

ESS2222

Lecture 8 – Mining of Massive Data -Dimensionality Reduction

Hosein Shahnas

University of Toronto, Department of Earth Sciences,

Principal Component Analysis
 Dimensionality Reduction

Review of Lecture 7

Principal component analysis (PCA)

A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

		Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Feature 1	Gene 1	10	11	8	3	2	1
Feature 2	Gene 2	6	4	5	3	2.8	1
Feature 3	Gene 3	12	9	10	2.5	1.3	2

How can we take three or more features (three or more dimensional feature data) and make a lower PC representation (lower dimension)?

		Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Feature 1	Gene 1	10	11	8	3	2	1
Feature 2	Gene 2	6	4	5	3	2.8	1

		Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Feature 1	Gene 1	10	11	8	3	2	1
Feature 2	Gene 2	6	4	5	3	2.8	1

		Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Feature 1	Gene 1	10	11	8	3	2	1
Feature 2	Gene 2	6	4	5	3	2.8	1

Let's assume we have only two genes (two features):

		Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Feature 1	Gene 1	10	11	8	3	2	1
Feature 2	Gene 2	6	4	5	3	2.8	1

a) Find the center of mean

Let's assume we have only two genes (two features):

 \sqrt{SSD} Singular value for PC1

SSD: Sum of squares od distances

For example if: $\frac{SSD_{PC1}}{n-1} = 16, \qquad \frac{SSD_{PC2}}{n-1} = 2 \qquad \text{Var}(PC1) + \text{Var}(PC2) = 18,$

PC1 accounts for 16/18 = 89% of variations (information) around PC's.

Dimensionality Reduction

Singular Value Decomposition (SVD)

$$\mathsf{A}_{[mn]} = \mathsf{U}_{[mr]} \Sigma_{[rr]} \mathsf{V}_{[nr]}^{\mathsf{T}}$$

m: number of rows n: number of columns

A: Input data

U: The left-singular vectors of A are a set of orthonormal eigenvectors of AA^T.
 V: The right-singular vectors of A are a set of orthonormal eigenvectors of A^TA.
 Σ : Singular values

The non-zero singular values of A (found on the diagonal entries of Σ) are the square roots of the non-zero eigenvalues of both AA^T and A^TA.

Dimensionality Reduction

It is always possible to decompose a real matrix A into $A = U \Sigma V^T$, where

U, Σ , V: unique (decomposition is unique) U,V: orthonormal (U^TU = I; V^TV = I) Σ : diagonal Entries are (singular values) are positive ($\sigma_1 \ge \sigma_2 \ge \dots \sigma_r \ge 0$).

Example:

Netflix users ranking the movies

Dimensionality Reduction

The first four users strongly correspond to SciFi – concept, The last three users heavily correspond to Romance – concept,

U: "user-to-concept" similarity matrix V: "movie-to-concept" similarity matrix

nponent 2

0.505704 Iris-setosa -0.655405 Iris-setosa -0.318477 Iris-setosa -0.575368 Iris-setosa 0.674767 Iris-setosa

target

Example 1: Reduction of the number of features in Iris-problem from 4 to 2:

Standardization

	sepal length	sepal width	petal length	petal width		8	sepal length	sepal width	petal length	petal width
0	5.1	3.5	1.4	0.2	C	0	-0.900681	1.032057	-1.341272	-1.312977
1	4.9	3.0	1.4	0.2	Standardization 1	1	-1.143017	-0.124958	-1.341272	-1.312977
2	4.7	3.2	1.3	0.2		2	-1.385353	0.337848	-1.398138	-1.312977
3	4.6	3.1	1.5	0.2	3	3	-1.506521	0.106445	-1.284407	-1.312977
4	5.0	3.6	1.4	0.2	4	4	-1.021849	1.263460	-1.341272	-1.312977

PCA

	sepal length	sepal width	petal length	petal width	1 [F	principal component 1	princial component 2
0	-0.900681	1.032057	-1.341272	-1.312977	PCA	0	-2.264542	0.505704
1	-1.143017	-0.124958	-1.341272	-1.312977	(2 components)	1	-2.086426	-0.655405
2	-1.385353	0.337848	-1.398138	-1.312977	\rightarrow	2	-2.367950	-0.318477
3	-1.506521	0.106445	-1.284407	-1.312977		3	-2.304197	-0.575368
4	-1.021849	1.263460	-1.341272	-1.312977		4	-2.388777	0.674767

Concatenating

	principal component 1	principal component 2		target			principal component 1	principal cor
0	-2.264542	0.505704	0	Iris-setosa		0	-2.264542	
1	-2.086426	-0.655405	1	Iris-setosa	pd.concat(axis = 1)	1	-2.086426	
2	-2.367950	-0.318477	2	Iris-setosa		2	-2.367950	
3	-2.304197	-0.575368	3	Iris-setosa		3	-2.304197	
4	-2.388777	0.674767		Iris-setosa		4	-2.388777	
	princi	palDf	df	[['target']]	1			finalDf


```
4 import sys
7print('=========== 1')
8 import pandas as pd
9url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
11df = pd.read csv(url, names=['sepal length','sepal width','petal length','petal width','target'])
14print ('df = ', df)
18print('==== 2')
19 from sklearn.preprocessing import StandardScaler
20features = ['sepal length', 'sepal width', 'petal length', 'petal width']
22x = df.loc[:, features].values
24y = df.loc[:,['target']].values
26x = StandardScaler().fit transform(x)
29print ('y.shape = ', y.shape)
30print ('x.shape = ', x.shape)
31print('======= 2')
36print('===== 3')
37 from sklearn.decomposition import PCA
38pca = PCA(n components=2)
39principalComponents = pca.fit transform(x)
40print('pca.explained_variance_ratio_ = ', pca.explained_variance_ratio_ )
```

```
41principalDf = pd.DataFrame(data = principalComponents
              , columns = ['principal component 1', 'principal component 2'])
44 print ('principalComponents.shape = ', principalComponents.shape)
45print ('principalDf.shape = ', principalDf.shape)
48print ('principalDf.head(3) = ', principalDf.head(3))
50print('==== 3')
56print('===== 4')
57# scikit-learn choose the minimum number of principal components such that 95% of the variance is retained.
58 from sklearn.decomposition import PCA
59 pca = PCA(0.98)
60 principalComponents = pca.fit transform(x)
61n dim = principalComponents[1].shape
62print('pca.explained variance ratio = ', pca.explained variance ratio )
63 Feature size = int(principalComponents.size/y.size)
64print('Feature size = ', Feature size)
66if (Feature size==1):
67 columns0 = ['principal component 1']
68if (Feature size==2):
69 columns0 = ['principal component 1', 'principal component 2']
70if (Feature size==3):
     columns0 = ['principal component 1', 'principal component 2', 'principal component 3']
72if (Feature size==4):
     columns0 = ['principal component 1', 'principal component 2', 'principal component 4']
75 principalDf = pd.DataFrame(data = principalComponents
              , columns = columns0)
77 #print('principalComponents = ',principalComponents)
78print ('principalComponents.shape = ', principalComponents.shape)
79 print ('principalDf.shape = ', principalDf.shape)
```

80

```
81#print ('principalComponents = ', principalComponents)
 82print ('principalDf.head(3) = ', principalDf.head(3))
 83 print('principalComponents.shape = ', len(principalDf.columns))
 84print('=========== 4')
 89print('======= 5')
 91finalDf = pd.concat([principalDf, df[['target']]], axis = 1)
 93print('finalDf.shape = ', finalDf.shape)
 94print('===========<u>5')</u>
 97 import matplotlib.pyplot as plt
 98fig = plt.figure(figsize = (8,8))
 99ax = fig.add subplot(1,1,1)
100 ax.set_xlabel('Principal Component 1', fontsize = 15)
101ax.set ylabel('Principal Component 2', fontsize = 15)
102ax.set_title('2 component PCA', fontsize = 20)
103targets = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
104 colors = ['r', 'g', 'b']
105 for target, color in zip(targets, colors):
      indicesToKeep = finalDf['target'] == target
      ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
                 , finalDf.loc[indicesToKeep, 'principal component 2']
                 , c = color
111 ax.legend(targets)
112ax.grid()
114explained var = pca.explained variance ratio
115print('explained_var = ', explained_var)
```