ESS2222H

Tectonics and Planetary Dynamics Lecture 10 Thermal Convection Navier-Stokes Equations

Hosein Shahnas

University of Toronto, Department of Earth Sciences,

Thermal Convection

Conservation of Fluid in 2D

The flow entering a small volume $\delta x \delta y$ at x in $x-d i r: \rho u \delta y$
The flow leaving a small volume $\delta x \delta y$ at $x+\delta x$ in $x-\operatorname{dir}: \rho u(x+\delta x) \delta y$
The flow rate per unit area: $\rho u(x+\delta x)$
$f(x) \approx f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots$ Tayore x xpansion
$f(x+\delta x) \approx f(x)+\frac{f^{\prime}(x)}{1!}(x+\delta x-x)+\ldots$
$u(x+\delta x)=u(x)+\frac{\partial u}{\partial x} \delta x$
The net flow passing through the volume (entering and leaving) in x-direction:
$\rho\left[u(x)+\frac{\partial u}{\partial x} \delta x-u(x)\right] \delta y=\rho \frac{\partial u}{\partial x} \delta x \delta y$

Flow across the surfaces of an infinitesimal rectangular element.
$\rho\left[v(x)+\frac{\partial v}{\partial y} \delta y-v(y)\right]=\rho \frac{\partial v}{\partial y} \delta y \delta x$

Conservation of Fluid in 2D

The total net flow through the volume:
$\rho \frac{\partial u}{\partial x} \delta x \delta y+\rho \frac{\partial v}{\partial y} \delta y \delta x=\rho\left[\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right] \delta y \delta x$
If the flow is steady (time-independent), and there are no density variations, then there will be no net flow into or out of the volume.
The conservation of fluid or continuity equation is:
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad$ or $\quad \operatorname{div} \mathrm{V}=\nabla \cdot V=0 \quad$ Mass Conservation
$\ln 3 \mathrm{D}: \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0, \quad V \equiv V(u, v, w)$
In spherical coordinate :
$\nabla \cdot V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} V_{r}\right)+\frac{1}{r \operatorname{Sin}(\theta)} \frac{\partial}{\partial \theta}\left(V_{\theta} \operatorname{Sin}(\theta)\right)+\frac{1}{r \operatorname{Sin}(\theta)} \frac{\partial V_{\varphi}}{\partial \varphi}$

Momentum Equation

Elemental Force Balance

The forces acting on the small volume element are:

1) Pressure force
2) Viscous force
3) Gravity force (body force)
4) Inertial force

The Earth's mantle behave as a highly viscous fluid on geologic time scales.
The viscosity of mantle is $\sim \mu=10^{21}$ P.s
Its density is $\sim \rho=4000 \mathrm{~kg} / \mathrm{m}^{3}$
And its thermal diffusivity is $\sim \kappa=10^{-6} \mathrm{~m} / \mathrm{s}$
The Prandtl number: $\operatorname{Pr}=\frac{v}{\kappa}$
$\kappa=\frac{K}{\rho c_{P}} \mathrm{~m}^{2} / \mathrm{s}$ thermal diffusivity
$v=\frac{\mu}{\rho} \mathrm{m}^{2} / \mathrm{s} \quad$ kinematic viscosity
Pr Earth $\sim 10^{23}$

Momentum Equation

At high Prandtl numbers the inertial forces can be neglected:
$\frac{\partial V}{\partial t} \approx 0$
$F_{P}+F_{v i s c}+F_{g}=0$
The force acting at x in $x-d i r$ on δy - element: $p(x) \delta y$
The force acting at $x+\delta x$ in $x-\operatorname{dir}$ on δy - element: $p(x+\delta x) \delta y$
The net pressure force on the element in the x -dir. per unit area of the fluid element:
$\frac{p(x) \delta y-p(x+\delta x) \delta y}{\delta x \delta y}=-\frac{p(x+\delta x)-p(x)}{\delta x}$
By virtue of a simple Taylor series expansion $\rightarrow-\frac{\partial p}{\partial x}$
Similarly for the pressure force on the element in the y-dir. Per unit area of the element: $-\frac{\partial p}{\partial y}$

Momentum Equation

The gravitational force acting on the volume element:
$F_{g}=m g=\rho \delta x \delta y g$
$F_{g}=\rho g \quad$ the net $g-$ force per unit volume

Viscus Foces

The net viscous force in the x-dir. Per unit volume:
$\frac{\tau_{x x}(x+\delta x) \delta y-\tau_{x x}(x) \delta y}{\delta x \delta y}+\frac{\tau_{y x}(y+\delta y) \delta x-\tau_{y x}(y) \delta x}{\delta x \delta y}$

Expanding $\tau_{x x}(x+\delta x)$ and $\tau_{y x}(y+\delta y)$ around x and y , respectively (using Taylor series expansion):
$\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}$

Momentum Equation

Similarly, the net viscous force in the y-dir. Per unit volume of the element:
$\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}$
For an ideal Newtonian viscous fluid, the viscous stresses are linearly proportional to the velocity gradients:
$\tau_{x x} \equiv \tau_{11}=2 \mu \frac{\partial u}{\partial x}, \quad \tau_{y y} \equiv \tau_{22}=2 \mu \frac{\partial v}{\partial y}$
$\tau_{x y} \equiv \tau_{12}=2 \mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right), \quad \quad \tau_{x y}=\tau_{y x}$
In general:
$\tau_{i j}=2 \mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$
where μ is the dynamic viscosity.

Momentum Equation

The application of

$$
\left\{\begin{array} { l }
{ \tau _ { x x } \equiv \tau _ { 1 1 } = 2 \mu \frac { \partial u } { \partial x } } \\
{ \tau _ { y y } \equiv \tau _ { 2 2 } = 2 \mu \frac { \partial v } { \partial y } } \\
{ \tau _ { x y } \equiv \tau _ { 1 2 } = 2 \mu (\frac { \partial u } { \partial y } + \frac { \partial v } { \partial x }) }
\end{array} \quad \text { in } \quad \left\{\begin{array}{ll}
\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y} & \text { the net viscous force in the x-dir Per unit volume } \\
\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{x y}}{\partial x} & \text { the net viscous force in the } y \text {-dii: Per unit volume }
\end{array}\right.\right.
$$

yields to;
$2 \mu \frac{\partial^{2} u}{\partial x^{2}}+\mu\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} v}{\partial x \partial y}\right)$ and $2 \mu \frac{\partial^{2} v}{\partial y^{2}}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}\right)$, respectively.
These expressions can be simplified using the continuity equation:

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \rightarrow \frac{\partial^{2} v}{\partial x \partial y}=-\frac{\partial^{2} u}{\partial x^{2}}, & \frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v}{\partial y^{2}} \\
2 \mu \frac{\partial^{2} u}{\partial x^{2}}+\mu\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} v}{\partial x \partial y}\right) \rightarrow & \mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
2 \mu \frac{\partial^{2} v}{\partial y^{2}}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}\right) \rightarrow & \mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)
\end{array}
$$

Momentum Equation

The force balance equations for an incompressible fluid $(\nabla \cdot V=0)$:
$-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0$
$-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\rho g=0$
To eliminate the hydrostatic pressure variation in Equation:
$P=p-\rho g y$
The pressure P is the pressure generated by fluid flow. With this substitution:
$-\frac{\partial P}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0$
$-\frac{\partial P}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)=0$
In compact form and in 3D-geometry:
$-\nabla P+\nabla^{2} V=0 \quad$ Momentum Conservation

Momentum Equation

The continuity equation for compressible fluid
$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \quad$ Mass Conservation

U: Characteristic Vel. C: Sound Vel.
If $M^{2}=\frac{U^{2}}{C^{2}} \leq 1 \rightarrow \frac{\partial}{\partial t} \rightarrow 0 \rightarrow \nabla \cdot(\rho V)=0 \quad$ M: Mach number
$\nabla \cdot(\rho V)=\rho \nabla \cdot V+V \nabla \rho$
Momentum Equation in More General Form
$F_{\text {inertial }}=F_{P}+F_{v i s c}+F_{g}$
$F_{\text {inertial }}=\rho\left(\frac{\partial V}{\partial t}+V \nabla \cdot V\right)$
$\rho\left(\frac{\partial V}{\partial t}+V \nabla \cdot V\right)=-\nabla p+\nabla^{2} V+\rho \bar{g}$

The Stream Function

Incompressible 2D-Fluid

Solving the Momentum Equation Using Stream Function Method
Define $u=-\frac{\partial \psi}{\partial y}, \quad v=+\frac{\partial \psi}{\partial x}$
Substituting in continuity equation:
$-\frac{\partial^{2} \psi}{\partial x \partial y}+\frac{\partial^{2} \psi}{\partial y \partial x}=0$ which shows the stream function ψ satisfies the continuity equation.

Substituting in momentum equations:

$$
\begin{aligned}
& \frac{\partial P}{\partial x}+\mu\left(\frac{\partial^{3} \psi}{\partial x^{2} \partial y}+\frac{\partial^{3} \psi}{\partial y^{3}}\right)=0 \\
& -\frac{\partial P}{\partial y}+\mu\left(\frac{\partial^{3} \psi}{\partial x^{3}}+\frac{\partial^{3} \psi}{\partial y^{2} \partial x}\right)=0
\end{aligned}
$$

The Stream Function

For a single differential equation for ψ, the pressure can be eliminated from these equations by taking the partial derivative of these equations with respect to y and x , respectively:

Substituting in momentum equations:
$\frac{\partial^{4} \psi}{\partial x^{4}}+2 \frac{\partial^{4} \psi}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \psi}{\partial y^{4}}=0 \quad$ biharmonic equation

The Stream Function

Ex. - The flow accord AB?
The flow across $A B$ can be calculated from the flows across $A P$ and $P B$ because conservation of mass.

The volumetric flow rate across $A P$ into the triangle per unit distance normal to the figure is: $u \delta y$

similarly the flow rate across $P B$ out of the triangle is: $v \delta x$
The net flow rate out of $P A B$ is thus: $-u \delta y+v \delta x$
This must be equal to the volumetric flow rate into $P A B$ across $A B$.

$$
\begin{aligned}
& \begin{array}{l}
u=-\frac{\partial \psi}{\partial y} \\
v=+\frac{\partial \psi}{\partial x} \quad \rightarrow \quad-u \delta y+v \delta x=\frac{\partial \psi}{\partial y} \delta y+\frac{\partial \psi}{\partial x} \delta x \equiv d \psi(x, y) \text { the volumetric flow rate between } A \text { and } B \\
\int_{A}^{B} d \psi=\psi_{A}-\psi_{B} \quad \text { for } A \text { and } B \text { at arbitrary distance }
\end{array}
\end{aligned}
$$

Thermal Convection

Plate tectonics is the consequence of thermal convection in the mantle, driven largely by radiogenic heat sources and the cooling of the Earth.

Thermal convection is the consequence of a change in density by a change in temperature (thermal expansion). This situation is gravitationally instable and the cool fluid tends to sink and the hot fluid rises.

Density variations caused by thermal expansion lead to the buoyancy forces that drive thermal convection.
$\rho=\rho_{0}+\rho^{\prime} \quad \rightarrow \quad \rho^{\prime}=\rho-\rho_{0} \quad F_{B}=\rho^{\prime} g$
$F_{g}=\rho_{0} g \quad \rightarrow F_{g}+F_{B}$
$\rho_{0} g \quad \rightarrow \quad \rho_{0} g+\rho^{\prime} g \quad$ in momentum conservation equation
$\rho^{\prime} \ll \rho_{0} \quad \rho_{0}:$ reference density

Thermal Convection

In all other respects, however, the density variations are sufficiently small so that they can be neglected. This is known as the Boussinesq approximation.

It allows us to use the incompressible conservation of fluid equation:
$\nabla \cdot V=0$
$-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0$
$-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\rho g=0 \quad \rightarrow \quad-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\rho g+\rho^{\prime} g=0$
Eliminating the hydrostatic pressure by introducing:
$P=p-\rho_{0} g y$

Thermal Convection

$$
\begin{aligned}
& -\frac{\partial P}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)=0 \\
& -\frac{\partial P}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\rho^{\prime} g=0 \\
& \rho^{\prime}=-\rho_{0} \alpha\left(T-T_{0}\right) \quad \alpha: \quad \text { volumetric coefficient of thermal expansion } \\
& T_{0}: \text { reference temperature } \\
& -\frac{\partial P}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)-\underbrace{g \rho_{0} \alpha\left(T-T_{0}\right)}_{\text {Buoyancy force per unit volume }}=0
\end{aligned}
$$

To find the velocity field from momentum conservation equations, we need the temperature T . Therefore we require the heat equation (energy equation) that governs the variation of temperature.

Heat transfer = Conduction + Convection

Thermal Convection

Thermal energy per unit volume: $\rho c T$ ($\rho c T u$ energy fux or energy flow per unit area) Amount of heat transported across δy at $x: \rho c T u \delta y$ per unit time, crossing δy

Heat flux at $x+\delta x: \rho c T u+\frac{\partial(\rho c T u)}{\partial x} \delta x$
The net energy advected out of the elemental volume per unit time and per unit depth due to flow in the x direction is thus:
$\left[\left[\rho c T u+\frac{\partial(\rho c T u)}{\partial x} \delta x\right]-\rho c T u\right] \delta y$
$=\frac{\partial(\rho c T u)}{\partial x} \delta x \delta y$
Similarly in y direction:
$\left[\left[\rho c T v+\frac{\partial(\rho c T v)}{\partial y} \delta y\right]-\rho c T v\right] \delta x$

$=\frac{\partial(\rho c T v)}{\partial y} \delta x \delta y$

Thermal Convection

The net rate of heat advection out of the element by flow in both directions is:
$\left[\frac{\partial(\rho c T u)}{\partial x}+\frac{\partial(\rho c T v)}{\partial y}\right] \delta x \delta y$

Heat Conduction

Heat flux in x direction at $x: q_{x}(x)$
Heat flux in x direction at $x+\delta x: q_{x}(x+\delta x)$
Heat flux in y direction at $y: q_{y}(y)$
Heat flux in y direction at $y+\delta y: q_{y}(y+\delta y)$

The net heat flow rate out of the element is:
$\left[q_{x}(x+\delta x)-q_{x}(x)\right] \delta y+\left[q_{y}(y+\delta y)-q_{y}(y)\right] \delta x$
$=\frac{\partial q_{x}}{\partial x} \delta x \delta x+\frac{\partial q_{y}}{\partial y} \delta x \delta x=\left(\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}\right) \delta x \delta x \quad$ using Taylor expansion

Thermal Convection

Steady State

In steady state
$\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}=0$
In the presence of internal heating the rate of heat generation in the element is: $\rho H \delta x \delta x$
and
$\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}=\rho H \quad$ and in 3D: $\quad \frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}+\frac{\partial q_{z}}{\partial z}=\rho H$

Fourier's Law of Conduction

$q_{x}=-k \frac{\partial T}{\partial x}, \quad q_{y}=-k \frac{\partial T}{\partial y}, \quad q_{z}=-k \frac{\partial T}{\partial z} \quad$ for isotropic medium
$\rightarrow \quad-k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right)=\rho H \quad$ or $\quad-k \nabla^{2} T=\rho H$

Thermal Convection

We had obtained the advection term:
$\left[\frac{\partial(\rho c T u)}{\partial x}+\frac{\partial(\rho c T v)}{\partial y}\right] \delta x \delta y$
And the conduction term:
$-k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) \delta x \delta y$

Energy Conservation

The combined transport of energy out of the elemental volume by conduction and convection must be balanced by the change in the energy content of the element. The thermal energy of the fluid is $\rho c T$ per unit volume. Thus, this quantity changes at the rate:
$\frac{\partial(\rho c T)}{\partial t} \delta x \delta y$

Thermal Convection

By combining the effects of conduction, convection, and thermal inertia, we obtain:
$\frac{\partial(\rho c T)}{\partial t}-k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)+\frac{\partial(\rho c T u)}{\partial x}+\frac{\partial(\rho c T v)}{\partial y}=0 \quad$ energy balance

Rate of change
Conduction
Convection
in heat

For constant ρ and c and noting that

$$
\begin{gathered}
\frac{\partial(T u)}{\partial x}+\frac{\partial(T v)}{\partial y}=u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+T\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y} \\
\nabla \cdot V=0
\end{gathered}
$$

The thermal diffusion is defined as:
$\kappa=\frac{K}{\rho c}$
$\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\kappa\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)$
$\frac{\partial T}{\partial t}+\mathrm{V} \cdot \nabla T=\kappa \nabla^{2} T$

Thermal Convection

In this derivation we have neglected:
a) frictional heating in the fluid associated with the resistance to flow
b) compressional heating associated with the work done by pressure forces in moving the fluid

Navier-Stokes Equations

Navier-Stokes Equations

We saw that the force balance on an small volume element of fluid leads to the equation for conservation of momentum:
$F_{P}+F_{v i s c}+F_{g}=0$
$-\frac{\partial p}{\partial x_{i}}+-\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \quad i^{\text {it component }}$
According to Newton's second law of motion, any imbalance of forces on the fluid parcel results in an acceleration of the elemental parcel:
$\underbrace{\rho \frac{D u_{i}}{D t}}_{\text {Inertial }}=-\underbrace{\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}}_{\text {Surface }}+\underbrace{\rho g_{i}}_{\text {Body }}=0, \quad i=1,2,3$
where $\frac{D u}{D t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x_{i}} \frac{d x_{i}}{d t} \equiv \frac{\partial u}{\partial t}+(u \cdot \nabla) u$ (total derivative)
Body forces:
Gravity force
Electromagnetic force Centrifugal force Coriolis force

Navier-Stokes Equations

$$
\nabla f=\frac{\partial f}{\partial x_{1}} \hat{\imath}+\frac{\partial f}{\partial x_{2}} \hat{\jmath}+\frac{\partial f}{\partial x_{3}} \hat{k}
$$

Note that:

$\frac{D f}{D t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x_{i}} \frac{d x_{i}}{d t} \equiv \frac{\partial f}{\partial t}+u \cdot \nabla f \quad$ for scalar function f
$\frac{D u}{D t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x_{i}} \frac{d x_{i}}{d t} \equiv \frac{\partial u}{\partial t}+(u \cdot \nabla) u \quad$ for the velocity vector u
$\frac{D F}{D t}=\frac{\partial F}{\partial t}+\frac{\partial F}{\partial x_{i}} \frac{d x_{i}}{d t} \equiv \frac{\partial F}{\partial t}+(u \cdot \nabla) F \quad$ for vector function F

Total derivative Material derivative Substantial derivative Lagrangian derivative

Note also that:
$\frac{\partial f}{\partial x_{i}} \frac{d x_{i}}{d t}=\frac{\partial f}{\partial x_{i}} u_{i}=\frac{\partial f}{\partial x_{1}} u_{1}+\frac{\partial f}{\partial x_{2}} u_{2}+\frac{\partial f}{\partial x_{3}} u_{3}=\left(\frac{\partial f}{\partial x_{1}} \hat{\imath}+\frac{\partial f}{\partial x_{2}} \hat{\jmath}+\frac{\partial f}{\partial x_{3}} \hat{k}\right) \cdot\left(u_{1} \hat{\imath}+u_{2} \hat{\jmath}+u_{3} \hat{k}\right)=\nabla f \cdot u$
$(u \cdot \nabla) F=\left(u_{i} \frac{\partial}{\partial x_{i}}\right) F \quad \rightarrow \quad(u \cdot \nabla) F_{k}=\left(u_{i} \frac{\partial}{\partial x_{i}}\right) F_{k}$

Do not confuse total derivative with mass conservation $\frac{\partial \rho}{\partial t}+\nabla .(\rho V)=0$

Navier-Stokes Equations

Also

$$
\begin{aligned}
& (u \cdot \nabla) F=\left[\left(u_{1} \hat{\imath}+u_{2} \hat{\jmath}+u_{3} \hat{k}\right) \cdot\left(\hat{\imath} \frac{\partial}{\partial x_{1}}+\hat{\jmath} \frac{\partial}{\partial x_{1}}+\hat{k} \frac{\partial}{\partial x_{1}}\right)\right]\left(F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{k}\right)= \\
& \left(u_{1} \frac{\partial}{\partial x_{1}}+u_{2} \frac{\partial}{\partial x_{2}}+u_{3} \frac{\partial}{\partial x_{3}}\right)\left(F_{1} \hat{\imath}+F_{2} \hat{\jmath}+F_{3} \hat{k}\right)= \\
& \left(u_{1} \frac{\partial F_{1}}{\partial x_{1}}+u_{2} \frac{\partial F_{1}}{\partial x_{2}}+u_{3} \frac{\partial F_{1}}{\partial x_{3}}\right) \hat{\imath}+\left(u_{1} \frac{\partial F_{2}}{\partial x_{1}}+u_{2} \frac{\partial F_{2}}{\partial x_{2}}+u_{3} \frac{\partial F_{2}}{\partial x_{3}}\right) \hat{\jmath}+\left(u_{1} \frac{\partial F_{3}}{\partial x_{1}}+u_{2} \frac{\partial F_{3}}{\partial x_{2}}+u_{3} \frac{\partial F_{3}}{\partial x_{3}}\right) \hat{k}
\end{aligned}
$$

Navier-Stokes Equations

In the absence of flow, the only surface force is the pressure force:
$-\frac{\partial p}{\partial x_{i}}$
With flow, additional deviatoric forces act on the surface of an elemental parcel: $\frac{\partial \tau_{i j}}{\partial x_{j}} \sim$ gradient of the velocities

In 2D

$$
\begin{aligned}
& \rho\left(\frac{\partial u_{x}}{\partial t}+u_{x} \frac{\partial u_{x}}{\partial x}+u_{y} \frac{\partial u_{x}}{\partial y}\right)=-\frac{\partial p}{\partial x}+\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y} \\
& \underbrace{\rho\left(\frac{\partial u_{y}}{\partial t}+u_{x} \frac{\partial u_{y}}{\partial x}+u_{y} \frac{\partial u_{y}}{\partial y}\right)}_{\text {inertial term }}=-\frac{\partial p}{\partial y}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+\rho g
\end{aligned}
$$

$\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \quad$ strain tensor

Navier-Stokes Equations

Constitutive Law - Newtonian Fluid

Newtonian fluid is a fluid for which the dependence of $\tau_{i j}$ on $\varepsilon_{i j}$ is linear.
In addition if the medium is also isotropic (the constants of proportionality in the deviatoric stress-strain rate relation are independent of the orientation of coordinate system axes), then
$\tau_{i j}=2 \mu \varepsilon_{i j}+\lambda \varepsilon_{k k} \delta_{i j}$
where μ is the dynamic viscosity, and λ is the second viscosity.

$$
\rightarrow \frac{\tau_{i i}}{3}=\left(\lambda+\frac{2}{3} \mu\right) \varepsilon_{i i} \equiv k_{B} \varepsilon_{i i} \rightarrow \lambda=\left(k_{B}-\frac{2}{3} \mu\right) \quad\left(\delta_{i i}=\delta_{11}+\delta_{11}+\delta_{11}=3\right)
$$

where \boldsymbol{k}_{B} is called bulk viscosity, a measure of dissipation under compression or expansion.

Navier-Stokes Equations

Combining these two equations:
$\tau_{i j}=2 \mu \varepsilon_{i j}+\left(k_{B}-\frac{2}{3} \mu\right) \varepsilon_{k k} \delta_{i j} \rightarrow \tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(k_{B}-\frac{2}{3} \mu\right) \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}$
And the momentum equation:
$\rho \frac{D u_{i}}{D t}=-\frac{\partial p}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(k_{B}-\frac{2}{3} \mu\right) \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}\right]+\rho g_{i}=0$
For many fluids k_{B} is very small. $\quad \boldsymbol{k}_{B} \approx \mathbf{0}$ Stokes assumption
Constitutive Law with $\boldsymbol{k}_{\boldsymbol{B}} \approx \mathbf{0}$
With $k_{B} \approx 0$, the constitutive or rheological law connecting deviatoric stress and strain rate becomes:
$\tau_{i j}=2 \mu \varepsilon_{i j}-\frac{2}{3} \mu \varepsilon_{k k} \delta_{i j} \rightarrow \tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}\right)$

Navier-Stokes Equations

The Navier-Stokes equation
$\rho \frac{D u_{i}}{D t}=-\frac{\partial p}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}\right)\right]+\rho g_{i}=0$

Incompressible flow

For incompressible flow $\nabla \cdot u=\frac{\partial u_{k}}{\partial x_{k}}=0$
$\rho \frac{D u_{i}}{D t}=-\frac{\partial p}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\right]+\rho g_{i}=0$
If the dynamic viscosity (μ) is constant:
$\rho \frac{D u_{i}}{D t}=-\frac{\partial p}{\partial x_{i}}+\mu\left[\left(\frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}+\frac{\partial}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{j}}\right)\right]+\rho g_{i}=0$
$\rho \frac{D u_{i}}{D t}=-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}+\rho g_{i}=0$

Energy Equation

For a simple case, in the absence of internal heating and viscous dissipation, and where the density and heat capacity were constants, we had obtained the energy balance equation as:
$\frac{D T}{D t}=\kappa \nabla^{2} T \quad$ or $\quad \frac{\partial T}{\partial t}+\mathrm{V} \cdot \nabla T=\kappa \nabla^{2} T$
In the presence of viscous dissipation and internal heat sources, and variable thermal conductivity, the energy conservation relation can be written as:
$\underbrace{\rho c_{P} \frac{D T}{D t}}_{\text {Rateof Change }}=\underbrace{\nabla \cdot(K \nabla T)}_{\text {By conduction }}+\underbrace{\Phi+}_{\text {By dissispation }}+\underbrace{\rho H}_{\text {By intemal heaing }}$ Energy balance
In energy
Where H is the rate of internal heat production per unit mass and $\Phi \equiv \tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}$ is viscous dissipative heat.

$$
\frac{D T}{D t}=\underbrace{\frac{\partial T}{\partial t}}+\underbrace{u \cdot \nabla T}
$$

Navier-Stokes Equations

For a Newtonian fluid:
Since $\tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(k_{B}-\frac{2}{3} \mu\right) \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}$, then
$\Phi=\left[\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\left(k_{B}-\frac{2}{3} \mu\right) \frac{\partial u_{k}}{\partial x_{k}} \delta_{i j}\right] \frac{\partial u_{i}}{\partial x_{j}}$
$\rightarrow \Phi=k_{B}\left(\frac{\partial u_{k}}{\partial x_{k}}\right)^{2}+2 \mu\left[\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\frac{1}{3}\left(\frac{\partial u_{k}}{\partial x_{k}}\right) \delta_{i j}\right]^{2}$
If the fluid is incompressible:
$\Phi=\frac{\mu}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)^{2}$
a) The bulk viscosity $k_{B}=\left(\lambda+\frac{2}{3} \mu\right)$ leads to dissipation due to volume changes in a deforming fluid.
b) The dynamic viscosity μ leads to dissipation through shear. Note that there are no volume changes associated with the bracketed tensor in the second term.
i.e., $\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\frac{1}{3}\left(\frac{\partial u_{k}}{\partial x_{k}}\right) \delta_{i j}=0$ for $i=j$

Navier-Stokes Equations

It can be shown that for compressible flow:

$$
\begin{aligned}
& \rho c_{P} \frac{D T}{D t}-\alpha T \frac{D P}{D t}=\nabla \cdot(K \nabla T)+\Phi+\rho H \\
& \rho c_{P}\left(\frac{\partial T}{\partial t}+u \cdot \nabla T\right)-\alpha T\left(\frac{\partial P}{\partial t}+u \cdot \nabla P\right)=\nabla \cdot(K \nabla T)+\Phi+\rho H \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\frac{\alpha T}{\rho c_{P}} \nabla P\right)\right]=\nabla \cdot(K \nabla T)+\Phi+\rho H \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\Phi+\rho H
\end{aligned}
$$

where $\quad \nabla T_{S} \equiv \frac{\alpha T}{\rho c_{P}} \nabla P \quad$ Adiabatic temperature gradient $\nabla P=0 \hat{\imath}+0 \hat{\jmath}+\frac{\partial P}{\partial z} \hat{k} \approx \frac{\partial(-\rho g z)}{\partial z} \hat{k} \rightarrow \nabla T_{S} \approx-\frac{g \alpha}{c_{P}} T$ and $\Phi \equiv \tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}$
$\rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H$

Basic Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho=\rho_{r}\left[1-\alpha\left(T-T_{r}\right)+\frac{1}{K_{T}}\left(P-P_{r}\right)\right]+\Delta \rho_{i}\left(\Gamma_{i}-\Gamma_{r i}\right) \quad i=1,2,3 \\
& \Gamma_{i}=\frac{1}{2}\left[1+\tanh \left(\pi_{i}\right)\right] \\
& \pi_{i}=\frac{d_{i}-d-\gamma_{i}\left(T-T_{i}\right)}{h_{i}}
\end{aligned}
$$

$$
\rho(P, T)=?
$$

Taylor expansion
$\rho(P, T)=\rho_{r}+\left(\frac{\partial \rho_{r}}{\partial T}\right)_{P}\left(T-T_{r}\right)+\left(\frac{\partial \rho_{r}}{\partial P}\right)_{T}\left(P-P_{r}\right) \quad$ where $\quad \rho_{r} \equiv \rho\left(P_{r}, T_{r}\right)$
P_{r} : hydrostatic pressure
T_{r} : adiabatic temperature
But
$\alpha=\frac{1}{\rho_{r}}\left(\frac{\partial \rho_{r}}{\partial T}\right)_{P}$, and $\quad K_{T}=\rho_{r}\left(\frac{\partial P}{\partial \rho_{r}}\right)_{T}$
$\rho(P, T)=\rho_{r}\left[1-\alpha\left(T-T_{r}\right)+\frac{\left(P-P_{r}\right)}{K_{T}}\right]$

State Equation

$$
\nabla \rho_{r}\left(S, P_{H}\right)=\left(\frac{\partial \rho_{r}}{\partial S}\right)_{P_{H}} \nabla S+\left(\frac{\partial \rho_{r}}{\partial P_{H}}\right)_{S} \nabla P_{H}
$$

Since reference state is adiabatic: $\nabla S=0$
and since $\nabla P_{H}=0+0+\frac{d P_{H}}{d z} \hat{k}=-\rho_{r} g \hat{k}$
and $\nabla \rho_{r}\left(S, P_{H}\right)=0+0+\frac{d \rho_{r}}{d z} \hat{k}$
$\frac{1}{\rho_{r}} \frac{d \rho_{r}}{d z}=-g\left(\frac{\partial \rho_{r}}{\partial P_{H}}\right)_{S}=-\frac{g \rho_{r}}{K_{S}} \quad$ where $\quad K_{S}=\rho_{r}\left(\frac{\partial P_{H}}{\partial \rho_{r}}\right)_{S}$
Gruneisen's parameter is defined as: $\Gamma=\frac{\alpha K_{S}}{\rho C_{P}}=\frac{\alpha K_{T}}{\rho C_{V}}$ then:
$\frac{1}{\rho_{r}} \frac{d \rho_{r}}{d z}=-\frac{g \alpha}{\Gamma C_{P}}=-\frac{1}{\Gamma H_{T}} \quad$ where $H_{T}=\frac{C_{P}}{g \alpha} \quad$ scale height
This is the well-known Adams-Williamson relation for a chemically homogeneous adiabatic density distribution under hydrostatic pressure (Birch 1952).

State Equation

Spiegel \& Veronis (1960) gave criteria for the applicability of the Boussinesq approximation to compressible fluids:
$\frac{d}{H_{T}} \ll 1$ for shallow layers, d:characteristc length
For constant $\Gamma: \frac{1}{\rho_{r}} \frac{d \rho_{r}}{d z}=-\frac{1}{\Gamma H_{T}} \rightarrow \int \frac{d \rho_{r}}{\rho_{r}}=-\int_{d}^{z} \frac{d z}{\Gamma H_{T}}$
$\ln \left[\frac{\rho_{r}(z)}{\rho_{0}(z)}\right]=\frac{d-z}{\Gamma H_{T}} \rightarrow \quad \rho_{r}(z)=\rho_{0} \exp (d-z) / \Gamma H_{T}$
where $\rho_{0}=\rho_{r}(z=d)$ is the density at the upper surface (bottom: $z=0$).
$\Gamma \approx 1.1$
$\rho_{r}(z=0)=\rho_{0} \exp \left(d / \Gamma H_{T}\right)$
$\rho_{r}(z=d)=\rho_{0}$
$\Delta \rho \approx 0$ if $\frac{d}{H_{T}} \ll 1$

State Equation

We also have:
$\frac{1}{K_{T}}=\frac{\alpha}{\rho_{r} C_{v}} \quad$ and $\quad C_{V}=\frac{C_{P}}{1+\alpha \Gamma T_{r}}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\rho(P, T)=\rho_{r}\left[1-\alpha\left(T-T_{r}\right)+\frac{\left(P-P_{r}\right)}{K_{T}}\right] \\
\rho_{r}(z)=\rho_{0} \exp (d-z) / \Gamma H_{T}
\end{array}\right. \\
& \rightarrow \rho(P, T)=\rho_{r}\left[1-\alpha\left(T-T_{r}\right)+\alpha\left[\left(1+\alpha \Gamma T_{r}\right) /\left(\Gamma \rho_{r} C_{P}\right)\right]\left(P-P_{r}\right)\right]
\end{aligned}
$$

Note that $\rho_{r}=\rho_{0} \exp (d-z) / \Gamma H_{T}$
In non-dimensional form $\quad \rho_{r}{ }^{\prime}=\exp \left[\left(1-z^{\prime}\right) D / \Gamma\right] \quad$ where $D=d / H_{T}$
$z^{\prime}=z / d, \quad \rho^{\prime}=\rho / \rho_{0}$,

State Equation

The non-dimensional form can be written as:
$\rho(P, T)=\rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right]$
$\mu=\alpha \Delta T, D=d / H_{T}$
For liquids: $\mu \ll 1$
For shallow depths: $D \ll 1$
For dilute gases: $\mu \approx 1$
For Boussinesq approximation: $\mu \ll 1, D \ll 1$
$\rho(P, T)=\rho_{r}\left[1-\mu\left(T-T_{r}\right)\right]$
For anelastic liquid approximation: $\mu \ll 1, D \sim 1$
$\rho(P, T)=\rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)\right]$

Basic Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho(P, T)= \\
& \rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right]
\end{aligned}
$$

Anelastic Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho(P, T)= \\
& \rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right]
\end{aligned}
$$

Anelastic Liquid Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho(P, T)= \\
& \rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right]
\end{aligned}
$$

Truncated Anelastic Liquid Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho(P, T)= \\
& \rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho(P, T)= \\
& \rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right] \\
& \rho_{r}=\rho_{\text {surf }}=\text { Const. }
\end{aligned}
$$

Boussinesq Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+(u \cdot \nabla) u_{i}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}}+\rho g_{i}=0 \\
& \rho c_{P}\left[\frac{\partial T}{\partial t}-\frac{\alpha T}{\rho c_{P}} \frac{\partial P}{\partial t}+u \cdot\left(\nabla T-\nabla T_{S}\right)\right]=\nabla \cdot(K \nabla T)+\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\rho H \\
& \rho(P, T)= \\
& \rho_{r}\left[1-\mu\left(T-T_{r}\right)+\mu D\left(1 /\left(\Gamma \rho_{r}\right)\right)\left(P-P_{r}\right)+\mu^{2} D\left[\Gamma\left(T_{r}+T_{0}\right) /\left(\Gamma \rho_{r}\right)\right]\left(P-P_{r}\right)\right] \\
& \rho_{r}=\rho_{\text {surf }}=\text { Const. }
\end{aligned}
$$

Energy Regime

$$
\begin{aligned}
& Q_{\text {Surf }}=Q_{S e c, M a n t}+Q_{\text {Rad }}+Q_{C M B}, \quad Q_{\text {Sec,Mant }}=\left(M C \frac{d T}{d t}\right)_{\text {Mantle }} \\
& Q_{C M B}=Q_{S e c, \text { Core }}+Q_{L}+Q_{G} \quad Q_{\text {Sec,Core }}=\left(M C \frac{d T}{d t}\right)_{\text {Core }} \\
& Q_{\text {Surf Surface heat flow (W) }} \\
& Q_{\text {Sec,Mant Secular cooling of mantle }} \\
& Q_{\text {Rad Radiogenic heat }} \\
& Q_{C M B} \text { CMB heat flow } \\
& Q_{\text {Sec,Core Secular cooling of core }} \\
& Q_{L} \text { Latent heat flow from the inner core boundary due to solididication } \\
& Q_{G} \text { Gravitational heat flow from the inner core boundary due to solidification }
\end{aligned}
$$

Dimensionless Numbers

Rayleigh number

The Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow that characterises the fluid's flow regime. Lower values denote laminar flow; and higher values denote turbulent flow. Below a threshold value (critical Rayleigh number), there is no fluid motion and heat transfer is by conduction rather than convection.

$$
\begin{aligned}
& R a_{T}=\frac{\rho g \alpha T d^{3}}{\nu K} \\
& R a_{H}=\frac{g \alpha H d^{5}}{v \kappa K} \quad R a_{T}=10^{7} \text { for mantle }
\end{aligned}
$$

low Ra

High Ra

```
\(\rho\) : density ( \(\mathrm{kg} / \mathrm{m}^{3}\) )
```

ρ : density ($\mathrm{kg} / \mathrm{m}^{3}$)
v : Kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
v : Kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
$\mu=v \rho:$ dynamic viscosity $\left(P a \cdot s ; N \cdot s / \mathrm{m}^{2} ; \mathrm{kg} /(\mathrm{m} \cdot \mathrm{s})\right)$
d : characteristc length (m)
d : characteristc length (m)
g : gravity acc. $\left(m / s^{2}\right)$
g : gravity acc. $\left(m / s^{2}\right)$
T: temperature(Kelvin)
T: temperature(Kelvin)
α : thermal expansivity $(1 / K)$
α : thermal expansivity $(1 / K)$
K : thermal cond. $(W / m / K)$
K : thermal cond. $(W / m / K)$
κ : thermal diffusivity $\left(\mathrm{m}^{2} / \mathrm{s}\right) \quad \kappa=\frac{K}{\rho C_{P}}\left(\frac{\mathrm{~W} / \mathrm{m} / K}{\left.\left(\mathrm{~kg} / \mathrm{m}^{3}\right)(\mathrm{J} / \mathrm{kg} / \mathrm{K})\right)}=\mathrm{m}^{2} / \mathrm{s}\right)$

```
\(\kappa\) : thermal diffusivity \(\left(\mathrm{m}^{2} / \mathrm{s}\right) \quad \kappa=\frac{K}{\rho C_{P}}\left(\frac{\mathrm{~W} / \mathrm{m} / K}{\left.\left(\mathrm{~kg} / \mathrm{m}^{3}\right)(\mathrm{J} / \mathrm{kg} / \mathrm{K})\right)}=\mathrm{m}^{2} / \mathrm{s}\right)\)
```


Dimensionless Numbers

Prandtl number

 momentum diffusivity to thermal diffusivity (after the German physicist Ludwig Prandtl)
$\operatorname{Pr}=\frac{v}{\kappa}=\frac{\text { viscous diff. rate }}{\text { thermal diff. rate }} \quad \operatorname{Pr} \sim \frac{10^{20}}{10^{-6}}=10^{26}$ for mantle
v : Kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
κ : thermal diffusivity $\left(\mathrm{m}^{2} / \mathrm{s}\right) \quad \kappa=\frac{K}{\rho C_{P}}\left(\frac{\mathrm{~W} / \mathrm{m} / \mathrm{K}}{\left.\left(\mathrm{kg} / \mathrm{m}^{3}\right)(\mathrm{J} / \mathrm{kg} / \mathrm{K})\right)}=\mathrm{m}^{2} / \mathrm{s}\right)$
For mantle $\quad v \gg \quad \operatorname{Pr} \rightarrow \infty$
$\operatorname{Pr} \ll 1$: the thermal diffusivity dominates
$\operatorname{Pr} \gg 1$: the momentum diffusivity dominates
Ex. - In liquid mercury the heat conduction is more significant compared to convection. For engine oil, convection is very effective in transferring energy (compared to pure conduction), so momentum diffusivity is dominant.

Dimensionless Numbers

Nusselt Number

The Nusselt number (Nu) is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection (fluid motion) and diffusion (conduction).
$N u=\frac{h}{K / d}=\frac{\text { convective heat transfer coef. }}{\text { conductive heat transfer coef. }}$
d :characteristc length (m)
h : convective heat transfer coef. $\left(h=\frac{q}{\Delta T}\right)$
q : heat flux $\left(W / m^{2}\right)$
ΔT :temparature difference (Kelvin)
$N u=1$, pure conduction
$N u=1-10$, slug flow
$N u=100-1000$, turbulent flow

Dimensionless Numbers

Reynolds Number

The Reynolds number (Re) is a measure of the flow patterns in a fluid. Laminar flow (sheet-like) has low Reynolds number, while turbulent flow has higher values of Reynolds number.

$$
\begin{aligned}
& R e=\frac{\text { inertial forces }}{v i s c o u s ~ f o r c e s}=\frac{m a}{\tau A}=\frac{(\rho V) \cdot d u / d t}{\mu d u / d y \cdot A}=\frac{\rho d^{3} \cdot d u / d t}{\mu d u / d y d^{2}} \\
& =\frac{\rho d \cdot d y / d t}{\mu}=\frac{\rho d u}{\mu}=\frac{u d}{v} \\
& \text { d:characteristc length }(m) \\
& u: \text { velocity }(m / s) \\
& \mu: \text { dynamic viscosity }(P a \cdot s)
\end{aligned}
$$

Dimensionless Numbers

Peclet Number

The Peclet number is defined to be the ratio of the rate of advection to the rate of diffusion.
$P e=\frac{\text { rate of advection }}{\text { rate of diffusion }}=\frac{u d}{\kappa}=R e \times P r$

```
d:characteristc length (m)
u:velocity (m/s)
\kappa: thermal diffusivity(m}\mp@subsup{m}{}{2}/s
```


Dimensionless Numbers

Mach Number

The Mach number is ratio of convective velocity to sound velocity.
$M=\frac{\text { convective velocity }}{\text { sound velocity }}=\frac{u}{c}$
u: velocity $(\mathrm{m} / \mathrm{s})$
c : velocity $(\mathrm{m} / \mathrm{s})$
$\mathrm{M}^{2} \ll 1 \rightarrow$ a separation of time scales \rightarrow elastic vibrations irrelevant on convective time scales.

