
 Lecture 6 – Neural Networks

University of Toronto, Department of Earth Sciences,

Hosein Shahnas

1

ESS2222

2

Outline

 Combining Perceptrons

 Optimization

 Neural Networks

 Applying SGD & Recursion Relation

 Back Propagation Algorithm

3

Review of Lecture 5

Soft margin SVM for slightly nonlinear problems One-vs.-All (OvA)
Kernel method for seriously nonlinear problems

Minimize
1
2
 𝑤 2 + C 𝜉𝑖

𝑖 , 𝜉𝑖 ≥ 0

Subject to: yi (w0 + wT xi)≥ 1- 𝜉𝑖 ∀ 𝑖 where 𝜉𝑖 ≥ 0

 Image Recognition

Softmax

Generalization of the logistic function to multi-class settings

F(𝑧𝑗) =
1

1+𝑒
−𝑧𝑗 softmax(zj) =

𝑒
𝑧𝑗

 𝑒𝑧𝑘𝐾
𝑘=1

4

Biology as inspiration

 Engineering

 Bilogical function  Biological structure

Perceptrons are the building blocks of the neural networks connected by synapses. So we may get

the human intelligence by combining these building blocks.

Imitating not exact: Imitating biology has a limit. The airplane flies but doesn’t flap wings! Our

engineering does not depend on the details.

Biological Neural Structure

5

Let’s explore what we can do with combinations of perceptrons rather than single

ones.

Let’s consider the classification problem for which the perceptron algorithm failed.

This problem cannot be classified by a single perceptron. But what about with two

perceptrons?

Combining Perceptrons

x1

x2

x1

x2

h1
h2

x1

x2

6

-

- +

-

𝝈 ≡ 𝝓(𝒛) =
𝟎, 𝒛 < 𝟎
 𝟏, 𝒛 ≥ 𝟎

 𝒛 = 𝒘𝒊
𝒏
𝒊=𝟎 𝒙𝒊 Class 0

 Class 1
𝝈 = 𝐱𝟏 𝐰𝟏 + 𝐱𝟐 𝐰𝟐 + 𝐰𝟎

𝝈 = 𝝓 𝟏 ∗ 𝟎 + 𝟏 ∗ 𝟎 − 𝟏. 𝟓 = 0
𝝈 = 𝝓 𝟏 ∗ 𝟎 + 𝟏 ∗ 𝟏 − 𝟏. 𝟓 = 0
𝝈 = 𝝓 𝟏 ∗ 𝟏 + 𝟏 ∗ 𝟎 − 𝟏. 𝟓 = 0
𝝈 = 𝝓 𝟏 ∗ 𝟏 + 𝟏 ∗ 𝟏 − 𝟏. 𝟓 = 1

 y

 And 𝐱𝟏 𝐰𝟏 + 𝐱𝟐 𝐰𝟐 + 𝐰𝟎 = 0 𝒙𝟐 =
−𝒘𝟏

𝒘𝟐
 𝒙𝟏 -

𝒘𝟎

𝒘𝟐

x2

x1

w0 = -1.5

w1 = 1

w2 = 1

Combining Perceptrons

y

x2

x1

x0

+
-

7

Logic Gates

8

+

+ -

- y

x2

x1
h1

h2

𝝈 ≡ 𝝓(𝒛) =
𝟎, 𝒛 < 𝟎
 𝟏, 𝒛 ≥ 𝟎

 𝒛 = 𝒘𝒊𝒊 𝒙𝒊

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎 = 0 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎 = 1 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎 = 0

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎 = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎 = 0 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟑𝟎 = 0

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎 = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎 = 1 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎 = 1

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎 = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎 = 1 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎 = 1

 h1 h2 y

 Or Nand And

x2

x1

w0 = -10

w1 = 20

w2 = 20

w1 = -20

w2 = -20

w0 = 30

Combining Perceptrons

w0 = -30

w1 = 20

w2 = 20

9

+

+ -

-

𝝈 ≡ 𝝓(𝒛) =
𝟎, 𝒛 < 𝟎
 𝟏, 𝒛 ≥ 𝟎

 𝒛 = 𝒘𝒊𝒊 𝒙𝒊

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎 = 0 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎 = 1 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎 = 0

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎 = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎 = 0 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟑𝟎 = 0

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎 = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎 = 1 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎 = 1

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎 = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎 = 1 𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎 = 1

 h1 h2 y

 Or Nand And

x2

x1

Combining Perceptrons

y

x2

x1
h1

h2

w0 = -10

w1 = 20

w2 = 20

w1 = -20

w2 = -20

w0 = 30

w0 = -30

w1 = 20

w2 = 20

10

x2

x1
h1

w0

w1

w2

Combining Perceptrons

y

x2

x1

h1

h2

x2

x1

h2

w1

w2

w0

y

x0

w

w

w
Or

Nand

And

11

+

+ -

-

x2

x1

+

+ -

-

x2

x1

Combining Perceptrons

Multilayer Perceptron

12

- -
 + +
 + +
- -

- -
 + +
 + +
- -

- -
 + +
 + +
- -

 8-Perceptrons 16-Perceptrons

We solved this problem using feature-transformation before.

We can use neural networks.

Combining Perceptrons

Multilayer Perceptron

13

There are many perceptrons (and therefore many parameters), so optimization might

be a problem (remember that for single perceptron when the data were nonlinear, we

had convergence problem).

Solution:

1- We chose a soft threshold (tanh) rather than a hard threshold (step function).

2- We use SGD

3- And an efficient way to find weight factors w.

𝝓 𝒛 = tanh(z) =
𝒆𝒛 − 𝒆−𝒛

𝒆𝒛+ 𝒆−𝒛

𝝓′ 𝒛 = 𝟏 − tanh(z)2

 Step function

 tanh

 Input Hidden layers output

 0 1≤ 𝒍 < 𝑳 L

Optimization

14

𝒘𝒊𝒋
𝒍

𝟏 ≤ 𝒍 < 𝑳 𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓𝒔
𝒍 = 𝟎 𝒊𝒏𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓

𝒍 = 𝑳 𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓

 𝟎 ≤ 𝒊 ≤ 𝒅 𝒍−𝟏 𝒊𝒏𝒑𝒖𝒕𝒔

𝟏 ≤ 𝒋 ≤ 𝒅 𝒍 𝒐𝒖𝒕𝒑𝒖𝒕𝒔

𝒙𝒋
l = 𝝓 𝒛𝒋

(l) = 𝝓 𝒘𝒊𝒋
(𝒍)

 𝒅(𝒍−𝟏)

𝒊=𝟎 𝒙𝒊
(l−1)

𝒙𝟏

(l)

𝒙𝟐
(l)

𝒙
𝒅(𝒍)

 𝒅 𝟎 : dimension of the feature space

𝒙𝟎
(0)

𝒙𝟏
(0)

𝒙𝟐
(0)

𝒙𝟎
(l)

𝒙𝟏
(l)

𝒙𝟐
(l)

𝒙𝟑
(l)

𝒙𝟒
(l)

𝒙𝟓
(1)

𝒙𝟎
(2)

𝒙𝟏
(2)

𝒙𝟐
(2)

𝒙𝟑
(2)

𝒙𝟒
(2)

𝒙𝟓
(2)

𝒙𝟏

(3)

Neural Networks

15

𝒘𝒊𝒋
𝒍

𝟏 ≤ 𝒍 < 𝑳 𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓𝒔
𝒍 = 𝟎 𝒊𝒏𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓

𝒍 = 𝑳 𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓

 𝟎 ≤ 𝒊 ≤ 𝒅 𝒍−𝟏 𝒊𝒏𝒑𝒖𝒕𝒔

𝟏 ≤ 𝒋 ≤ 𝒅 𝒍 𝒐𝒖𝒕𝒑𝒖𝒕𝒔

𝒙𝒋
l = 𝝓 𝒛𝒋

(l) = 𝝓 𝒘𝒊𝒋
(𝒍)

 𝒅(𝒍−𝟏)

𝒊=𝟎 𝒙𝒊
(l−1)

𝒙𝟏

(l)

𝒙𝟐
(l)

𝒙
𝒅(𝒍)

 𝒅 𝟎 : dimension of the feature space

𝒙𝟎
(0)

𝒙𝟏
(0)

𝒙𝟐
(0)

𝒙𝟎
(l)

𝒙𝟏
(l)

𝒙𝟐
(l)

𝒙𝟑
(l)

𝒙𝟒
(l)

𝒙𝟓
(1)

𝒙𝟎
(2)

𝒙𝟏
(2)

𝒙𝟐
(2)

𝒙𝟑
(2)

𝒙𝟒
(2)

𝒙𝟓
(2)

𝒙𝟏

(3)

Neural Networks

𝒘𝒊𝒋
𝑳

𝒘𝒊𝒋
𝟏

(𝒊𝒋)

𝒘𝒊𝒋
𝟐

(𝒊𝒋)

(𝒊𝒋)

16

All the weights w = 𝑤𝑖𝑗
(𝑙)

 determine h(x).

Error on sample (xn, yn): 𝑒(𝑤) = e(h(xn), yn)

To implement SGD, we need to calculate: 𝛻e(w) =
𝜕𝑒(𝑤)

𝜕𝑤
𝑖𝑗
(𝑙) ∀ 𝑖, 𝑗, 𝑙

Computing
𝜕𝑒(𝑤)

𝜕𝑤
𝑖𝑗
(𝑙) :

𝜕𝑒(𝑤)

𝜕𝑤
𝑖𝑗
(𝑙) can be calculated by perturbing 𝑤𝑖𝑗

(𝑙)
 and observing the variations on the error at the

output and get numerical estimates for partial derivatives. The problem with this approach

is that we have to do this for all 𝑤𝑖𝑗
(𝑙)

 .

But we can obtain a recursion relation and then get all coefficients using this formula.

Applying SGD

𝑥𝑗
(𝑙)

𝑤𝑖𝑗
(𝑙)

𝑥𝑖
(𝑙−1)

𝑧𝑗
(𝑙)

𝒙𝒋
(i) = 𝝓 𝒛𝒋

(l)

17

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍) =

𝜕𝑒(𝑤)

𝜕𝒛𝒋
(𝒍)

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍) (chain rule)

Let 𝜹𝒋
(l) =

𝜕𝑒(𝑤)

𝜕𝒛𝒋
(𝒍)

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍) =

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍) 𝜹𝒋

(l)

But since 𝒛𝒋
(l) = 𝒘𝒊𝒋

(𝒍)
 𝒅(𝒍−𝟏)

𝒊=𝟎 𝒙𝒊
(l−1)

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍) = 𝑥𝑖

(𝑙−1)

Then:
𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍) =

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍) 𝜹𝒋

(l) = 𝑥𝑖
(𝑙−1)

 𝜹𝒋
(l)

The only thing we need is 𝜹𝒋
(l) =

𝜕𝑒(𝑤)

𝜕𝒛𝒋
(𝒍)

If we can find a recursion relation for 𝜹𝒋
(l) , then we can compute all of them by knowing

one of them.

We compute 𝜹𝒋
(l) for the final layer, because if we know 𝛿 later we can obtain 𝛿 earlier

(back propagation).

Recursion Relation

18

For l = L, j = 1, 𝛿𝑗 (l) =
𝜕𝑒(𝑤)

𝜕𝑧
𝑗
(𝑙) 𝛿1 (L) =

𝜕𝑒(𝑤)

𝜕𝑧1
(𝐿)

We have 𝑒(𝑤) = e(h(xn), yn), but for the final layer: h(xn) = 𝜙 𝑧1 (L) = 𝑥1 (L)

Then: 𝑒(𝑤) = e(𝑥1 (L) , yn)

If 𝑒(𝑤) = (h(𝑥𝑛) − 𝑦𝑛)
2
 then 𝑒(𝑤) = (𝑥1 (L) - yn)

2

For tanh-activation function: 𝜙 𝑧 = tanh(z) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧+ 𝑒−𝑧
, 𝜙′ 𝑧 = 1 − tanh(z)2

𝛿 𝐟or Final Layer

19

Now we want to calculate: 𝛿𝑖
(l−1) =

𝜕𝑒(𝑤)

𝜕𝑧
𝑖
(𝑙−1)

𝛿𝑗 (l−1) =
𝜕𝑒(𝑤)

𝜕𝑧
𝑗
(𝑙)

𝑑(𝑙)
𝑗

𝜕𝑧𝑗
(𝑙)

𝜕𝑥
𝑖
(𝑙−1)

𝜕𝑥𝑖
(𝑙−1)

𝜕𝑧
𝑖
(𝑙−1) (chain rule)

𝛿𝑗 (l−1) = = 𝛿𝑖
(l) 𝑤𝑖𝑗

(𝑙)

𝑑(𝑙)
𝑗 𝜙′(𝑧𝑖

𝑙−1
)

𝛿𝑗 (l−1) = (1 - (𝑥𝑖
(𝑙−1)

)2) 𝛿𝑖
(l) 𝑤𝑖𝑗

(𝑙)𝑑(𝑙)
𝑗 (For tanh-activation function)

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍) = 𝑥𝑖

(𝑙−1)
 𝜹𝒋

(l)

∆𝑤(𝑙)
𝑖𝑗 = −𝜂

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍)

Back Propogation of 𝛿

𝑥𝑗
(𝑙)

𝑤𝑖𝑗
(𝑙)

𝑧𝑗
(𝑙)

𝑥𝑖
(𝑙−1)

𝑧𝑖
(𝑙−1)

20

For tanh-activation function

1 - Initialize 𝑤𝑖𝑗
(𝑙)

 at random

2 - For t = 0, 1, 2 ………

3 - pick n ∈ 1, 2, … . . 𝑁 (random pickup, i.e. SGD)

4 - Forward compute all 𝑥𝑗
(𝑙)

5 - Backward compute all 𝛿𝑗
(𝑙)

6 - Update weights 𝑤𝑖𝑗
(𝑙)

 = 𝑤𝑖𝑗
(𝑙)

 - 𝑥𝑖
(𝑙−1)

 𝛿𝑗
(𝑙)

7 - Iterate until the stopping criterion is achieved.

8 - Return the final weights 𝑤𝑖𝑗
(𝑙)

Be careful: Initialize 𝑤𝑖𝑗
(𝑙)

 at random and not to zero

If we do so, either 𝑥𝑗
(𝑙)

 or 𝛿𝑗
(𝑙)

 will become zero and therefore not useful.

Back Propogation Algorithm

𝑤𝑖𝑗
(𝑙)

𝑥𝑖
(𝑙−1)

𝛿𝑗
(𝑙)

21

Neural networks can be thought as Learned Nonlinear Transform. Note that the nonlinear

transformation of features (e.g., polynomial, RBF, etc.) are not learned transformation.

Since in the hidden layers the features are higher order features (leaned features), then we

can implement a better learning. Indeed the network looks for weight factors for a proper

transform the factors that fits data.

Remark

Hidden layers : higher order features

or learned features

Raw input: features of

dimension d

Output

22

Dropout

Dropout is a regularization technique for neural network models (Srivastava,

et al. , 2014). This is a simple way to prevent neural networks from

overfitting.

Some key points:
1) Use 20%-50% dropout

2) Dropout with larger network in general provides better performance, giving the

model more of an opportunity to learn independent representations.

3) Dropout can be used on visible (input) as well as hidden layers

 Standard neural network Neural network with dropout

23

A Simple Network

Example 1: MNIST Database - Handwritten digits

A simple sequential deep learning model for handwritten digits recognition

using Keras and TensorFlow,

 784

 512

 0.2

 Input 10

 Output

 28×28

tf.keras.layers.Flatten(input_shape=(28, 28)

tf.keras.layers.Dense(512, activation=tf.nn.relu)

tf.keras.layers.Dropout(0.2)

tf.keras.layers.Dense(10, activation=tf.nn.softmax)

24

A Simple Network

MNIST handwritten digits

25

A Simple Network

Example 2: Pima Indians onset of diabetes dataset

A simple sequential deep learning model for predicting handwritten digits

using Keras,

 8 8 12

 Input

 1

 Relu ReLu Sigmoid

model.add(Dense(8, input_dim=8, activation='relu'))

model.add(Dense(12, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

𝒙𝟏

𝒙𝟖

 Output

26

A Simple Network

Onset of Diabetes Dataset

27

A Simple Network

Onset of Diabetes Dataset

