]

44



Extended Boussinesq Equations /

L+7.(pV) =0

Ou; - 9p Oty -
p( + (V) = =3 05 0

——“—Ta—P+u- (VT—VT)]=\7-(K\7T)+T 28 ol
£tp pcp Ot > Uax] P

p(P,T) =
pr[l _ M(T W Tr) T .UD(]-/(F.DT))(P 9% Pr) i MZD[F (Tr ¥+ TO)/(FPT)](P e Pr)]

Pr = Psurr = Const.

45



BOW

0Tij

ou o _
p( +(u-Puy) = =22 05 0

L+7.(pV) =0

aT OP
pc P[__pTE-I_u. (VT—VTS)] =V'(KVT)+TU

oJu;

+pH

p(P,T) =
pr[l _ M(T W Tr) T ,LLD(]./(F,DT-))(P 9% Pr) i .UZD[F (Tr ¥+ TO)/(FPT)](P e Pr)]

Pr = Psurf = Const.
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Energy Regime
- / e

. daT
QSurf = QSec,Mant + Qraa + Qcms: QSec,Mant = (MC E)
Mantle

dT
Qcme = Qseccore + QL + Qg Qseccore = (M ¢ E)
Core

Q Surf Surface heat flow (W)
QSec,Mant Secular cooling of mantle
QRad Radiogenic heat

Qcmp CMB heat flow

QSec,Core Secular cooling of core
QL Latent heat flow from the inner core boundary due to solidification

QG Gravitational heat flow from the inner core boundary due to solidification

47
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Dimensionless Numbers ===
.

ﬁlyleigh number

The Rayleigh number (Ra) for a fluid is a dimensionless number associated with
buoyancy-driven flow that characterises the fluid's flow regime. Lower values denote
laminar flow; and higher values denote turbulent flow. Below a threshold value
(critical Rayleigh number), there is no fluid motion and heat transfer is by
conduction rather than convection.

- pga’Td3 L-:\\..\
Rar = =—— ) s

gaHd?
Ra= Ra; = 107 for mantle 00 %
H vkK . / —

low Ra High Ra
p:density (kg/ m3)
v: Kinematic viscosity(m?/s) U = vp: dynamic viscosity (Pa -s; N-s/m?; kg/(m- s))
d: characteristc length (m)
g: gravity acc. (m/ s?)
T: temperature(Kelvin)
a: thermal expansivity(1/K)
K:thermal cond. (W /m /K)

k:thermal dif fusivity(m*/s) «k P <(kg/m3)((]/kg/K)) iegs
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, Dimensioniess Numbers - e

Prandtl number

The Prandtl number (Pr) is a dimensionless number, defined as the ratio of
momentum diffusivity to thermal diffusivity (after the German physicist Ludwig
Prandtl)

viscous dif f. rate

pr="=2= Pr~22 _ 1026 for mantl
k  thermal diff. rate 190 el
v: Kinematic viscosity(m?/s)
k: thermal dif fusivity(m?/s) Kk = — ( il = m2/5>
' pcp \(kg/ m3)(U/ kg /X))

Formantle v>k Pr - o

Pr < 1:the thermal dif fusivity dominates
Pr > 1:the momentum dif fusivity dominates

Ex. — In liquid mercury the heat conduction is more significant compared to convection.

For engine oil, convection is very effective in transferring energy (compared to pure
conduction), so momentum diffusivity is dominant.
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et Dimensioniess Numbers ==
Nusselt Number

The Nusselt number (Nu) is the ratio of convective to conductive heat transfer at a
boundary in a fluid. Convection includes both advection (fluid motion) and
diffusion (conduction).

h convective heat transfer coef.

Nu = =

o K/d ~ conductive heat transfer coef.

d: characteristc length (m)

h: convective heat transfer coef. (h =1 )

AT
q: heat flux (W /m?)
AT: temparature dif ference (Kelvin)

Nu = 1, pure conduction

Nu =1-10, slug flow
Nu = 100 — 1000, turbulent flow
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f Dimensionless Numbers e
Reynolds Number

The Reynolds number (Re) is a measure of the flow patterns in a fluid. Laminar
flow (sheet-like) has low Reynolds number, while turbulent flow has higher values

of Reynolds number.

B inertial forces _ ma _ (pV)-du/dt _ pd3-du/dt
~ viscous forces A uwdu/dy-A o udu/dy d?

__pddy/dt _ pdu _ ud

u u v

d: characteristc length (m)
u: velocity (m/s)
u: dynamic viscosity (Pa - s)
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Dimensionless Numbers =
/ —

I/’eclet Number

The Peclet number is defined to be the ratio of the rate of advection to the rate of
diffusion.

rate of advection ud
Pe = / =% _ Re x Pr

rate of dif fusion K

d: characteristc length (m)
u: velocity (m/s)
k: thermal dif fusivity(m?/s)
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Dimensionless Numbers =
/ —

l\//lach Number

The Mach number is ratio of convective velocity to sound velocity.

M convective velocity  u

sound velocity C

u: velocity (m/s)
c: velocity (m/s)

M? << 1 - a separation of time scales - elastic vibrations irrelevant on convective
time scales.
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