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Stress, Deformation, and Strain 

 Stress & Strain Tensors 

 Isobaric & Deviatoric Stress 

 Principal Axes & Principal Stress 

 Isotropic & Deviatoric Strain 

 Mohr’s Circle 
 

 

Stressing rate of the crust around California derived 

from two decades of geodetic measurements (USGS). 
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Tensors 

Scalar (tensor of rank 0): 

Scalar quantity is a tensor of rank zero, specified by a single component; like 

temperature (T), mass (m), density(𝜌), etc. 

 

Vector (tensor of rank 1): 

Vector quantity is a tensor of rank 1, specified by three components; like velocity 

V(𝑣1, 𝑣2, 𝑣3), gravitational acceleration g(𝑔1, 𝑔2, 𝑔3), electric field E(𝑒1, 𝑒2, 𝑒3), etc. 

 

𝑣3 

𝑣1 
𝑣2 

V 

T 
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Tensors 

Tensor of rank 2: 

Tensor of rank 2 is an algebraic object specified by nine components; like: stress 

tensor, 
𝜎11   𝜎12  𝜎13
𝜎21  𝜎22   𝜎23
𝜎31  𝜎32   𝜎33

  

 

Traction vector 

 

𝑇𝑛 = 𝑙𝑖𝑚
𝛿𝐹

𝛿𝑆
    𝛿𝑆 → 0  force per unit area acting on surface with orientation n 

 

 

∆𝑆 

∆𝑉 

𝑋 

𝑇 𝑛 

𝛿𝑆 

𝜎 

𝜏 

𝑇 

Convention:  

Positive outward (tension)  

Negative inward (compression) 
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Stress Tensor 

Why do we need a tensor of rank 2 for stress field?  

 

Deformation of a volume element cannot be specified by a vector. Deformation of 

each volume face can in general be different (from the others).  

 

 

 

 

 

 

 

 

 

 

 

 

 

We need a vector for each face. 
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Stress Tensor 

Stress Tensor  
Stress tensor is a tensor of rank 2. Consider a cubic material 

element. The tractions on the three faces can be resolved into 

their Cartesian components, one normal and two tangential to 

the face on which the traction acts. 

 

Consider the face with normal vector  𝒆𝟏  

 

𝑇𝑒1 can be decomposed into 𝝈 (in 𝒆𝟏 dir.)and 𝝉 (having two 

components in 𝒆𝟐  and 𝒆𝟑  dir.). We rename these vector 

components as 𝜎11 , 𝜎12 , 𝜎11 , respectively, the first index 

representing the identity of surface and the second index 

representing the vector components. 

 

For tree surfaces we have three vectors as: 

 

𝑇𝑒1 = 𝜎11𝑒1 + 𝜎12𝑒2 + 𝜎13𝑒3  

𝑇𝑒2 = 𝜎21𝑒1 + 𝜎22𝑒2 + 𝜎23𝑒3  

𝑇𝑒3 = 𝜎31𝑒1 + 𝜎32𝑒2 + 𝜎33𝑒3  

s://commons.wikimedia.org/w/index.php?curid=5668647 

𝜎 

𝜏 

𝑇 
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Stress Tensor 

Einstein summation convention (summation notation) 

Repeated indices are summed over. 

 

In summation notation:    

 

𝑇𝑒𝑖 = 𝜎𝑖𝑗𝑒𝑗    (meaning: 𝑇𝑒𝑖 =  𝜎𝑖𝑗𝑒𝑗𝑗 )        𝑖, 𝑗 = 1,2,3 
 

𝑻𝒆𝒊 is the traction force acting on a surface with normal vector along 𝒆𝒊. 
 

We can write these three vectors in a compact form, that is a tensor of rank 2: 

 

𝜎𝑖𝑗 =

𝜎11  𝜎12  𝜎13
𝜎21  𝜎22  𝜎23
𝜎31  𝜎32  𝜎33

  

 

 𝑥1 ≡ 𝑥 

 𝑥2 ≡ 𝑦 

 𝑥3 ≡ 𝑧 
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Equations of Equilibrium  

The equations of equilibrium  
 

 𝑭 = 𝟎   (force balance) 
 

𝑭𝟏 = 𝟎       (𝑭𝒙) 

𝑭𝟐 = 𝟎       (𝑭𝒚) 

𝑭𝟑 = 𝟎       (𝑭𝒛) 
 

Consider the components of the surface force acting in the 𝒙𝟏 − 𝒅𝒊𝒓.   

𝜎11𝑑𝑥2𝑑𝑥3    and      𝜎11 +
𝜕𝜎11

𝜕𝑥1
𝑑𝑥1 𝑑𝑥2𝑑𝑥3     

𝜎21𝑑𝑥1𝑑𝑥3    and      𝜎21 +
𝜕𝜎21

𝜕𝑥2
𝑑𝑥2 𝑑𝑥1𝑑𝑥3     

𝜎31𝑑𝑥1𝑑𝑥2    and      𝜎31 +
𝜕𝜎31

𝜕𝑥3
𝑑𝑥3 𝑑𝑥1𝑑𝑥2     

 

Note that 
𝜕𝜎11

𝜕𝑥1
, 
𝜕𝜎21

𝜕𝑥2
, and 

𝜕𝜎31

𝜕𝑥3
 are the rate of changes in 𝜎11, 𝜎21, and  

𝜎31, respectively in 𝑥1, 𝑥2, and 𝑥3 directions.  
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Equations of Equilibrium  

And the body force components (like the gravity force acting the volume): 

 

 𝑏1= 𝜌𝑋1 𝑑𝑥1𝑑𝑥2𝑑𝑥3           
 𝑏2= 𝜌𝑋2 𝑑𝑥1𝑑𝑥2𝑑𝑥3           𝑋𝑖:    𝑡𝑕𝑒 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠  𝑖𝑛 𝑖 − 𝑑𝑖𝑟. 
 𝑏3= 𝜌𝑋3 𝑑𝑥1𝑑𝑥2𝑑𝑥3  
 

The condition of equilibrium of forces  in 𝒙𝟏 − 𝒅𝒊𝒓.   
 

 

 

𝜎11 +
𝜕𝜎11

𝜕𝑥1
𝑑𝑥1 𝑑𝑥2𝑑𝑥3  − 𝜎11𝑑𝑥2𝑑𝑥3 +  

𝜎21 +
𝜕𝜎21

𝜕𝑥2
𝑑𝑥2 𝑑𝑥1𝑑𝑥3  − 𝜎21𝑑𝑥1𝑑𝑥3 +  

𝜎31 +
𝜕𝜎31

𝜕𝑥3
𝑑𝑥3 𝑑𝑥1𝑑𝑥2 −  𝜎31𝑑𝑥1𝑑𝑥2 +   

𝜌𝑋1 𝑑𝑥1𝑑𝑥2𝑑𝑥3 = 0  

 

 

 

                              
𝜕𝜎11

𝜕𝑥1
+

𝜕𝜎21

𝜕𝑥2
+

𝜕𝜎31

𝜕𝑥3
+ 𝜌𝑋1 = 0  

𝒙𝟏 0 
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Equations of Equilibrium  

Similarly if we repeat this in 𝑥2 − 𝑑𝑖𝑟 and 𝑥3 − 𝑑𝑖𝑟  

 
𝜕𝜎12

𝜕𝑥1
+

𝜕𝜎22

𝜕𝑥2
+

𝜕𝜎32

𝜕𝑥3
+ 𝜌𝑋2 = 0,     

𝜕𝜎13

𝜕𝑥1
+

𝜕𝜎23

𝜕𝑥2
+

𝜕𝜎33

𝜕𝑥3
+ 𝜌𝑋3 = 0  

 

Or in compact form: 

  
𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
+ 𝜌𝑋𝑖 = 0           (

𝜕𝜎1𝑖

𝜕𝑥1
+

𝜕𝜎2𝑖

𝜕𝑥2
+

𝜕𝜎3𝑖

𝜕𝑥3
+ 𝜌𝑋𝑖 = 0, 𝑓𝑜𝑟 𝑖 = 1,2,3 ) 
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Equations of Equilibrium  

Equilibrium of moment of forces (Torque) 
 

 𝑵 = 𝐫 × 𝑭 = 𝟎   Torque (torque balance)    

 

𝑵𝟏 = 𝟎      (𝑵𝒙) 

𝑵𝟐 = 𝟎      (𝑵𝒚) 

𝑵𝟑 = 𝟎      (𝑵𝒛) 

 
 

𝐹 

𝑟 

𝜃 

N = r × 𝐹 = 𝑟 𝐹 𝑆𝑖𝑛𝜃  

𝐹 

𝑟 

𝜃 

𝑁 

~ 

https://commons.wikimedia.org/w/index.php?curid=4436743 
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Equations of Equilibrium  

Equilibrium of moments about an axis parralel to  𝒙𝟏: 
 

𝜎23𝑑𝑥1𝑑𝑥3
𝑑𝑥2
2

+ 𝜎23 +
𝜕𝜎23
𝜕𝑥2

𝑑𝑥2 𝑑𝑥1𝑑𝑥3
𝑑𝑥2
2

− 𝜎32𝑑𝑥1𝑑𝑥2
𝑑𝑥3
2

− 𝜎32 +
𝜕𝜎32
𝜕𝑥3

𝑑𝑥3 𝑑𝑥1𝑑𝑥12
𝑑𝑥3
2

= 0 

 

𝑥3 

𝑥2 

𝑥1 

𝑑𝑥3 

𝑑𝑥3
2

 

N = r × 𝐹 = 𝑟 𝐹 𝑆𝑖𝑛𝜃  
𝐫 × 𝑭 =  𝝈𝟐𝟑 +

𝝏𝝈𝟐𝟑
𝝏𝒙𝟐

𝒅𝒙𝟐 𝒅𝒙𝟏𝒅𝒙𝟑
𝒅𝒙𝟐
𝟐

  

                       F/A               A       r 

𝜎23 
𝜎21 

𝜎21 

𝜎33 

𝜎32 
𝜎31 

𝑑𝑥2
2

 

𝑑𝑥2 
𝑑𝑥1 

𝜎22 𝑑𝑥2
2

 

𝐫 × 𝑭 = 𝜎23𝑑𝑥1𝑑𝑥3
𝑑𝑥2
2

 

𝜎22 

𝜎23 

𝑵𝟏 = 𝟎     

𝑑𝑥2
2

 

𝜎22 

𝜎23 

𝑑𝑥2
2

 

𝜎22 

𝜎21 

𝜎23 

𝑑𝑥2
2

 

𝑑𝑥2
2

 

𝜎21 

𝑁 =0 

𝑑𝑥2
2

 
𝜎21 

𝑁 ≠0 but not about 𝒙𝟏  

𝑁 ≠0 about 𝒙𝟏  

𝜎23 
𝑑𝑥2
2

 ~ 

~ 
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Equations of Equilibrium  

Dividing by 𝑑𝑥1𝑑𝑥2𝑑𝑥3 
 

                          𝜎23 = 𝜎32  

 

Similarly if we repeat this in 𝑥2 − 𝑑𝑖𝑟 and 𝑥3 − 𝑑𝑖𝑟 we obtain: 

  

𝜎13 = 𝜎31,        𝜎12 = 𝜎21 

 

Or             𝜎𝑖𝑗 = 𝜎𝑗𝑖  

 

Using this symmetry 
  

𝜕𝜎𝑗𝑖

𝜕𝑥𝑗
+ 𝜌𝑋𝑖 = 0          

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑋𝑖 = 0 

 

𝜎𝑖𝑗 =

𝜎11   𝜎12  𝜎13
𝜎21  𝜎22   𝜎23
𝜎31  𝜎32   𝜎33

      𝜎𝑖𝑗 =
𝜎11   𝑎      𝑏
𝑎    𝜎22     𝑐
𝑏       𝑐   𝜎33

    six independent parameters  
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Cauchy's Formula 

Stress on a surface – Cauchy's formula 
 Using Cauchy’s formula we can find traction on any surface with  

Normal vector n (𝑛1, 𝑛2 𝑛3) 

 

Consider a small tetrahedron 

 

𝛿𝐴1 = 𝛿𝐴 𝑛1                     𝑛1 = 𝑛 cos 𝛼  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑛 𝑜𝑛 𝑥1  
𝛿𝐴2 = 𝛿A 𝑛2                     𝑛2 = 𝑛 cos 𝛽 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑛 𝑜𝑛 𝑥2 

𝛿𝐴3 = 𝛿A 𝑛3                     𝑛3 = 𝑛 cos (𝛾) 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑛 𝑜𝑛 𝑥3 

𝛿V =
1

3
h  𝛿A 

 

  𝑭 = 𝟎  

 

A𝐥𝐨𝐧𝐠 𝒙𝟐 − 𝒅𝒊𝒓 
 
𝑭𝒙 = 𝟎  

𝑇2
𝑛𝛿𝐴 − 𝜎12 𝑛1𝛿𝐴 − 𝜎22 𝑛2𝛿𝐴 − 𝜎32 𝑛3𝛿𝐴 +

1

3
ρ 𝑕 𝛿𝐴  𝑋2 = 0  

                    𝛿𝐴1                 𝛿𝐴2                   𝛿𝐴3  

 

 For infinitesimally small volume 𝑕  → 0  (𝑕 𝛿𝐴  small relative to 𝛿𝐴 ) 
𝑇2
𝑛 = 𝜎12 𝑛1 + 𝜎22 𝑛2 + 𝜎32 𝑛3 = 𝜎𝑖2 𝑛𝑖  

https://commons.wikimedia.org/w/index.php?curid=7208740 

y  

x  n1  

n  
n2  

𝛼 

𝛽 

𝑛1 = 𝐶𝑜𝑠 𝛽 
𝑛2 = 𝐶𝑜𝑠 𝛼 

𝜎22 𝜎12 𝜎32 
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Cauchy's Formula 

Similarly  
𝑇1
𝑛 = 𝜎11 𝑛1 + 𝜎21 𝑛2 + 𝜎31 𝑛3  

𝑇3
𝑛 = 𝜎13 𝑛1 + 𝜎23 𝑛2 + 𝜎33 𝑛3  

 

In compact form 

𝑇𝑖
𝑛 = 𝜎𝑖𝑗  𝑛𝑗   Cauchy's formula 

 

Or  

 

𝑇1
𝑛

𝑇2
𝑛

𝑇3
𝑛

=

𝜎11   𝜎12  𝜎13
𝜎21  𝜎22   𝜎23
𝜎31  𝜎32   𝜎33

𝑛1
𝑛2
𝑛3

 

 
Resolving the traction into two components  

 

𝜎 = 𝑇𝑛 ∙ 𝑛 = 𝑇𝑛  𝐶𝑜𝑠 𝛽          

𝜏 = 𝑇𝑛 ∙ 𝑡 = 𝑇𝑛  𝑆𝑖𝑛 𝛽  

𝑛 = 1  

𝑡 = 1  

 

𝜎 

𝜏 

𝑇𝑛 

𝑛 

𝑡 

𝛽 𝛿𝑆 

Making use of Cauchy’s formula 

 

𝜎 = 𝑇𝑖
𝑛𝑛𝑖 = 𝜎𝑖𝑗  𝑛𝑖 𝑛𝑗      normal stress         

𝜏 = 𝑇𝑖
𝑛𝑡𝑖 = 𝜎𝑖𝑗  𝑡𝑖 𝑛𝑗        shear stress  

 

𝜏 =  𝑇𝑛 2 − 𝜎2  

 

𝑇𝑛 2 = 𝑇𝑛 ∙ 𝑇𝑛= 𝑇𝑖
𝑛𝑇𝑖

𝑛 =  

𝜎𝑖𝑗𝑛𝑗 𝜎𝑖𝑘𝑛𝑘 = 𝜎𝑖𝑗𝜎𝑖𝑘𝑛𝑗𝑛𝑘 

 

Note that 
𝑉 ∙ 𝑛 =  𝑉 𝑛  𝑐𝑜𝑠 𝛼 = 𝑉1𝑛1 + 𝑉2𝑛2 + 𝑉3𝑛3    

 

 

𝛼 

𝑛 𝑉 
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Isotropic and Deviatoric Stress  

Isotropic and deviatoric stress  
In a continuous medium (like rocks, tectonic plates) complete specification of the state of 

system requires knowledge of the stress tensor 𝝈𝒊𝒋 at each point as functions of the co-

ordinates. It is useful to break the stress into two parts, the isotropic and deviatoric parts: 

 

𝜎𝑖𝑗 =

𝜎11   𝜎12  𝜎13
𝜎21  𝜎22   𝜎23
𝜎31  𝜎32   𝜎33

  

 

The isotropic stress 

𝜎𝑖𝑗
0 =

1

3
𝜎𝑘𝑘𝛿𝑖𝑗 =  𝜎0 𝛿𝑖𝑗  where   𝜎𝑘𝑘 = 𝜎11 + 𝜎22 + 𝜎33           𝜎0= 

1

3
𝜎𝑘𝑘 (mean normal stress) 

 

𝜎𝑖𝑗
0 =

𝜎0       0          0 

0          𝜎0       0 

0          0        𝜎0

           
𝛿𝑖𝑗 = 1      𝑖𝑓 𝑖 = 𝑗 

𝛿𝑖𝑗 = 0      𝑖𝑓 𝑖 ≠ 𝑗 
                                     

 

The deviatoric stress 
𝜎𝑖𝑗
′ = 𝜎𝑖𝑗  − 𝜎𝑖𝑗

0   

 

𝜎𝑖𝑗
′ =

𝜎11 − 𝜎0      𝜎12         𝜎13
𝜎21        𝜎22 −𝜎0        𝜎23
𝜎31       𝜎32        𝜎33 − 𝜎0

      (𝜎𝑘𝑘 = 0) 

kronecker delta 
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Isotropic and Deviatoric Stress  

   𝝈𝒊𝒋 = 𝝈𝟎  𝜹𝒊𝒋+ 𝝈𝒊𝒋
′  

 

 

𝜎𝑖𝑗 =

𝜎0       0          0 

0          𝜎0       0 

0          0        𝜎0

 + 

𝜎11 − 𝜎0      𝜎12         𝜎13
𝜎21        𝜎22 −𝜎0        𝜎23
𝜎31       𝜎32        𝜎33 − 𝜎0
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Principal Axes and Principal Stress 

Principal axes and principal stresses 
In this coordinate system the only nonzero stress components are diagonal elements 

 

𝜎𝑖𝑗
𝑃 =

𝜎11
𝑃        0          0 

0          𝜎22
𝑃        0 

0          0         𝜎33
𝑃

≡

𝜎1       0          0 

0          𝜎2       0 

0          0        𝜎3

 

  

The usefulness of the reasoning in terms of principal axes and principal stresses lies in the fact 

that they give a clear picture of the state of stress at a point. We need to determine 6-

componets; three principal axes and three stress components.  

 

This is an eigenvalue problem.   
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Principal Axes and Principal Stress 

Consider an arbitrary-oriented surface with unit normal n. In general the direction 

of the traction and that of the normal don not coincide unless the later is the principal 

axes.   
 

In order to find principal axed (eigenvectors) 

and the magnitude of normal stresses (eigenvalues) 

With vanishing shear terms, we have to solve  

solve an eigenvalue problem.  

 

https://commons.wikimedia.org/w/index.php?curid=5668491 

𝜎 

𝜏 

𝑇𝑛 
𝛽 

𝛿𝑆 
𝜎 

𝜏 = 0 

𝑇𝑛 
𝛽 = 0 

𝛿𝑆 
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Principal Axes and Principal Stress 

 

We had  

𝜎 = 𝑇𝑖
𝑛𝑛𝑖 = 𝜎𝑖𝑗𝑛𝑖  𝑛𝑗      normal stress   

𝜏 = 𝑇𝑖
𝑛𝑡𝑖 = 𝜎𝑖𝑗𝑡𝑖  𝑛𝑗        shear stress   

 

In principal coordinate system: 

 

 

𝜎 =
𝜎1        0             0
0            𝜎2         0
0           0           𝜎3

𝑛1
𝑛2
𝑛3

𝑛1
𝑛2
𝑛3

=

𝜎1𝑛1       𝜎2𝑛2    𝜎3𝑛3

𝑛1
𝑛2
𝑛3

=  𝜎1 𝑛1
2 + 𝜎2 𝑛2

2 + 𝜎3 𝑛3
2  

 

 

𝜎 

𝜏 

𝑇𝑛 

𝑛 

𝑡 

𝛽 𝛿𝑆 
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Principal Axes and Principal Stress 

 

 

In principal coordinate system: 

 

𝜎 = 𝜎1 𝑛1
2 + 𝜎2 𝑛2

2 + 𝜎3 𝑛3
2 + 0 

𝜏 = 𝜎1 𝑛1𝑡1 + 𝜎2 𝑛2𝑡2 + 𝜎3 𝑛3𝑡3 + 0 

 

where 𝜎1, 𝜎2, 𝜎3  are principal stresses and 𝑛𝑖, 𝑡𝑖 are unit normal and unit 

tangent to the surface element. 
 

 

𝜎 

𝜏 

𝑇𝑛 

𝑛 

𝑡 

𝛽 𝛿𝑆 
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Principal Axes and Principal Stress 

The condition for n to be a principal direction is on the basis of Cauchy’s formula: 

 

𝑇𝑖
𝑛 = 𝜎𝑖𝑗  𝑛𝑗= 𝝈 𝒏𝒊      (𝜎11 𝑛1 + 𝜎12 𝑛2 + 𝜎13 𝑛3 = 𝜎11 𝑛1 ≡ 𝜎 𝑛1,    𝑓𝑜𝑟 𝑖 = 1) 

 

Using    𝑛𝑖 = 𝛿𝑖𝑗𝑛𝑗   (e.g., 𝑛1 = 𝛿11𝑛1 + 𝛿12𝑛2 + 𝛿13𝑛3 = 𝑛1 ) 

 

𝜎𝑖𝑗𝑛𝑗 = 𝜎 𝛿𝑖𝑗𝑛𝑗        𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗  𝑛𝑗 = 0  

𝜎𝑖𝑗: stress tensor in the initial frame   

𝜎: any component of the stress in principal axes 

 

𝜎11 − 𝜎  𝑛1 + 𝜎12𝑛2 + 𝜎13𝑛3 = 0 

𝜎21𝑛1 + 𝜎22 − 𝜎  𝑛2 + 𝜎23𝑛3 = 0 

𝜎31𝑛1 + 𝜎32𝑛2 + 𝜎33 − 𝜎  𝑛3 = 0 

 

𝜎11 − 𝜎          𝜎12           𝜎13
𝜎21         𝜎22 − 𝜎           𝜎23
𝜎31              𝜎32          𝜎33 − 𝜎

𝑛1
𝑛2
𝑛3

= 0 ≡
0
0
0

  

 

𝝈 𝒏 = 𝜎  𝒏  https://commons.wikimedia.org/w/index.php?curid=108380378 
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Principal Axes and Principal Stress 

Matrix-Vector multiplication 
 

𝑈 = 𝐴𝑉    𝑢𝑖 = 𝐴𝑉 𝑖 =  𝑨𝒊𝒋𝒗𝒋
𝟑
𝒋<𝟏 ≡ 𝑨𝒊𝒋𝒗𝒋 = 𝐴𝑖1𝑣1 + 𝐴𝑖2𝑣2 +𝐴𝑖3 𝑣3 

 

𝑢1 = 𝐴11𝑣1 + 𝐴12𝑣2 +𝐴13 𝑣3   
𝑢2 = 𝐴21𝑣1 + 𝐴22𝑣2 +𝐴23 𝑣3   

𝑢3 = 𝐴31𝑣1 + 𝐴32𝑣2 +𝐴33 𝑣3   

 

𝑢1
𝑢2
𝑢3

=

𝐴11   𝐴12   𝐴13
𝐴21   𝐴22   𝐴23
𝐴31   𝐴32   𝐴33

𝑣1
𝑣2
𝑣3
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Principal Axes and Principal Stress 

Matrix multiplication 
 

𝐶 = 𝐴𝐵    𝐶𝑖𝑘 = 𝐴𝐵 𝑖𝑘 =  𝑨𝒊𝒋𝑩𝒋𝒌
𝟑
𝒋<𝟏 ≡ 𝑨𝒊𝒋𝑩𝒋𝒌 = 𝐴𝑖1𝐵1𝑘 + 𝐴𝑖2𝐵2𝑘 +𝐴𝑖3 𝐵3𝑘 

  

𝐶11   𝐶12   𝐶13
𝐶21   𝐶22   𝐶23
𝐶31   𝐶32   𝐶33

  =

𝐴11   𝐴12   𝐴13
𝐴21   𝐴22   𝐴23
𝐴31   𝐴32   𝐴33

 

𝐵11   𝐵12   𝐵13
𝐵21   𝐵22   𝐵23
𝐵31   𝐵32   𝐵33
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Principal Axes and Principal Stress 

Determinant  
 

2-Dimension  
𝑎    𝑏
𝑐     𝑑

= 𝑎𝑑 − 𝑏𝑐  

 
3-Dimension  

  

 

𝑎    𝑏      𝑐
𝑑     𝑒      𝑓
𝑔      𝑕      𝑖

 = 𝑎
𝑒    𝑓
𝑕     𝑖

− 𝑏
𝑑    𝑓
𝑔     𝑖

+ 𝑐
𝑑    𝑒
𝑔     𝑕

= 

𝑎𝑒𝑖 − 𝑎𝑓𝑕 − 𝑏𝑑𝑖 − 𝑏𝑓𝑔 + (𝑐𝑑𝑕 − 𝑐𝑒𝑔) 
 

 

 

𝑎    𝑏      𝑐
𝑑     𝑒      𝑓
𝑔      𝑕      𝑖

               

𝑎    𝑏      𝑐
𝑑     𝑒      𝑓
𝑔      𝑕      𝑖

               

𝑎    𝑏      𝑐
𝑑     𝑒      𝑓
𝑔      𝑕      𝑖
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Principal Axes and Principal Stress 

Ex - A simple eigenvalue problem 
 

𝐴𝑉 = 𝜆𝑉  
 

𝐴 =
−6   3
4       5

       𝑉 =
1
4

 eigenvector                  
−6   3
4       5

1
4

  =𝜆
1
4

            𝜆 = ? 

 

 
−6   3
4       5

1
4

 = 
−6 ∗ 1 + 3 ∗ 4
4 ∗ 1 + 5 ∗ 4

= 
6
24

  

 

 
6
24

 = 𝜆
1
4

    𝜆 = 6     eigenvalue of eigenvector    𝑉 =
1
4

  

 

𝐴𝑉     =    𝜆𝑉  
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Principal Axes and Principal Stress 

Formal solution for 𝑽 =? and  𝝀 =?  

𝐴𝑉 = 𝜆𝑉    𝐴𝑉 = 𝜆𝐼𝑉               𝐼 =
1       0

0       1
 

 𝐴𝑉 − 𝜆𝐼𝑉 = 𝐴 − 𝜆𝐼 𝑉 = 0  

 
It can be proved that nontrivial solution 𝑉 ≠ 0  exits only if the determinant of the 

coefficients vanishes. 

Therefore for non-zero 𝑉 (𝑉 ≠ 0), 𝜆  can be obtained using the following determinant: 

 

𝐴 − 𝜆𝐼 = 0  

 

Ex –  

Find eigenvalues and eigenvectors of   A =
−6   3
4       5

      (Note the 𝜎12 ≠ 𝜎21) 

  
−6   3
4       5

− 𝜆
1       0
0       1

=  0         
−6 − 𝜆          3
4             5 − 𝜆

= 0 

 

−6 − 𝜆 5 − 𝜆 − 3 ∗ 4 = 0           𝜆 = −7 , 𝜆 = 6        𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 
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Principal Axes and Principal Stress 

Eigenvectors ? 
 
−6   3
4       5

𝑥
𝑦 = 𝜆

𝑥
𝑦    

 

For 𝝀 = 𝟔 

−6   3
4       5

𝑥
𝑦 = 6

𝑥
𝑦          

−6𝑥 + 3𝑦 = 6𝑥
4𝑥 + 5𝑦 = 6𝑦

        𝑥 = 1,    𝑦 = 4    V =
1
4

  

 
−𝟔   𝟑
𝟒       𝟓

𝟏
𝟒

= 𝟔
𝟏
𝟒

  

 

For 𝝀 = −𝟕 

−6   3
4       5

𝑥
𝑦 = −7

𝑥
𝑦          

−6𝑥 + 3𝑦 = −7𝑥
4𝑥 + 5𝑦 = −7𝑦

        𝑥 = −3,    𝑦 = 1    V =
−3
1

  

 

 
−𝟔   𝟑
𝟒       𝟓

−𝟑
𝟏

= −𝟕
−𝟑
𝟏
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Principal Axes and Principal Stress 

3D – Case 

 

Ex –  

Find eigenvalues and eigenvectors of   A =
2   0    0
0   4   5
0   4    3 

. 

𝐴 − 𝜆𝐼 𝑉 = 0      𝐴 − 𝜆𝐼 = 0  

 
2   0    0
0   4   5
0   4    3 

− 𝜆
1       0       0
0       1       0
0        0      1

=  0           
2 − 𝜆        0        0
0        4 − 𝜆        5
0       4         3 − 𝜆

= 0 

 

2 − 𝜆 4 − 𝜆 3 − 𝜆 − 5 ∗ 4 = 0           𝜆 = 2 , 𝜆 = −1, 𝜆 = 8      𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 
 
2   0    0
0   4   5
0   4    3 

. 
𝑥
𝑦
𝑧

 = 𝜆
𝑥
𝑦
𝑧
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Principal Axes and Principal Stress 

For 𝝀 = −𝟏 

2   0    0
0   4   5
0   4    3 

. 
𝑥
𝑦
𝑧

 = −1
𝑥
𝑦
𝑧

            

2𝑥
4𝑦 + 5𝑧
4𝑦 + 3𝑧

= −1
𝑥
𝑦
𝑧

        
2𝑥 = −𝑥

47 + 5𝑧 = −𝑦
4𝑦 + 3𝑧 = −𝑧

  

 

𝑥 = 0,       y = 1,      𝑧 = −1,     V =
0
1
−1

 

 

 
𝟐   𝟎    𝟎
𝟎   𝟒   𝟓
𝟎   𝟒    𝟑 

. 
𝟎
𝟏
−𝟏

 = −𝟏
𝟎
𝟏
−𝟏

 

 

 

Exercise – Find eigenvectors for 𝜆 = 2 , 𝜆 = 8. 
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Principal Axes and Principal Stress 

Normalization 
In eigenvalue problems not all equations solved for eigenvectors are independent. We 
use normalization condition to constraint the solutions. 
  

For V =
𝑣1
𝑣2
𝑣3

     we impose      𝑣1
2 + 𝑣2

2 + 𝑣3
2 ≠ 1        in general 

We impose 𝑉′ = 1 

Normalized:         V′ =
1

𝑣1
2:𝑣2

2:𝑣3
2

𝑥
𝑦
𝑧

    𝑉′ = 1 

  

Ex –  
 

V =
0
1
−1

  

 

V′ =
1

0:1:1

0
1
−1

=
1

2

0
1
−1
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Principal Axes and Principal Stress 

Stress principal axes                                                                                               
 
𝜎11 − 𝜎        𝜎12          𝜎13
𝜎21         𝜎22− 𝜎        𝜎23
𝜎31         𝜎32          𝜎33− 𝜎

𝑛1
𝑛2
𝑛3

= 0,  𝑛1
2 +𝑛2

2 +𝑛3
2= 1 

  

 

𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗 = 0 

 
𝜎11 − 𝜎        𝜎12          𝜎13
𝜎21         𝜎22− 𝜎        𝜎23
𝜎31         𝜎32          𝜎33− 𝜎

= −𝜎3 + 𝐼1𝜎
2 + 𝐼2𝜎 + 𝐼3 = 0 

 

where 𝐼1 = 𝜎11 + 𝜎22 + 𝜎33           −𝐼2=  
𝜎11   𝜎12
𝜎21   𝜎22

+
𝜎11   𝜎13
𝜎31   𝜎33

+ 
𝜎22   𝜎23
𝜎32   𝜎33

 

 

𝐼3 =  

𝜎11        𝜎12          𝜎13
𝜎21        𝜎22        𝜎23
𝜎31        𝜎32          𝜎33
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Principal Axes and Principal Stress 

It can be proved that a real-valued symmetric matrix always has always three real-

valued eigenvalues. 

 

 𝜎1, 𝜎2, 𝜎3     principal stresses  

 

By convention:    𝜎1 > 𝜎2 > 𝜎3   
 

Principal directions are obtained by solving  𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗  𝑛𝑗 = 0  for 

𝑛1, 𝑛2, 𝑛3  successively for the case    𝜎 =  𝜎1,   𝜎 =  𝜎2 ,  𝜎 =  𝜎3      
 
𝜎11 − 𝜎𝑖        𝜎12          𝜎13
𝜎21         𝜎22− 𝜎𝑖        𝜎23
𝜎31         𝜎32          𝜎33− 𝜎𝑖

𝑛1
𝑛2
𝑛3

= 0          𝑖 = 1,2,3  

 

 

 

Quantities 𝐼1, 𝐼2,  and  𝐼3 are the invariants of the stress tensor (first, second and 

third invariant). 
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Stress Tensor in Principal axes 

 

𝜎𝑖𝑗 =

𝜎1    0     0
0     𝜎2    0
0     0     𝜎3

  

 

Invariants in principal coordinate: 

 

𝐼1 = 𝜎1 + 𝜎2 + 𝜎3  

𝐼2 = 𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1  

𝐼2 = 𝜎1𝜎2𝜎3  

 
 

Principal Axes and Principal Stress 
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Maximum Shear Stress 

Maximum Shear Stress 

 
𝜏2 =  𝑇2 − 𝜎2  
 

Using Cauchy’s formula  𝑇𝑖
𝑛 = 𝜎𝑖𝑗  𝑛𝑗    𝑇𝑖

𝑛 2
= 𝜎1

2𝑛1
2 + 𝜎2

2𝑛2
2 + 𝜎3

2𝑛3
2  

 

𝜏2 =  𝑇2 − 𝜎2 =  𝜎1
2𝑛1

2 + 𝜎2
2𝑛2

2 + 𝜎3
2𝑛3

2 − 𝜎1 𝑛1
2 + 𝜎2 𝑛2

2 + 𝜎3 𝑛3
2  

2
=  

𝜎1 − 𝜎2 
2 𝑛1𝑛2

2 + 𝜎2 − 𝜎3 
2 𝑛2𝑛3

2 + 𝜎1 − 𝜎3 
2 𝑛1𝑛3

2 

 

Note that    𝑛1
2 1 − 𝑛1

2 = 𝑛1
2 𝑛2

2 + 𝑛3
2    and so on     (𝑛1

2 +𝑛2
2 +𝑛3

2= 1) 

 

The planes on which the shear stress is maximum are obtained from the condition 

 
𝝏𝝉

𝝏𝒏𝟏
=

𝝏𝝉

𝝏𝒏𝟐
= 𝟎  

 

Since 𝑛1
2 +𝑛2

2 +𝑛3
2= 1, there is no need for the third derivative 
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Maximum Shear Stress 

 

Applying this to 𝜏2-equation, after some algebra, the extreme values of 𝜏 are 

𝜏 =
1

2
𝜎1 − 𝜎2    for 𝑛1 = 𝑛2 =

1

2
,   𝑛3= 0  

𝜏 =
1

2
𝜎1 − 𝜎3    for 𝑛1 = 𝑛3 =

1

2
,   𝑛2= 0         

𝜏 =
1

2
𝜎2 − 𝜎3    for 𝑛2 = 𝑛3 =

1

2
,   𝑛1= 0  

 

Since 𝜎1 > 𝜎2 > 𝜎3           𝜏𝑚𝑎𝑥 =
1

2
𝜎1 − 𝜎3   
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Ex.  – The principal values (eigenvalues) for the following stress tensor 

 

𝜎𝑖𝑗 =
5          0           0
0     − 6   − 12
0     − 12        1

  

 
are  𝜎1 = 10,            𝜎2 = 5,          𝜎3 = −15   (𝜎1 > 𝜎2 > 𝜎3 ) 
 
So the maximum shear stress is given by: 
 

𝜏𝑚𝑎𝑥 =
1

2
𝜎1 − 𝜎3 =

1

2
10 + 15 = 12.5          

for 𝑛1 = 𝑛3 =
1

2
,   𝑛2= 0 

Examples  

x3 

x2 

x1 

𝑛3  

𝑛2  

𝑛1  
𝜸  

𝜷  

𝜶  

𝑛2  

𝑛3  
𝑛1  

𝝉𝒎𝒂𝒙 
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Minimum Shear Stress 

 

From  

𝜏2 =  𝑇2 − 𝜎2 =  𝜎1
2𝑛1

2 + 𝜎2
2𝑛2

2 + 𝜎3
2𝑛3

2 − 𝜎1 𝑛1
2 + 𝜎2 𝑛2

2 + 𝜎3 𝑛3
2  

2
=  

𝜎1 − 𝜎2 
2 𝑛1𝑛2

2 + 𝜎2 − 𝜎3 
2 𝑛2𝑛3

2 + 𝜎1 − 𝜎3 
2 𝑛1𝑛3

2 

 

we see that 𝜏 has a minimum (𝜏 = 0) for the following choices of n: 

  

𝑛1 = ±1,    𝑛2=  𝑛3= 0  

𝑛2 = ±1,    𝑛1=  𝑛3= 0  

𝑛3 = ±1,    𝑛1=  𝑛2= 0  

 

Which shows no shear stress act on three planes with normal in the co-ordinate 

directions (principal planes) as one would expect from the choice of the principal 

axes as co-ordinate system.  
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Examples 

Ex. – Find the principal axes and eigenvalues for the following stress tensor: 

  

𝜎𝑖𝑗 = 80     30
30      40

  

 
Sol. 
 
𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗  𝑛𝑗 = 0        

𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗 = 0        80;𝜎     30
30      40;𝜎

= 0  

 

80 − 𝜎 40 − 𝜎 − 302 = 0        

𝜎2 − 120𝜎 + 2300 = 0            𝜎1 = 96.05,    𝜎2 = 23.95  eigenvalues 

 

For   𝜎1 = 96.05  𝑀𝑃𝑎: 

𝜎11;𝜎      𝜎12
𝜎21       𝜎22;𝜎

𝑛1
𝑛2

= 0           80;96.05     30
30      40;96.05

𝑛1
𝑛2

=
0
0

  

 
80 − 96.05  𝑛1+ 30 𝑛2 = 0  

𝑛1
2 + 𝑛2

2 = 1                                          n =  
𝑛1
𝑛2

=
0.88
0.47

 

y 

x 

30 MPa  

40 MPa  

80 MPa  
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Examples 

Alternatively, if we assume  𝑛2= 1 

 

80 − 96.05  𝑛1+ 30 = 0       𝑛1=  
30

16.95
         𝑛 =

1

30

16.95

2
:1

 
30

16.95

1
=

0.88
0.47

 

Similarly for 𝜎2 = 23.95:     𝑛 =  
−0.47
0.88

  

 

Rename 𝑛 =
0.88
0.47

   as      𝑛1 =
0.88
0.47

   corresponding to the eigenvalue 𝜎1 = 96.05 

 

and  𝑛 =
−0.47
0.88

   as      𝑛2 =
−0.47
0.88

   corresponding to the eigenvalue   𝜎2 = 23.95 

y 

x 

30 MPa  

40 MPa  

80 MPa  

y 

x 
𝒏𝟏 𝒏𝟐 

𝜎′ =
96.05     0

0      23.95
  

y' 

x' 
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Examples 

Ex. – The state of stress at a point is given by: 

 

𝜎𝑖𝑗 =
2      1     3
1     2   − 2
3   − 2     1

  

 

Find: 

a) the traction vector acting on a plane with unit normal of: 

𝑛 =  
1

3
𝑒1 +

2

3
𝑒2 − 

2

3
𝑒3 

b) the shear and normal components of this traction vector. 

 

Sol. 

 
a) 𝑇𝑖

𝑛 = 𝜎𝑖𝑗  𝑛𝑗   Cauchy's formula 

 

𝑇1
𝑛

𝑇2
𝑛

𝑇3
𝑛

=

𝜎11   𝜎12  𝜎13
𝜎21  𝜎22   𝜎23
𝜎31  𝜎32   𝜎33

𝑛1
𝑛2
𝑛3

=
2      1     3
1     2   − 2
3   − 2     1

1/3
2/3
−2/3

 = 
1

3

−2
9
−3

 

  

𝑇𝑛 = −
2

3
𝑒1 + 3𝑒2 −  𝑒3   
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b) 𝜎 = 𝑇𝑛 ∙ 𝑛 = −
2

3

1

3
+ 3

2

3
+ −1 −

2

3
 ≈ 2.4 

 

 𝜏 = 𝑇𝑛 2  −  𝜎 2 = −
2

3

2
+ 3 2 + −1 2 − 2.4 2  ≈ 2.1 

 

Ex. – The state of stress at a point is given by: 

 

𝜎𝑖𝑗 =
5      0     0

0     − 6   − 12
0   − 12     1

  

 

Determine principal stress components and principal directions. 

 

Sol. 

  

𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗  𝑛𝑗 = 0        

𝜎𝑖𝑗 − 𝜎 𝛿𝑖𝑗 = 0  
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5;𝜎             0             0
0            6;𝜎        ;12
0         ;12           1;𝜎

= −10 + 𝜎 5 − 𝜎 15 + 𝜎 =  0   

 

𝜎1 = 10,            𝜎2 = 5,          𝜎3 = −15  

 

For   𝜎1 = 10 𝑀𝑃𝑎: 

 

5;𝜎             0             0
0            6;𝜎        ;12
0         ;12           1;𝜎

𝑛1
𝑛2
𝑛3

=
0
0
0

           (𝜎 = 𝜎1) 

 

−5𝑛1 + 0𝑛2 + 0𝑛3 = 0  

0𝑛1 − 16𝑛2 − 12𝑛3 = 0         𝑛1 = 0,      𝑛2= −
3

5
,         𝑛3=  

4

5
 

0𝑛1 + 12𝑛2 + 9𝑛3 = 0               𝑛 = −
3

5
 𝑒2 +

4

5
 𝑒3  

 

𝑛1
2 +𝑛2

2 +𝑛3
2= 1  
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Examples 

Similarly for   𝜎2 = 5 𝑀𝑃𝑎: 

 

5;𝜎             0             0
0            6;𝜎        ;12
0         ;12           1;𝜎

𝑛1
𝑛2
𝑛3

=
0
0
0

           (𝜎 = 𝜎2) 

 

0𝑛1 + 0𝑛2 + 0𝑛3 = 0  

0𝑛1 − 11𝑛2 − 12𝑛3 = 0         𝑛1 = 1,      𝑛2= 0,        𝑛3= 0 

0𝑛1 − 12𝑛2 − 4𝑛3 = 0               𝑛 =  𝑒1 

𝑛1
2 +𝑛2

2 +𝑛3
2= 1  

 

And for   𝜎3 = −15 𝑀𝑃𝑎: 

 

5;𝜎             0             0
0            6;𝜎        ;12
0         ;12           1;𝜎

𝑛1
𝑛2
𝑛3

=
0
0
0

           (𝜎 = 𝜎3) 

 

20𝑛1 + 0𝑛2 + 0𝑛3 = 0  

0𝑛1 + 9𝑛2 − 12𝑛3 = 0         𝑛1 = 0,      𝑛2=
4

5
,         𝑛3=

3

5
 

0𝑛1 − 12𝑛2 + 16𝑛3 = 0               𝑛 =
4

5
 𝑒2 +

3

5
 𝑒3 

𝑛1
2 +𝑛2

2 +𝑛3
2= 1  
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Directions of the principal axes with respect to the original frame 

 

𝑛 = −
3

5
 𝑒1 +

4

5
 𝑒3     rename as      𝑛1 = −

3

5
 𝑒2 +

4

5
 𝑒3  

𝑛 = 𝑒1                rename as     𝑛2 =  𝑒1  

𝑛 =
4

5
 𝑒2 +

3

5
 𝑒3         rename as      𝑛3 =

4

5
 𝑒2 +

3

5
 𝑒3  

 

Note that the components of each principal direction, are the direction cosines. 

 

  

e.g.,  
 

𝑛1 = −
3

5
 𝑒2 +

4

5
 𝑒3  

𝐶𝑜𝑠𝛼 = 0  

𝐶𝑜𝑠 𝛽 = −
3

5
  

𝐶𝑜𝑠 𝛾 =  
4

5
  

 

x3 

x2 

x1 

𝑛3  

𝑛2  

𝑛1  
𝜸  

𝜷  

𝜶  



46 

Ex. – The stress tensor at a point in two different co-ordinate systems are given by: 

 

𝜎𝑖𝑗 =
2      1     0
1     3   − 2
0   − 2     1

        𝜎′𝑖𝑗 =

3

2
      

3

2
      

1

2
3

2
    3   −

1

2
1

2
    −

1

2
    

3

2

  

 
The first invariant: 

𝐼1 = 2 + 3 + 1 =
3

2
+ 3 +

3

2
= 6  

 

Verify that the second and third invariants are: 

 

𝐼2 = 6,   and     𝐼3 = −3  

for the matrix in the original coordinate and rotated frame.. 

Examples 


