ESS2222

Lecture 6 - Neural Networks

Hosein Shahnas

University of Toronto, Department of Earth Sciences,

Outline

Combining Perceptrons
\square Optimization
\square Neural Networks
Applying SGD \& Recursion Relation
\square Back Propagation Algorithm

Neuron

Review of Lecture 5

Soft margin SVM for slightly nonlinear problems

Kernel method for seriously nonlinear problems
Minimize $\frac{1}{2}\|w\|^{2}+\mathrm{C} \sum_{i} \xi^{i}, \xi^{i} \geq 0$
Subject to: $\mathrm{y}^{i}\left(\mathrm{w}_{0}+\mathrm{w}^{\top} \mathrm{x}^{i}\right) \geq 1-\xi^{i} \quad \forall i$ where $\xi^{i} \geq 0$

Image Recognition

2D: 28×28 pixels

Softmax

Generalization of the logistic function to multi-class settings
$\Phi\left(z_{j}\right)=\frac{1}{1+e^{-z_{j}}} \longrightarrow \operatorname{softmax}\left(\mathrm{z}_{\mathrm{j}}\right)=\frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}}$

Biological Neural Structure

Biology as inspiration

Perceptrons are the building blocks of the neural networks connected by synapses. So we may get the human intelligence by combining these building blocks.

Imitating not exact: Imitating biology has a limit. The airplane flies but doesn't flap wings! Our engineering does not depend on the details.

Combining Perceptrons

Let's explore what we can do with combinations of perceptrons rather than single ones.
Let's consider the classification problem for which the perceptron algorithm failed.

This problem cannot be classified by a single perceptron. But what about with two perceptrons?

Combining Perceptrons

$$
\sigma \equiv \phi(z)=\left\{\begin{array}{ll}
0, \\
1, z<0 \\
1, z \geq 0
\end{array} \quad z=\sum_{i=0}^{n} w_{i} x_{i}\right.
$$

$$
\sigma=\mathbf{x}_{1} \mathbf{w}_{1}+\mathrm{x}_{2} \mathbf{w}_{2}+\mathbf{w}_{0}
$$

$$
\sigma=\phi(1 * 0+1 * 0-1.5)=0
$$

$$
\sigma=\phi(1 * 0+1 * 1-1.5)=0
$$

$$
\sigma=\phi(1 * 1+1 * 0-1.5)=0
$$

$$
\sigma=\phi(1 * 1+1 * 1-1.5)=1
$$

	AND	
$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	Output
O	O	O
o	1	O
1	O	o
1	1	1

$$
x_{1} w_{1}+x_{2} w_{2}+w_{0}=0 \quad x_{2}=\frac{-w_{1}}{w_{2}} x_{1}-\frac{w_{0}}{w_{2}}
$$

x_{1}					
	OR	Output	x_{1}	NAND	Output
	x_{2}			x_{2}	
O	0	0	O	0	1
O	1	1	O	1	1
1	0	1	1	0	1
1	1	1	1	1	O
	AND			XOR	Output
x_{1}	x_{2}	Output	x_{1}	x_{2}	
0	0	0	O	0	0
O	1	O	O	1	1
1	0	0	1	0	1
1	1	1	1	1	0

Combining Perceptrons

Combining Perceptrons

$$
\begin{array}{ll}
\sigma \equiv \phi(z)= \begin{cases}0, z<0 \\
1, z \geq 0\end{cases} \\
\hline
\end{array}=\sum_{i} w_{i} x_{i}
$$

$$
\begin{aligned}
& \sigma=\phi(-20 * 0-20 * 0+30)=1 \\
& \sigma=\phi(-20 * 1-20 * 1+30)=0 \\
& \sigma=\phi(-20 * 0-20 * 1+30)=1 \\
& \sigma=\phi(-20 * 1-20 * 0+30)=1
\end{aligned}
$$

Nand
$\sigma=\phi(20 * 0+20 * 1-30)=0$
$\sigma=\phi(20 * 1+20 * 0-30)=0$
$\sigma=\phi(20 * 1+20 * 1-30)=1$
$\sigma=\phi(20 * 1+20 * 1-30)=1$

Combining Perceptrons

Combining Perceptrons
 Multilayer Perceptron

Combining Perceptrons Multilayer Perceptron

8-Perceptrons

16-Perceptrons

We solved this problem using feature-transformation before.
We can use neural networks.

Optimization

There are many perceptrons (and therefore many parameters), so optimization might be a problem (remember that for single perceptron when the data were nonlinear, we had convergence problem).

Solution:

1- We chose a soft threshold (tanh) rather than a hard threshold (step function).
2- We use SGD
3- And an efficient way to find weight factors w.
$\phi(z)=\tanh (z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}$
$\phi^{\prime}(\mathbf{z})=1-\tanh (\mathbf{z})^{2}$

- Step function
\longrightarrow tanh

Input Hidden layers output
$0 \quad 1 \leq \boldsymbol{l}<\boldsymbol{L} \quad$ L

Neural Networks

$$
\left[\begin{array}{l}
x_{1}{ }^{(l)} \\
x_{2}{ }^{(l)} \\
\\
\\
x_{d^{(l)}}
\end{array}\right]
$$

$d^{(0)}$: dimension of the feature space

$$
\left[\begin{array}{l}
x_{0}^{(0)} \\
x_{1}^{(0)} \\
x_{2}^{(0)}
\end{array}\right]\left[\begin{array}{l}
x_{0}{ }^{(1)} \\
x_{1}{ }^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)} \\
x_{4}^{(1)} \\
x_{5}^{(1)}
\end{array}\right]\left[\begin{array}{l}
x_{0}^{(2)} \\
x_{1}{ }^{(2)} \\
x_{2}^{(2)} \\
x_{3}^{(2)} \\
x_{4}^{(2)} \\
x_{5}^{(2)}
\end{array}\right]\left[x_{1}^{(3)}\right]
$$

Neural Networks

$d^{(0)}$: dimension of the feature space

$$
\left[\begin{array}{l}
x_{0}^{(0)} \\
x_{1}^{(0)} \\
x_{2}^{(0)}
\end{array}\right]\left[\begin{array}{l}
x_{0}{ }^{(1)} \\
x_{1}{ }^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)} \\
x_{4}{ }^{(1)} \\
x_{5}^{(1)}
\end{array}\right]\left[\begin{array}{l}
x_{0}^{(2)} \\
x_{1}{ }^{(2)} \\
x_{2}^{(2)} \\
x_{3}^{(2)} \\
x_{4}{ }^{(2)} \\
x_{5}{ }^{(2)}
\end{array}\right]\left[x_{1}{ }^{(3)}\right]
$$

Applying SGD

All the weights $w=\left\{w_{i j}^{(l)}\right\}$ determine $h(x)$.

$$
x_{j}^{(i)}=\phi\left(z_{j}^{(i)}\right)
$$

Error on sample $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right): \quad e(w)=e\left(\mathrm{~h}\left(\mathrm{x}_{\mathrm{n}}\right), \mathrm{y}_{\mathrm{n}}\right)$
To implement SGD, we need to calculate: $\nabla \mathrm{e}(\mathrm{w})=\frac{\partial e(w)}{\partial w_{i j}^{(l)}} \forall i, j, l$
Computing $\frac{\partial e(w)}{\partial w_{i j}^{(l)}}$:
$\frac{\partial e(w)}{\partial w_{i j}^{(l)}}$ can be calculated by perturbing $w_{i j}^{(l)}$ and observing the variations on the error at the output and get numerical estimates for partial derivatives. The problem with this approach is that we have to do this for all $w_{i j}^{(l)}$.

But we can obtain a recursion relation and then get all coefficients using this formula.

Recursion Relation

$\frac{\partial e(w)}{\partial w_{i j}^{(L)}}=\frac{\partial e(w)}{\partial z_{j}^{(l)}} \frac{\partial z_{j}^{(l)}}{\partial w_{i j}^{(l)}}$ (chain rule)

Let

$$
\boldsymbol{\delta}_{j}^{(l)}=\frac{\partial e(w)}{\partial z_{j}^{(l)}} \longrightarrow \frac{\partial e(w)}{\partial w_{i j}^{(l)}}=\frac{\partial z_{j}^{(l)}}{\partial w_{i j}^{(l)}} \boldsymbol{\delta}_{j}^{(l)}
$$

But since $z_{j}^{(l)}=\sum_{i=0}^{\boldsymbol{d}^{(l-1)}} w_{i j}^{(l)} \boldsymbol{x}_{\boldsymbol{i}}^{(l-1)} \longrightarrow \frac{\partial z_{j}^{(l)}}{\partial w_{i j}^{(l)}}=x_{i}^{(l-1)}$
Then: $\frac{\partial e(w)}{\partial w_{i j}^{(l)}}=\frac{\partial z_{j}^{(l)}}{\partial w_{i j}^{(l)}} \boldsymbol{\delta}_{\boldsymbol{j}}^{(l)}=x_{i}^{(l-1)} \boldsymbol{\delta}_{\boldsymbol{j}}{ }^{(l)}$
The only thing we need is $\quad \boldsymbol{\delta}_{\boldsymbol{j}}{ }^{(\mathbf{l})}=\frac{\partial e(w)}{\partial \boldsymbol{z}_{\boldsymbol{j}}^{(l)}}$
If we can find a recursion relation for $\boldsymbol{\delta}_{\boldsymbol{j}}{ }^{(1)}$, then we can compute all of them by knowing one of them.
We compute $\boldsymbol{\delta}_{\boldsymbol{j}}{ }^{(1)}$ for the final layer, because if we know δ later we can obtain δ earlier (back propagation).

δ for Final Layer

For $\mathrm{l}=\mathrm{L}, \quad \mathrm{j}=1, \quad \delta_{j}{ }^{(1)}=\frac{\partial e(w)}{\partial z_{j}^{(l)}} \longrightarrow \quad \delta_{1}{ }^{(\mathrm{L})}=\frac{\partial e(w)}{\partial z_{1}^{(L)}}$
We have $e(w)=\mathrm{e}\left(\mathrm{h}\left(\mathrm{x}_{\mathrm{n}}\right), \mathrm{y}_{\mathrm{n}}\right)$, but for the final layer: $\quad \mathrm{h}\left(\mathrm{x}_{\mathrm{n}}\right)=\phi\left(\mathrm{z}_{1}{ }^{(\mathrm{L})}\right)=x_{1}{ }^{(\mathrm{L})}$
Then: $e(w)=\mathrm{e}\left(x_{1}{ }^{(L)}, \mathrm{y}_{\mathrm{n}}\right)$
If $e(w)=\left(\mathrm{h}\left(x_{n}\right)-y_{n}\right)^{2} \quad$ then $e(w)=\left(x_{1}{ }^{(L)}-y_{n}\right)^{2}$

For \tanh-activation function: $\phi(z)=\tanh (z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}, \quad \phi^{\prime}(z)=1-\tanh (z)^{2}$

Back Propogation of δ

Now we want to calculate: $\delta_{i}^{(1-1)}=\frac{\partial e(w)}{\partial z_{i}^{(l-1)}}$

$$
\begin{aligned}
& \delta_{j}^{(l-1)}=\sum_{j}^{d(l)} \frac{\partial e(w)}{\partial z_{j}^{(l)}} \frac{\partial z_{j}^{(l)}}{\partial x_{i}^{(l-1)}} \frac{\partial x_{i}^{(l-1)}}{\partial z_{i}^{(l-1)}} \\
& \delta_{j}^{(l-1)}=\sum_{j}^{d(l)}=\delta_{i}^{(l)} \quad w_{i j}^{(l)} \phi^{\prime}\left(z_{i}^{(l-1)}\right) \\
& {\left[\begin{array}{l}
\delta_{j}^{(l-1)}=\left(1-\left(x_{i}^{(l-1)}\right)^{2}\right) \\
\frac{\partial e(w)}{\partial w_{i j}^{(l)}}=\sum_{j}^{d(l)} \delta_{i}^{(l)} \quad w_{i j}^{(l)} \quad \text { (For tanh-activation function) } \\
\delta_{j}^{(l)} \\
\Delta w^{(l)}{ }_{i j}
\end{array}{ }^{(l)} \frac{\partial e(w)}{\partial w_{i j}^{(l)}}\right.}
\end{aligned}
$$

Back Propogation Algorithm

For tanh-activation function

1 - Initialize $w_{i j}^{(l)}$ at random
2 - For $\mathrm{t}=0,1,2 \ldots \ldots \ldots$
3 - pick $\mathrm{n} \in\{1,2, \ldots . N\}$ (random pickup, i.e. SGD)
4 - Forward compute all $x_{j}^{(l)}$
5 -Backward compute all $\delta_{j}^{(l)}$
6 - Update weights $w_{i j}^{(l)}=w_{i j}^{(l)}-x_{i}^{(l-1)} \delta_{j}^{(l)}$
7 - Iterate until the stopping criterion is achieved.
8 - Return the final weights $w_{i j}^{(l)}$

Be careful: Initialize $w_{i j}^{(l)}$ at random and not to zero
If we do so, either $x_{j}^{(l)}$ or $\delta_{j}^{(l)}$ will become zero and therefore not useful.

Remark

Neural networks can be thought as Learned Nonlinear Transform. Note that the nonlinear transformation of features (e.g., polynomial, RBF, etc.) are not learned transformation.

Since in the hidden layers the features are higher order features (leaned features), then we can implement a better learning. Indeed the network looks for weight factors for a proper transform the factors that fits data.

Hidden layers : higher order features or learned features

Dropout

Dropout is a regularization technique for neural network models (Srivastava, et al., 2014). This is a simple way to prevent neural networks from overfitting.

Some key points:

1) Use $20 \%-50 \%$ dropout
2) Dropout with larger network in general provides better performance, giving the model more of an opportunity to learn independent representations.
3) Dropout can be used on visible (input) as well as hidden layers

Standard neural network

Neural network with dropout

Example 1: MNIST Database - Handwritten digits

A simple sequential deep learning model for handwritten digits recognition using Keras and TensorFlow,

tf.keras.layers.Flatten(input_shape=(28, 28)
tf.keras.layers.Dense(512, activation=tf.nn.relu)
tf.keras.layers.Dropout(0.2)
tf.keras.layers.Dense(10, activation=tf.nn.softmax)

A Simple Network MNIST handwritten digits

```
2import tensorflow as tf
3mnist = tf.keras.datasets.mnist
4import sys
5#==
```



```
8# MNTST (Modified National Institute of Standards and Technology database) a large database of handwritten digits
9(x_train, y_train), (x_test, y_test) = mnist.load_data()
0x_train, x_test = x_train / 255.0, x_test / 255.0 # scale
11print('x_train.shape= ', x_train.shape)
12print('x_test.shape = ', x_test.shape)
13#sys.exit()
14#============================================================== import MNIST data
6#=============================================================== define a sequential model (deep learning) with keras
17model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
9 ~ t f . k e r a s . l a y e r s . D e n s e ( 5 1 2 , ~ a c t i v a t i o n = t f . n n . r e l u ) ,
tf.keras.layers.Dropout(0.2),
21 tf.keras.layers.Dense(10, activation=tf.nn.softmax) # # output Layer = 10
22])
23#
27Cross entropy loss function: measures the dissimilarity between the distribution of observed class labels
8and the predicted probabilities of class lables.
29Categorical refers to the possibility of having more than two classes.
0Sparse refers to using a single integer from zero to the number of classes minus one (e.g. { 0; 1; or 2 }
Ifor a three-class problem), instead of a dense one-hot encoding of the class label (e.g. { 1,0,0; 0,1,0; or 0,0,1 }
32for a class label for the same three-class problem).
34
5model.compile(optimizer='adam',
                                    loss='sparse categorical_crossentropy',
37 metrics=['acc'])
                            # adam optimizer
                                    # define the loss function
                                    # define the metric ('accuracy', 'mse', 'msle', 'mae)
                                    == compile the model
39
41model.fit(x_train, y_train, epochs=10)
42#========================================-====================== fit the model
42 ##=
```



```
45 print(' ========================================================test' )
46 model.evaluate(x_test, y_test)
47 print(' ============================================================= test')
```



```
9sys.exit()
```


Example 2: Pima Indians onset of diabetes dataset

A simple sequential deep learning model for predicting handwritten digits using Keras,


```
model.add(Dense(8, input_dim=8, activation='relu'))
model.add(Dense(12, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```


A Simple Network

 Onset of Diabetes Dataset```
1#https://machinelearningmastery.
3#============================
5 from keras.models import Sequential
6 \text { from keras.layers import Dense}
7import keras
8import numpy
9import sys
10#====================================
12#numpy. random. seed (7)
```



```
14# Load pima indians dataset
15 dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
6#=====#== import datc
17
*)
19# split into input (X) and output (Y) variables
20X = dataset[:,0:8]
21Y = dataset[:,8]
22print('X.shape = ', X.shape)
23print('Y.shape = ', Y.shape)
24#=##==#========#=========#====================================== split data inti test and sample data
25
7# create model
8model = Sequential()
9model.add(Dense(8, input_dim=8, activation='relu'))
0model.add(Dense(12, activation='relu'))
#model.aad(Reras. Layers.Dropout(0.1))
2model.add(Dense(1, activation='sigmoid'))
```

```
*)
```

```
*)
```


## A Simple Network

## Onset of Diabetes Dataset

```
35#=== compile the model
36# Compile model # # set los
40#model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])
41sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
42model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
44Adagrad = optimizers.Adagrad(lr=0.01, epsilon=None, decay=0.0)
45 model.compile(loss='binary_crossentropy', optimizer=Adagrad, metrics=['accuracy'])
47#=== compile the model
4 8
49##== fit the model
0# Fit the model
51model.fit(X, Y, epochs=1000, batch_size=10) # set batch size and epoch-number
5 2
53#model.fit(X, Y, epochs=500)
54#== fit the model
5 5
57# evaluate the model
58 scores = model.evaluate(X, Y)
59print(' '=== test')
60print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
61 print(' === test')
62#==========
```

