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_and Cover Classification

Land cover classification and change analysis of the Twin Cities (Minnesota)
The accurate and timely information describing the nature and extent of land
resources and changes over time is important, especially in rapidly Growing
metropolitan areas. R S

I Urban growth 1986 - 1991
I Urban growth 1991 - 1998
[ Urben growth 1998 - 2002
s . 2 3 Rural
F Yuan et al. / Remote Sensing of Environment 98 (2005) 317328 - Water
— 2000 MUSAboundary s %

[ wetiand [ Grass - Extraction [_]urban Fig. 4. Twin Cities Metropolitan Area urban growth from 1986 to 2002 with
I Water I Forest [ Agriculture 2000 MUSA boundary. Rural land cover (agriculture, forest and wetland) that
was converted to urban from 1986 to 1991, from 1991 to 1998, and from

Fig. 3. Landsat land cover classifications from 1986 to 2002 for the TCMA. bt ; ;
1998 to 2002 are highlighted in green, red and yellow, respectively.
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Geological Mapping Using Machine Learning Algorithms

Geological mapping

a) Remotely sensed spectral imagery

b) Geophysical (magnetic and gravity) data

c) Geodetic (elevation) data

are useful in a number of Earth science applications such as environmental monitoring and
mineral exploration.

Remotely sensed imagery has many applications in Earth science applications such as
environmental monitoring (Munyati, 2000), land coverage studies (Yuan et al., 2005),
and mineral exploration (Hewson et al., 2006; Sabins, 1999).

So improving the techniques used in exploration and lithological identification is important for
understanding of regional geology.

As the volume of data increase:

1) manual interpretation cannot maintain the pace with the amount of incoming data and

2) manual image interpretation is generally subjective and can be inconsistent among
interpreters

Machine learning techniques can be employed in geological mapping and interpretation
(Harvey & Fotopoulos, 2016) as a rapid approach of geological mapping in contrast to
conventional field expedition techniques.
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Legend

Stratigraphy

- Huronian Supergroup

t | Whtewater Group, Chelmsford Formation
- Whiewater Group, Onaping Formation
- Whiewater Group, Onwatin Formation
Units

- Anorthosite and alkalic igneous rocks

[T ] camonatite-akalic intrusive sute

Felsics; Massive granodiorite to granite

46

|| Foliated tonalte suite

" | Gneisses
B wetics N

- Migmatitic rocks and gneisses
Sudbury Igneous Complex

©w
-

Training data

Figure 1. Map showing major stratigraphy groups and other major units in the Sudbury region (Ontario Geological Survey, 2011).

Feature Source and Filename Units Original Resolution
laniisate S N8 USGS Spectral Response
Bands 1-7 < 30m x30m
LT50190282011278EDC00 16-bit data
October 2011
USGS: SRTM
Digital Elevation Model n46_wO081 larc v3 metres 30m x30m
n46 w081 larc v3
Featu res Total Magnetic Intensity DOR; MEDM OIRISGONL nanoTelsa 200 m x 200 m
from GDS1036
Bouguer Gravity Anomaly | OGS; MNDM ONGRAVTY1 milliGal 1000 m x 1000 m
OGS . . . .
Bedrock Geology Geopoly from MRD126-REV1 Discrete Geological Units  |Resampled to study area density

Table 1. Summary of data, features for classification and validation, and class label inputs. Includes source, units, and original
resolution.

Harvey and Fotopoulos (2016)
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All the inputs features:

Total magnetic intensity

Elevation S
Gravity —>  are used to create a digital signature for each rock-type

Spectral images

Figure 2. Rocktype map of the Sudbury Basin and surrounding area. Refer to Table 3 for legend, rocktype descriptions, and
proportions within the study area (Ontario Geological Survey, 2011).
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Class labels

Legend| % Cover |Rocktype Description

0.11 |Amphibolite, gabbro, diorite, mafic gneisses

0.24  |Basaltic and andesitic flows, tuffs and breccias, chert, iron formation, minor metasedimentary and intrusive rocks

7.07 |Carbonaceous slate

0.08 |Commonly layered biotite gneisses and migmatites; locally includes quartzofeldspathic gneisses, ortho- and paragneisses

0.44  |Conglomerate, sandstone, siltstone, argillite

0.22  |diorite, quartz diorite, minor tonalite, monzonite, granodiorite, syenite and hypabyssal equivalents

0.25  |Gabbro, anorthosite, ultramafic rocks

0.82  |Granite, alkali granite, granodiorite, quartz feldspar porphyry; minor related volcanic rocks (1.5 to 1.6 Ga)

13.54  |Granophyre

18.53  |Lapilli tuff, breccia, felsic flows and intrusions, minor carbonate and cherty

2.72  |Mafic, intermediate and felsic metavolcanic rocks, intercalated metasedimentary rocks and epiclastic rocks

10.80 |Massive to foliated granodiorite to granite

.33 [Murray Granite 2388 Ma, Creighton Granite 2333 Ma: granite

1.64  |Nipissing mafic sills (2219 Ma): mafic sills, mafic dikes and related granophyre

0.14  [|Norite, gabbro, granophyre

7.79  |Norite-gabbro, quartz norite, sublayer and offset rocks

0.24  |Quartz sandstone, minor conglomerate, siltstone

3.50 [|Quartz-feldspar sandstone, argillite and conglomerate

0.38  |Quartz-feldspare sandstone, sandstone with minor siltstone, calcareous siltstone and conglomerate

0.85  |Rhyolitic, rhyodacitic, dacitic and andesitic flows, tuffs and breccias, chert iron formation, minor metaseds and intrusive rocks

0.09  [Sandstone, siltstone, conglomerate, limestone, dolostone

0.13  |Siltstone, argillite, sandstone, conglomerate

0.05 [Siltstone, argillite, wacke, minor sandstone

2.33  [Siltstone, wacke, argillite

10.70 |Tonalite to granodiorite-foliated to gneissic-with minor supracrustal inclusions

10.40 |Tonalite to granodiorite-foliated to massive

6.67 [Wacke, minor siltstone

Table 3. Legend and rock type descriptions for Figure 2. Includes % of how much of the study area each rock type covers. Adapted
from Ontario Geological Survey (2011).
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In this work a Support Vector Machine Regression (SVMR) algorithm is used to calculate local magnitude
(M1) using only five seconds of signal after the P wave onset of one three component seismic station. This
algorithm was trained with 863 records of historical earthquakes, where the input regression parameters
were an exponential function of the waveform envelope estimated by least squares and the maximum
value of the observed waveform for each component in a single station. Ten-fold cross validation was
applied for a normalized polynomial kernel obtaining the mean absolute error for different exponents
and complexity parameters. The local magnitude (Ml) could be estimated with 0.19 units of mean ab-
solute error. The proposed algorithm is easy to implement in hardware and may be used directly after the
field seismological sensor to generate fast decisions at seismological control centers, increasing the

possibility of having an effective reaction.
© 2017 Institute of Seismology, China Earthquake Administration, etc. Production and hosting by Elsevier
B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).




Early Earthqguake Warning System

~

Early warning systems employ dense seismological networks to localize and

determine the magnitude of the earthquake using at least 3 stations.

Venezuela

logico Colombiano (SCC

42 stations transmitting in real time

The problem with this method:

The density of stations in some high seismic risk areas
IS not enough to make such localization calculations
fast.

An alternative solution:

The seismological records of previous events recorded
at one single station can be used to localize and
estimate the magnitude of the event.

10
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Early Earthqguake Warning System

Implementation of an early earthquake warning system for the city of Bogota,
Colombia

Seismic early warning systems (SEWS) emit an alert, few seconds after the event
Initiates, from few seconds to a few tens of seconds before the stronger shaking
movement arrives.

The main task:
Estimation of magnitude and source location of an
earthquake in a short period of time accurately

863 records of historical earthquakes are used in
training of a Support Vector Machine Regression
(SVMR)-model to calculate (predict) local magnitude
(MI) using only five seconds of signal after the P wave
onset of one three component seismic station.

SVMR-model
10-fold cross validation
Polynomial kernel

11
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Early Earthqguake Warning System
Historical data:

The seismic catalogue with 2164 seismic events, selected between Jan. 15,1998 and
Oct. 27t 2008, located at less than 120 km from the seismic station.

160 8]
| In (N)=-2.65M1+12.62
140 7 oy R*=0.99
B R
% 120 \\
3 g 4- \{{
580 &
E 37 \'~<
e
o
40 \
I I : .}
20
0 F N
0 | IIII""- . 2.0 2.15 3?0 I l : l

3.5 4.0
20 22 24 26 28 3.0 32 34 3.6 38 40 42 44

Local magnitude (M1)
Local magnitude (M1)

Fig. 4. Gutenberg—Richter relation for selected seismic events.
Fig. 3. Local magnitude statistical distribution.

The parameters for Gutenberg -Richter relation change from one seismic region to another which should be
taken into account in the training machine leaning models for different regions.

12



Early Earthquake Warning System /
SVM-Regression Model

P —

P-wave S-wave o
Tainting data: t,.,%tgw."\.\gg,‘,v’,)‘.,' il i ",",zl; ;l
863 historical data from seismic events kb T
(2164 events filtered to exclude Ml < 2) conpnent Ll LA
and anomalous values i

| N-component | I‘Y)ﬂ,gl"gv],‘w\t.»“’\,'fgx;‘,\m,i]",.‘\";.v,.r‘«‘_nvl,v“..‘v-'.‘:_i ‘ | e
Noise filtering: : T
High-pass filter with a cut-off frequency of L RN T R
0.075 Hz Three-component raw waveforms
low-pass filter with a cut-off frequency of recorded directly at seismic station

150 Hz.
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__Climate Change and Sea Level Rise
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Figure 3: Prediction of global sea level rise.
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Weather Forecasting using Incremental K-means Cluste

/

Unsupervised Learning

T'able 1. Original air-pollution Database

Date 0, RPM N NOx
1/1/2009 85 183 12 95
2/1/2009 95 289 14 125
3/1/2009 112 221 10 101
4/1/2009 114 191 11 97
5/1/2009 100 175 11 101
6/1/2009 78 149 7 93
1/2/2009 120 197 10 105
2/2/2009 115 151 10 85
3/2/2009 98 154 8 96
4/2/2009 90 195 8 93

RPM: Respirable particulate matter

Cluster 1

./
ring

Table VI. Weather forecasting from September, 2009 to June 2010

Date New da;:tt:)nserted Weather Category
1/9/2009 Cluster2 Hot, dry and smogy
2/9/2009 Cluster3 dusty, fly ash, smogy,

fog, Mist
3/9/2009 Cluster2 Hot, dry and smogy
4/9/2009 Cluster2 Hot, dry and smogy
28/9/2009 Cluster3 dusty, fly ash, smogy,
fog, Mist
29/9/2009 Cluster3 dusty, fly ash, smogy,
fog, Mist

Cluster 2

Chakraborty et al., 2014

Cluster 3

15



K-Means Clustering

Algorithm:

1) Assign random means (centroids) for K-cluster
(orange points): m®M, mM,, ... .. .mD,

2) Assign each data point to the cluster whose mean has
the least squared Euclidean distance (the "nearest"
mean)

3) Calculate the new mean (centroid) for each cluster

n;
7 X
m(t+1).:£ 1<i<k
l n; TR
4) lIterate until the centroids do not change significantly.

Cluster k Cluster 1

Cluster 2
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Inverse Problems in Geodynamics Using Machine
Learning Algorithms
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Abstract During the past few decades numerical studies have been widely employed to explore the
style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical
studies there are many properties from mineral physics, geochemistry, and petrology in these numerical
models. Machine learning, as a computational statistic-related technique and a subfield of artificial
intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on
the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes.
Specifically, we emphasize on estimating mantle properties by employing machine learning techniques
in solving an inverse problem. Using snapshots of numerical convection models as training samples, we
enable machine learning models to determine the magnitude of the spin transition-induced density
anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine
algorithms, we show that SML techniques can successfully predict the magnitude of mantle density
anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to
more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for
putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and
chemical anomalies.
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1d-mantle Seismic Heterogeneities

E-W crsoss section : 0N

Mid-mantle stagnations are prevalent globally in seismic tomographic
inversions, but previous explanations for their existence are not satisfactory.

Iron spin transition in the lower mantle minerals can significantly influence the
thermoelastic properties of the mantle material.

Numerical experiments explore how the electronic spin transition in iron
modifies the mantle flow, and in particular the fate of sinking cold slabs and
rising plumes [Shahnas et al. JGR, 2011; Shahnas et al., G2, 2016; Shahnas et
al. GJI, 2017; Shahnas et al. EPSL, 2017; Li et al., 2018].

Longitude

10 05 00 05 10 15

(2) Mid-mantle slabs in the South America
region, (b) Pacific superplume [Kaneshima
and Helffrich, 2010]
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Tomographic results displayed in three vertical sections (a-c) along the lines indicated Depth(km)
in the maps, showing the P-wave velocity anomalies under India and adjacent areas. Red line: The histogram of the number of mid-
[Van der Voo, 1999]. lower mantle S-to-P scatterers in the western

Pacific as a function of depth (Kaneshima,2016)
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[Shahnas et al., EPSL, 2017]

Stagnation in the Lower Mantle

Responsible Mechanisms:

1 - Viscosity

2 — Composition

3 — Phase Transition

4 — Dissociation Transition

5- Other Material Property Changes

Tackling the Problem
a) Inverse Problem Approach
b) Machine Learning Approach

20
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|Apkpy | = IApKFp I, p = 0.01, 0<m<299.
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Tablel - Normalized volume fractions (features) representing the degrees of the slab (AV¢) and
plume (AVy) stagnation.

Class Labels in Inverse Problem =

AV, < 0.11 0.11 <AV, <0.20 0.20<AV.<0.26 AVe=>0.26
Degree 1 Degree 2 Degree 3 Degree 4
C G, Cs Cy
AVy <0.08 0.08 < AV, < 0.16 0.16 < AV, < 0.20 AVy =0.20
Degree 1 Degree 2 Degree 3 Degree 4
H, H, H; Hy

Table 2- a) Class labels based on the amount of the spin dependent density anomaly in Pv

Class 1 Class 2 ... ... Class 14 Class 15

0<m<20 21 <m < 40... ...261 <m < 280 281 <m < 299

25
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~_The Thermal State of the Planetary Mantle
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