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Outline 
 

 Combining Perceptrons  

 Optimization 

 Neural Networks 

 Applying SGD & Recursion Relation 

 Back Propagation Algorithm 
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Review of Lecture 5 

Soft margin SVM for slightly nonlinear problems                               One-vs.-All (OvA)  
Kernel method for seriously nonlinear problems 

Minimize   
1
2
 𝑤 2  + C  𝜉𝑖

𝑖   ,  𝜉𝑖 ≥ 0 

Subject to: yi ( w0 + wT xi )≥ 1- 𝜉𝑖   ∀ 𝑖   where 𝜉𝑖 ≥ 0 

 

 

 

                                                                                              Image Recognition 

  

 

 
Softmax 

 
Generalization of the logistic function to multi-class settings   

F(𝑧𝑗) =  
1

1+𝑒
−𝑧𝑗              softmax(zj) = 

𝑒
𝑧𝑗

 𝑒𝑧𝑘𝐾
𝑘=1
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Biology as inspiration  

                                                            Engineering  

                                      Bilogical function                                                   Biological structure                 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perceptrons are the building blocks of the neural networks connected by synapses. So we may get 

the human intelligence by combining these building blocks.  
 

Imitating not exact: Imitating biology has a limit. The airplane flies but doesn’t flap wings! Our 

engineering does not depend on the details. 
 

Biological Neural Structure 
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Let’s explore what we can do with combinations of perceptrons rather than single 

ones.  

Let’s consider the classification problem for which the perceptron algorithm failed. 

 

 

 

 

 

 

 

 

 

 

 

This problem cannot be classified by a single perceptron. But what about with two 

perceptrons? 
 

 

 

 

 

 

 

Combining Perceptrons  

x1  

x2  

x1  

x2  

h1  
h2  

x1  

x2  
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-  

-  +  

-  

𝝈 ≡ 𝝓(𝒛) =  
𝟎, 𝒛 < 𝟎
 𝟏, 𝒛 ≥ 𝟎

    𝒛 =   𝒘𝒊
𝒏
𝒊=𝟎 𝒙𝒊                                            Class 0 

                                                  Class 1 
𝝈 = 𝐱𝟏 𝐰𝟏 + 𝐱𝟐 𝐰𝟐 + 𝐰𝟎 
 
𝝈 = 𝝓 𝟏 ∗ 𝟎 + 𝟏 ∗ 𝟎 − 𝟏. 𝟓   = 0   
𝝈 = 𝝓 𝟏 ∗ 𝟎 + 𝟏 ∗ 𝟏 − 𝟏. 𝟓   = 0   
𝝈 = 𝝓 𝟏 ∗ 𝟏 + 𝟏 ∗ 𝟎 − 𝟏. 𝟓   = 0   
𝝈 = 𝝓 𝟏 ∗ 𝟏 + 𝟏 ∗ 𝟏 − 𝟏. 𝟓   = 1   

                    y 
 

         And                                           𝐱𝟏 𝐰𝟏 + 𝐱𝟐 𝐰𝟐 + 𝐰𝟎 = 0        𝒙𝟐 = 
−𝒘𝟏

𝒘𝟐
 𝒙𝟏 - 

𝒘𝟎

𝒘𝟐
 

 

x2 

x1 

w0 = -1.5 

 

w1 = 1 

 

w2 = 1 

Combining Perceptrons  

y 

x2 

x1 

x0 

+  
-  
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Logic Gates 



8 

+  

+  -  

-  y 

x2 

x1 
h1 

h2 

𝝈 ≡ 𝝓(𝒛) =  
𝟎, 𝒛 < 𝟎
 𝟏, 𝒛 ≥ 𝟎

    𝒛 =   𝒘𝒊𝒊 𝒙𝒊   
   
 
𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎   = 0 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎   = 1   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎   = 0 

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎   = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎   = 0   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟑𝟎   = 0 

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎   = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎   = 1   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎   = 1 

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎   = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎   = 1   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎   = 1 

 

                       h1                                          h2                          y 
 

          Or                                    Nand                      And 

x2 

x1 

w0 = -10 

w1 = 20 

w2 = 20 

 

 
w1 = -20 

w2 = -20 

w0 = 30 

Combining Perceptrons  

w0 = -30 

 

w1 = 20 

 

w2 = 20 
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+  

+  -  

-  

𝝈 ≡ 𝝓(𝒛) =  
𝟎, 𝒛 < 𝟎
 𝟏, 𝒛 ≥ 𝟎

    𝒛 =   𝒘𝒊𝒊 𝒙𝒊   
   
 
𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎   = 0 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎   = 1   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎   = 0 

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎   = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎   = 0   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟑𝟎   = 0 

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟎 + 𝟐𝟎 ∗ 𝟏 − 𝟏𝟎   = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟎 − 𝟐𝟎 ∗ 𝟏 + 𝟑𝟎   = 1   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎   = 1 

𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟎 − 𝟏𝟎   = 1 𝝈 = 𝝓 −𝟐𝟎 ∗ 𝟏 − 𝟐𝟎 ∗ 𝟎 + 𝟑𝟎   = 1   𝝈 = 𝝓 𝟐𝟎 ∗ 𝟏 + 𝟐𝟎 ∗ 𝟏 − 𝟑𝟎   = 1 

 

                       h1                                          h2                          y 
 

          Or                                    Nand                      And 

x2 

x1 

Combining Perceptrons  

y 

x2 

x1 
h1 

h2 

w0 = -10 

w1 = 20 

w2 = 20 

 

 
w1 = -20 

w2 = -20 

w0 = 30 

w0 = -30 

 

w1 = 20 

 

w2 = 20 
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x2 

x1 
h1 

w0 

w1  

w2  

Combining Perceptrons  

y 

x2 

x1 

h1 

h2 

x2 

x1 

h2 

w1 

w2  

w0 

y 

x0 

w 

w 

w 
Or  

Nand 

And 
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+  

+  -  

-  

x2 

x1 

+  

+  -  

-  

x2 

x1 

Combining Perceptrons 

Multilayer Perceptron  
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-             - 
     +  + 
     +   + 
-             - 
  

-             - 
     +  + 
     +   + 
-             -  

-             - 
     +  + 
     +   + 
-             -  

 

 

 

 

 

 

 

 

 

               8-Perceptrons                      16-Perceptrons 

 

 

We solved this problem using feature-transformation before. 

 

We can use neural networks.  

  
 

Combining Perceptrons 

Multilayer Perceptron  
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There are many perceptrons (and therefore many parameters), so optimization might 

be a problem (remember that for single perceptron when the data were nonlinear, we 

had convergence problem).  

 

Solution: 

1- We chose a soft threshold (tanh) rather than a hard threshold (step function). 

2- We use SGD 

3- And an efficient way to find weight factors w. 

 

𝝓 𝒛 = tanh(z) = 
𝒆𝒛 − 𝒆−𝒛

𝒆𝒛+ 𝒆−𝒛 
 

 

𝝓′ 𝒛 = 𝟏 −  tanh(z)2 

 

 

                      Step function 

                   tanh  

 
   Input    Hidden layers   output 

  

   0               1≤ 𝒍 < 𝑳               L 

Optimization 
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𝒘𝒊𝒋
𝒍  

𝟏 ≤  𝒍 < 𝑳     𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓𝒔                      
𝒍 = 𝟎             𝒊𝒏𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓                          

𝒍 = 𝑳               𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓                         

 𝟎 ≤ 𝒊 ≤ 𝒅 𝒍−𝟏      𝒊𝒏𝒑𝒖𝒕𝒔                               

𝟏 ≤ 𝒋 ≤ 𝒅 𝒍          𝒐𝒖𝒕𝒑𝒖𝒕𝒔                             

 

 

 

𝒙𝒋 
l = 𝝓 𝒛𝒋 

(l) = 𝝓   𝒘𝒊𝒋
(𝒍)

 𝒅(𝒍−𝟏)

𝒊=𝟎 𝒙𝒊 
(l−1)  

 
𝒙𝟏

(l) 

𝒙𝟐
(l) 

𝒙
𝒅(𝒍)

 

    𝒅 𝟎  : dimension of the feature space                        

   

 

 
 

𝒙𝟎
(0)

𝒙𝟏
(0)

𝒙𝟐
(0)

  

𝒙𝟎
(l)

 
 

𝒙𝟏
(l)

 
 

𝒙𝟐
(l)

 
 

𝒙𝟑
(l)

 
 

𝒙𝟒
(l) 

𝒙𝟓
(1)

   

𝒙𝟎
(2) 

𝒙𝟏
(2) 

𝒙𝟐
(2) 

𝒙𝟑
(2) 

𝒙𝟒
(2)

𝒙𝟓
(2)

    
𝒙𝟏

(3)  

Neural Networks 
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𝒘𝒊𝒋
𝒍  

𝟏 ≤  𝒍 < 𝑳     𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓𝒔                      
𝒍 = 𝟎             𝒊𝒏𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓                          

𝒍 = 𝑳               𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓                         

 𝟎 ≤ 𝒊 ≤ 𝒅 𝒍−𝟏      𝒊𝒏𝒑𝒖𝒕𝒔                               

𝟏 ≤ 𝒋 ≤ 𝒅 𝒍          𝒐𝒖𝒕𝒑𝒖𝒕𝒔                             

 

 

 

𝒙𝒋 
l = 𝝓 𝒛𝒋 

(l) = 𝝓   𝒘𝒊𝒋
(𝒍)

 𝒅(𝒍−𝟏)

𝒊=𝟎 𝒙𝒊 
(l−1)  

 
𝒙𝟏

(l) 

𝒙𝟐
(l) 

𝒙
𝒅(𝒍)

 

     𝒅 𝟎  : dimension of the feature space                        

   

 

 
 

𝒙𝟎
(0)

𝒙𝟏
(0)

𝒙𝟐
(0)

  

𝒙𝟎
(l)

 
 

𝒙𝟏
(l)

 
 

𝒙𝟐
(l)

 
 

𝒙𝟑
(l)

 
 

𝒙𝟒
(l) 

𝒙𝟓
(1)

   

𝒙𝟎
(2) 

𝒙𝟏
(2) 

𝒙𝟐
(2) 

𝒙𝟑
(2) 

𝒙𝟒
(2)

𝒙𝟓
(2)

    
𝒙𝟏

(3)  

Neural Networks 

𝒘𝒊𝒋
𝑳  

𝒘𝒊𝒋
𝟏  

(𝒊𝒋) 

𝒘𝒊𝒋
𝟐  

(𝒊𝒋) 

(𝒊𝒋) 
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All the weights w = 𝑤𝑖𝑗
(𝑙)

 determine h(x).  

 

Error on sample (xn, yn):     𝑒(𝑤) = e(h(xn), yn) 

 

To implement SGD, we need to calculate:   𝛻e(w) = 
𝜕𝑒(𝑤)

𝜕𝑤
𝑖𝑗
(𝑙)    ∀ 𝑖, 𝑗, 𝑙 

 

Computing 
𝜕𝑒(𝑤)

𝜕𝑤
𝑖𝑗
(𝑙)  : 

      
𝜕𝑒(𝑤)

𝜕𝑤
𝑖𝑗
(𝑙)   can be calculated by perturbing 𝑤𝑖𝑗

(𝑙)
 and observing the variations on the error at the 

output and get numerical estimates for partial derivatives. The problem with this approach 

is that we have to do this for all 𝑤𝑖𝑗
(𝑙)

 . 

 

But we can obtain a recursion relation and then get all coefficients using this formula.  

Applying SGD 

𝑥𝑗
(𝑙)

  

𝑤𝑖𝑗
(𝑙)

  

𝑥𝑖
(𝑙−1)

  

𝑧𝑗
(𝑙)

  

𝒙𝒋 
(i) = 𝝓 𝒛𝒋 

(l)  
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𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍)   =

𝜕𝑒(𝑤)

𝜕𝒛𝒋
(𝒍)  

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍)    (chain rule) 

Let  𝜹𝒋 
(l)  =  

𝜕𝑒(𝑤)

𝜕𝒛𝒋
(𝒍)                  

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍)   =

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍) 𝜹𝒋 

(l)   

But since   𝒛𝒋 
(l) =   𝒘𝒊𝒋

(𝒍)
 𝒅(𝒍−𝟏)

𝒊=𝟎  𝒙𝒊 
(l−1)                          

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍)  = 𝑥𝑖

(𝑙−1)
  

  

Then: 
𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍)   =

𝜕𝒛𝒋
(𝒍)

𝜕𝒘𝒊𝒋
(𝒍) 𝜹𝒋 

(l)  =    𝑥𝑖
(𝑙−1)

 𝜹𝒋 
(l)  

 

The only thing we need is  𝜹𝒋 
(l)  =  

𝜕𝑒(𝑤)

𝜕𝒛𝒋
(𝒍)   

 

If we can find a recursion relation for 𝜹𝒋 
(l) , then we can compute all of them by knowing 

one of them. 

We compute 𝜹𝒋 
(l)  for the final layer, because if we know 𝛿 later we can obtain 𝛿 earlier 

(back propagation).    

 

Recursion Relation 
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For l = L,    j = 1,               𝛿𝑗 (l)  =  
𝜕𝑒(𝑤)

𝜕𝑧
𝑗
(𝑙)                 𝛿1 (L)  =  

𝜕𝑒(𝑤)

𝜕𝑧1
(𝐿)  

 

We have  𝑒(𝑤) = e(h(xn), yn), but for the final layer:       h(xn) = 𝜙 𝑧1 (L) =  𝑥1 (L)  

 

Then: 𝑒(𝑤) = e(𝑥1 (L) , yn) 

 

If 𝑒(𝑤) = (h(𝑥𝑛) −  𝑦𝑛)
2
    then 𝑒(𝑤) = (𝑥1 (L) - yn)

2 

 

 

For tanh-activation function: 𝜙 𝑧 = tanh(z) = 
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧+ 𝑒−𝑧 
,           𝜙′ 𝑧 = 1 −  tanh(z)2 

 

 

𝛿 𝐟or Final Layer 
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Now we want to calculate:  𝛿𝑖 
(l−1)  =  

𝜕𝑒(𝑤)

𝜕𝑧
𝑖
(𝑙−1) 

 

𝛿𝑗 (l−1)  =    
𝜕𝑒(𝑤)

𝜕𝑧
𝑗
(𝑙)

𝑑(𝑙)
𝑗    

𝜕𝑧𝑗
(𝑙)

𝜕𝑥
𝑖
(𝑙−1)   

𝜕𝑥𝑖
(𝑙−1)

𝜕𝑧
𝑖
(𝑙−1)     (chain rule) 

 

𝛿𝑗 (l−1)  =  = 𝛿𝑖 
(l)    𝑤𝑖𝑗

(𝑙)
   

𝑑(𝑙)
𝑗 𝜙′(𝑧𝑖

𝑙−1
) 

 

 

𝛿𝑗 (l−1)  = (1 - (𝑥𝑖
(𝑙−1)

)2)     𝛿𝑖 
(l)    𝑤𝑖𝑗

(𝑙)𝑑(𝑙)
𝑗   (For tanh-activation function) 

 

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍)   = 𝑥𝑖

(𝑙−1)
 𝜹𝒋 

(l)  

 

∆𝑤(𝑙)
𝑖𝑗 = −𝜂

𝜕𝑒(𝑤)

𝜕𝒘𝒊𝒋
(𝒍)

 

Back Propogation of 𝛿  

𝑥𝑗
(𝑙)

  

𝑤𝑖𝑗
(𝑙)

  

𝑧𝑗
(𝑙)

  

𝑥𝑖
(𝑙−1)

  

𝑧𝑖
(𝑙−1)
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For tanh-activation function 

 

1 - Initialize  𝑤𝑖𝑗
(𝑙)

  at random  

2 - For t = 0, 1, 2 ……… 

3 - pick n ∈  1, 2, … . . 𝑁   (random pickup, i.e. SGD) 

4 - Forward compute all 𝑥𝑗
(𝑙)

 

5 - Backward compute all 𝛿𝑗
(𝑙)

 

6 - Update weights  𝑤𝑖𝑗
(𝑙)

  =  𝑤𝑖𝑗
(𝑙)

  - 𝑥𝑖
(𝑙−1)

 𝛿𝑗
(𝑙)

 

7 - Iterate until the stopping criterion is achieved. 

8 - Return the final weights  𝑤𝑖𝑗
(𝑙)

  

 

Be careful: Initialize  𝑤𝑖𝑗
(𝑙)

 at random and not to zero 

 

If we do so, either 𝑥𝑗
(𝑙)

 or 𝛿𝑗
(𝑙)

 will become zero and therefore not useful. 

Back Propogation Algorithm 

𝑤𝑖𝑗
(𝑙)

  

𝑥𝑖
(𝑙−1)

  

𝛿𝑗
(𝑙)
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Neural networks can be thought as Learned Nonlinear Transform. Note that the nonlinear 

transformation of features (e.g., polynomial, RBF, etc.) are not learned transformation. 

 

Since in the hidden layers the features are higher order features (leaned features), then we 

can implement a better learning. Indeed the network looks for weight factors for a proper 

transform the factors that fits data.  

 

 

 

 

 

Remark 

Hidden layers : higher order features 

or learned features 

Raw input: features of 

dimension d 

Output 
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Dropout 

 

Dropout is a regularization technique for neural network models (Srivastava, 

et al. , 2014).  This is a simple way to prevent neural networks from 

overfitting. 

 

Some key points: 
1) Use 20%-50%  dropout  

2) Dropout with larger network in general provides better performance, giving the 

model more of an opportunity to learn independent representations. 

3) Dropout can be used on visible (input) as well as hidden layers 

 

 

 

 

 

 

 

 

 

      Standard neural network                Neural network with dropout  
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A Simple Network 

Example 1: MNIST Database - Handwritten digits 
 

A simple sequential deep learning model for handwritten digits recognition 

using Keras and TensorFlow, 

                                           784 

                                                            512 

                                                                             0.2 

         Input                                                                             10 

 

                                                                                                                 Output 

 

 

        28×28 

tf.keras.layers.Flatten(input_shape=(28, 28) 

tf.keras.layers.Dense(512, activation=tf.nn.relu) 

tf.keras.layers.Dropout(0.2) 

tf.keras.layers.Dense(10, activation=tf.nn.softmax) 



24 

A Simple Network 

MNIST handwritten digits 
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A Simple Network 

Example 2: Pima Indians onset of diabetes dataset 
 

A simple sequential deep learning model for predicting handwritten digits 

using Keras, 

                                           8             8            12                                                

 

            Input                                                                               

                                                                                           1 

               
 

                                                Relu       ReLu     Sigmoid 

  

model.add(Dense(8, input_dim=8, activation='relu')) 

model.add(Dense(12, activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

𝒙𝟏

𝒙𝟖

  Output 
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A Simple Network 

Onset of Diabetes Dataset 
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A Simple Network 

Onset of Diabetes Dataset 

 


