
 Lecture 4 – Linear model 

University of Toronto, Department of Earth Sciences,   

 

Hosein Shahnas 

 

1 

ESS2222 



2 

Outline 
 

 Logistic Regression 

 Predicting Continuous Target Variables 

 Support Vector Machine (Some Details) 

 Nested Cross-Validation 

 KNN - Algorithm 

 

 



3 

Bias-Variance Trade-off  
 

𝑬𝑫 𝑬𝑿 (𝒈𝑫 𝒙  − 𝒇(𝒙))𝟐  = 𝑬𝑿 𝑬𝑫 (𝒈𝑫 𝒙  − 𝒈 (𝒙))𝟐  + 𝑬𝑿 (𝒈 𝒙 − 𝒇(𝒙))𝟐  

𝒈 (x) = 𝑬𝑫 𝒈𝑫 𝒙  ≈  
𝟏

𝒌
  𝒈𝑫

𝒌
𝒌 (x)                  var                                 bias 

       

          Cross-Validation 

     

 

 

 

 

 

          Nonlinearity  

 

 

 

 

 

 

 

L2-rgression (Ridge) 

𝑱′𝒓 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐

𝒊  + 
𝜆

2
  𝑤2

𝑖𝑖     

 

L1-rgression (Lasso) 

𝑱′𝒍 𝒘 =  
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐

𝒊  + 
𝜆

2
  𝑤𝑖𝑖  

0≤ 𝝀 < ∞ 

Review of Lecture 3 



4 

Perceptron Learning Algorithm 

Versus Pocket Algorithm  
 

PLA 
Pocket 

Z =  X.W  =   wi
𝑛
0 𝑥𝑖 = w0 x0 + w1 x1 + w2 x2 + … + wn xn  

 

PLA Pocket 

N = 1000 
N = 180 

Store the best output and change it only for better outputs. 

Suppose there exists small nonlinearity. 

In this problem convergence cannot be achieved  

by increasing the number of epochs  



5 

Logistic Regression 

Modeling Class Probabilities via Logistic Regression 

 
In order to overcome the convergence problem in Perceptron algorithm, we consider 

another simple yet more powerful algorithm for linear and binary classification 

problems. The method can be extended to multiclass classification via the One-vs.-

Rest (OvR). 

Note that, this is an algorithm for classification, not regression (despite the name). 

 

Definition:  

Odds for (or odds of, or odds in favour): Odds of event reflect the likelihood that the event 

will take place, while odds against reflect the likelihood that it will not.  

 

In gambling:  

The odds are the ratio of payoff to stake, and do not necessarily reflect exactly the 

probabilities’ 

 

𝑂𝑓 =  
𝑊

𝐿
=  

1

𝑂𝑎
,  𝑂𝑎 =  

𝑊

𝐿
= 

1

𝑂𝑓
,  𝑂𝑎  ∙  𝑂𝑎 = 1       W: winning, L: loosing  

 

𝑃 =  
𝑊

(𝑊+𝐿)
= 1 –q,    q= 

𝐿

(𝑊+𝐿)
= 1 –p,     P + q = 1  

 

 



6 

Logistic Regression 

 

𝑂𝑓 =  
𝑊

𝐿
=  

1

𝑂𝑎
,  𝑂𝑎 =  

𝐿

𝑊
= 

1

𝑂𝑓
,  𝑂𝑓  ∙  𝑂𝑎 = 1       Odds 

 

𝑝 =  
𝑊

(𝑊+𝐿)
= 1 –q,    q=  

𝐿

(𝑊+𝐿)
= 1 –p,     p + q = 1    Probabilities  

 

𝑂𝑓 =  
𝑝

𝑞
= 

𝑝

(1−𝑝)
 = 

(1−𝑞)

𝑞
,  𝑂𝑎 =  

𝑞

𝑝
=  

(1−𝑝)

𝑝
 = 

𝑞

(1−𝑞)
, 

 

Logistic Regression as a Probabilistic Model 

 

The odds ratio for an event: 𝑂𝑓 = 
𝑝

(1−𝑝)
  

 

The logit function is defend as: logit 𝑝 = 𝑙𝑜𝑔
𝑝

(1−𝑝)
  ,  𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔. 

 

p: (0 – 1)     logit(p): (-∞ −   ∞) 



7 

Logistic Regression 

The inverse function of logit function is logistic function: 

 

 
 

The inverse form of logit function is logistic function:    𝜙(𝑧) =  
1

1+ 𝑒−𝑧  

z: (-∞ −   ∞)     𝜙 𝑧 :  (0 – 1)  

 

𝑦 = 𝑙𝑜𝑔
𝑥

1−𝑥
,  yx   xy       𝑥 = 𝑙𝑜𝑔

𝑦

1−𝑦
  

     𝑒𝑥 =
𝑦

1−𝑦
   y=  

1

1+ 𝑒−𝑥  

 

 

 

 

 

 

 

 
        logit(p) 



8 

Logistic function, sometimes simply abbreviated as sigmoid function due to 

its characteristic S-shape. 

 

z =  x.w =  wi
𝑛
0 𝑥𝑖 = w0 x0 + w1 x1 + … + wm xm       Net input 

 

How do we interpret the sigmoid function? 

 

The output of the sigmoid function is interpreted as the probability of particular 

sample belonging to y, given x (i.e., class 1, given  features x parameterized by the 

weights w): 

 

𝜙(𝑧) = P(y=1|x,w),  𝜙(𝑧) =  
1

1+ 𝑒−𝑧,  

 

𝑦 =  
1       𝑖𝑓  F(z) ≥ 0.5

0             𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
     or    𝑦 =  

1               𝑖𝑓 z ≥ 0

0           𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

 

Logistic Regression 



9 

Logistic Regression – The Cost Function  

In Adeline algorithm we defined sum-squared-error cost function: 

𝑱 𝒘 = 
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊  

 

In order to learn the weights w we minimized this function.  

 

 

 

Bernoulli Distribution 

 

P(n) =  
1 − 𝑝       𝑓𝑜𝑟 𝑛 = 0
𝑝             𝑓𝑜𝑟 𝑛 = 1

   

    

P(n) = pn (1-p)(1-n)                         

 

 

 

 

 

 

 



10 

 

To derive the cost function for logistic regression, we define the likelihood function 

L, assuming that the individual samples in our dataset are independent of one 

another: 

L 𝒘 = 𝑷 𝒚 𝒙;𝒘 =   𝑷 𝒚𝒊, 𝒙𝒊; 𝒘𝒏
𝒊=𝟏  =  𝝓(𝒛𝒊)

𝒚𝒊
𝒏
𝒊=𝟏   𝟏 − 𝝓(𝒛𝒊)

(𝟏−𝒚𝒊)
 

 

It is easy to work with (natural) log of this function for two reasons:  

a) Applying the log function reduces the potential for numerical underflow, which 

can occur if the likelihoods are very small,  

b) We can convert the product of factors into a summation of factors, which makes 

it easier to obtain the derivative of this function.  

𝒍 𝒘 = 𝒍𝒐𝒈 𝑳 𝒘 =  𝒚𝒊

𝒏

𝒊

 𝒍𝒐𝒈 𝝓(𝒛𝒊) + 𝟏 − 𝒚𝒊   𝒍𝒐𝒈 𝟏 − 𝝓(𝒛𝒊)  

 

 

Logistic Regression – The Cost Function  



11 

We can use an optimization algorithm such as gradient ascent to maximize 

this log-likelihood function. Alternatively, we can use gradient decent to 

minimize the following cost function: 

 

 𝑱 𝒘 = − 𝒍(𝒘) =   − 𝒚𝒊𝒏
𝒊  𝒍𝒐𝒈 𝝓(𝒛𝒊) − 𝟏 − 𝒚𝒊   𝒍𝒐𝒈 𝟏 − 𝝓(𝒛𝒊)  

 

To get a better grasp on this cost function, let's calculate for one single-

sample instance: 

 

𝑱 𝒘 = − 𝒚 𝒍𝒐𝒈 𝝓 𝒛 − 𝟏 − 𝒚   𝒍𝒐𝒈 𝟏 − 𝝓(𝒛)  

 

It can be seen that the first term becomes zero if y = 0 and the second term 

becomes zero if y = 1, respectively: 

 

 

𝑱 𝝓 𝒛 , 𝒚:𝒘 = =  
−𝒍𝒐𝒈 𝝓 𝒛      𝑖𝑓  y = 1

−𝒍𝒐𝒈 𝟏 − 𝝓(𝒛)    𝑖𝑓 𝑦 = 0
 

Logistic Regression – The Cost Function  



12 

Logistic Regression – The Cost Function  

𝑱 𝝓 𝒛 , 𝒚:𝒘 = =  
−𝒍𝒐𝒈 𝝓 𝒛      𝑖𝑓  y = 1

−𝒍𝒐𝒈 𝟏 − 𝝓(𝒛)    𝑖𝑓 𝑦 = 0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that J  0 (blue line) if the sample is correctly predicted as class 1. 

Similarly, J  0 (green dashed line) if the sample is correctly predicted as 

class 0. However, for wrong prediction J  ∞. To minimize J, the wrong 

predictions should be penalized with an increasingly larger cost.  



13 

We can show that the weight update in logistic regression via gradient 

descent is the same we obtained in  Adaline: 

 

 

𝐽 𝑤 = − 𝑦 𝑙𝑜𝑔 𝜙 𝑧 − 1 − 𝑦   𝑙𝑜𝑔 1 − 𝜙(𝑧)  

 

 
𝝏𝑱

𝝏𝒘𝒋
=

𝝏𝑱

𝝏𝝓(𝒛)

𝝏𝝓(𝒛)

𝝏𝒘𝒋
= − 𝒚

𝟏

𝝓 𝒛
− 𝟏 − 𝒚

𝟏

(𝟏 − 𝝓 𝒛 )

𝝏𝝓(𝒛)

𝝏𝒘𝒋
 

 
𝝏𝝓(𝒛)

𝝏𝒘𝒋
 = 

𝝏𝝓(𝒛)

𝝏𝒛
 
𝝏𝒛 

𝝏𝒘𝒋
,      for   𝝓 𝒛 =  

𝟏

𝟏+ 𝒆−𝒛   

 
𝝏𝝓(𝒛)

𝝏𝒘𝒋
 = 

𝒆−𝒛

(𝟏−𝒆−𝒛)𝟐
  

𝝏𝒛 

𝝏𝒘𝒋
= 

𝟏

𝟏+ 𝒆−𝒛  𝟏 −
𝟏

𝟏+ 𝒆−𝒛

𝝏𝒛 

𝝏𝒘𝒋
=  𝝓 𝒛 (𝟏 − 𝝓 𝒛 ) 

𝝏𝒛 

𝝏𝒘𝒋
 

 
𝝏𝒛 

𝝏𝒘𝒋
 = 𝒙𝒋 

 
𝝏𝑱

𝝏𝒘𝒋
= − 𝒚

𝟏

𝝓 𝒛
− 𝟏 − 𝒚

𝟏

𝟏−𝝓 𝒛
𝝓 𝒛  (𝟏 − 𝝓 𝒛 )  𝒙𝒋 

Logistic Regression – The Cost Function  



14 

 
𝝏𝑱

𝝏𝒘𝒋
= − 𝒚

𝟏

𝝓 𝒛
− 𝟏 − 𝒚

𝟏

𝟏−𝝓 𝒛
𝝓 𝒛  (𝟏 − 𝝓 𝒛 )  𝒙𝒋 

 

 = −  𝐲 (𝟏 − 𝝓 𝒛 )  𝒙𝒋 +( 𝟏 − 𝒚  𝝓 𝒛   𝒙𝒋 = −   (𝒚 − 𝝓 𝒛 )  𝒙𝒋 

 

𝚫𝒘𝒋 = − 𝜼 
𝝏𝑱

𝝏𝒘𝒋
 = 𝜼  𝒚𝒊 − 𝝓(𝒛𝒊)𝒊 𝒙𝒊

j 

 

 

Using sklearn: 

Example -  

from sklearn.linear_model import LogisticRegression 

Log_reg = LogisticRegression(C, random_state) 

Log_reg.fit(X_train, y_train) 

Log_reg.predict_proba(X_test[i]) 

 
>> 0.000, 0.063, 0.937   The probability that the test sample belongs to class 0, 1, and 2 are respectively 

0.000, 0.063, and 0.937. 
 

Log_reg.predict(X_test[i]) will return class 2 for this example, 

 

Logistic Regression – The Cost Function  



15 

https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html 

 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression 

 

Logistic Regression 

Iris Example 

https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


16 

Predicting Continuous Target Variables 

z(x) =  𝑤𝑖𝑥𝑖
𝑚
𝑖=0  = wT x    

𝝓(𝒛)≡ h(x) 

 
      𝝓 𝒛 = 𝒔𝒊𝒈𝒏(𝒛)                            𝝓 𝒛 = 𝒛  + Quantizer                            𝝓 𝒛 =

1

1+ 𝑒−𝑧 , + Quantizer 

     Perceptron                                                Linear regression                                       Logistic regression 

                                                                             (Adeline) 

 

 

 

 

 

           Discrete labels                                    Discrete labels                                           Discrete labels 

 

 

 

                                                                 𝝓 𝒛 = 𝒛  + Quantizer 

                                                                      Linear regression  

 

 

 

                                                                                                                                    Continuous outputs 

 

 

                                                          



17 

Examples: 

Classification: Credit approval (good/bad) 

(xi, yi)    yi ∈   [0, 1] 

 

Regression: Credit line (dollar amount) 

(xi, yi)    yi ∈ ℝ 

 

The error: 
 In classification problem we just count the number of wrong prediction (the 

frequency) compared to the total number of estimations. 

Ein(h) = 
𝟏

𝑵
  𝒉 𝒙𝒏 ≠ 𝒇 𝒙𝒏

𝑵
𝟏  

 

 In regression problem: 

 

Ein(h) = 
𝟏

𝑵
  𝒉 𝒙𝒏 − 𝒚𝒏

𝟐 𝑵
𝒏=𝟏  

 

Ein(w) = ≡
𝟏

𝑵
  𝒘𝑻𝒙𝒏 − 𝒚𝒏

𝟐
  𝑵

𝒏=𝟏  ≡ 
𝟏

𝑵
 𝑿𝒘 − 𝒚 𝟐     in-sample error 

 

Linear Regression 
 



18 

Linear Regression 

Minimizing E(h)in 

 
 

Ein(w) = ≡
𝟏

𝑵
  𝒘𝑻𝒙𝒏 − 𝒚𝒏

𝟐
  𝑵

𝒏=𝟏  ≡ 
𝟏

𝑵
 𝑿𝒘 − 𝒚 𝟐 

  

𝛁𝒘Ein(w) =
𝟐

𝑵
𝑿𝑻(𝑿𝒘 − 𝒚) = 0                           𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒚 

 
(𝑿𝑻𝑿)−𝟏 𝑿𝑻𝑿𝒘 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚                           𝒘 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 

 

 𝒘 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚    

 

𝒘 = 𝑿†𝒚                       where   𝑿† = (𝑿𝑻𝑿)−𝟏𝑿𝑻       pseudo-inverse 



19 

𝑿† = (𝑿𝑻𝑿)−𝟏𝑿𝑻 

 

𝑥𝑖 =  𝑥𝑖0, 𝑥𝑖1, . .           𝑥𝑖𝑚  

w= 𝑤0, 𝑤1,         . .           𝑤𝑚  

 

𝑋 =

𝑥10, 𝑥11, . .           𝑥1𝑚

𝑥20, 𝑥21, . .           𝑥2𝑚

𝑥𝑖0, 𝑥𝑖1, . .           𝑥𝑖𝑚

𝑥𝑁0, 𝑥𝑁1, . .           𝑥𝑁𝑚

           𝑋𝑇 =

𝑥10, 𝑥20, . .           𝑥𝑁0

𝑥11, 𝑥21, . .           𝑥𝑁1

𝑥1𝑘, 𝑥2𝑘 , . .           𝑥𝑁𝑘

𝑥1𝑚, 𝑥2𝑚, . .           𝑥𝑁𝑚

 

 

𝑤𝑋𝑇 =  𝑦1, 𝑦𝑁,        . .           𝑦𝑁  

 

𝑋𝑤𝑇= 

𝑦1

𝑦2

𝑦𝑁

 

Linear Regression 

Minimizing E(h)in 



20 

Linear Regression 

Minimizing E(h)in 

𝑿† = (𝑿𝑻𝑿)−𝟏𝑿𝑻 

 

 

𝑿† =  

 

                                 

 

                       

 
(m+𝟏) × 𝑵 (𝒎 + 𝟏) × 𝑵 

𝑵: Number of samples 

m: Number of features 

-1 

𝑵 ×(m+𝟏)      

 

  v1 

            

      h

     
  

                 
  = 

              
 

           

    v1  

            h                    h2                   h2 



21 

Linear Regression 

Minimizing E(h)in 

 
 
𝑿† = (𝑿𝑻𝑿)−𝟏𝑿𝑻 

 

 

𝑿† =                                     

 

                

 

(m+1)× 𝑵 (𝒎 + 𝟏) × (𝒎 + 𝟏) 

𝑵: Number of samples 

m: Number of features 

-1 

(𝒎 + 𝟏) × 𝑵 



22 

Linear Regression 

Minimizing E(h)in 

 
 

Method: 
 
 Construct matrix X and vector y  sing data  (X1,  y1), (X2, y2), . . . . ., (Xm, ym)  
 

𝑿† =            m+1   𝑦 =  

𝑦1

𝑦2

…

𝑦𝑁

                w = 

𝑤0

𝑤1

𝑤𝑚

  

                  N 

 

 Compute                  (𝑿𝑻𝑿)−𝟏𝑿𝑻 

 

 Return                         𝒘 = 𝑿†𝒚  

 

 



23 

Linear Regression For Classification 
 

 In linear regression learning the model learn a real valued function    

y = f(x)   ∈  R 

 

 In classification learning the binary-valued functions are also real 

valued  y = ±𝟏 ∈  R 

 

 We can use linear regression to obtain w (wT x = y) 

 

 Sign(wT xj)  likely agrees with yj = ± 1 

 

 The initial values for w obtained by the linear regression method can be 

good starting point for classification which minimizes the computation 

time (compared to the case we start from random values for w). 

 



24 

Linear Regression For Classification 
 

Start with linear regression                                 Continue with classification 



25 

Maximum margin classification with support vector machines 

  
The objective in SVM-algorithm is to maximize the margin. 

 

Margin: The distance between the separating hyperplane (decision boundary) and the 

training samples that are closest to this hyperplane, which are the so-called support 

vectors.   

 

Models with decision boundaries with large margins tend to have a lower generalization 

error whereas models with small margins are more prone to overfitting. 

 

Example: 

 

w0 + wT xpos = 1 

w0 + wT xneg = -1 

wT (xpos - xneg) = 2 

 
wT (𝑋𝑝𝑜𝑠 − 𝑋𝑛𝑒𝑔)

𝑤
 = 

2
𝑤

  

 

𝑤  =  𝑤𝑗
𝑚
𝑗=1

2 

Support Vector Machine 



26 

wT (𝑋𝑝𝑜𝑠 − 𝑋𝑛𝑒𝑔)
𝑤

 margin: distance between positive and negative hyperplanes  

 

The objective of SVM algorithm is maximization of this margin by maximizing of 
2
𝑤

 

under the constraint that the samples are classified correctly:  

 

w0 + wT xi ≥ 1      if yi  = 1          (1) 

w0 + wT xi ≤ - 1    if yi  = - 1        (2) 

         m 

yi ( w0 + wT xi )≥ 1   ∀ 𝑖              (3) compact form            b1 

 

                                 b2 

Maximizing 
2
𝑤

  Minimizing 
1
2
 𝑤  

 

So 
1
2
 𝑤  is minimized with the condition 

of   yi ( w0 + wT xi )≥ 1   ∀ 𝑖  using quadratic                                 d = 
𝑏1 −𝑏2

1+𝑚2  

Programming. 

Support Vector Machine 



27 

Dealing with the Nonlinearly Separable Case Using Slack Variables 

Introduced by Vladimir Vapnik in 1995 

 

By introducing the positive slack variable, the linear constraints are relaxed for 

nonlinearly separable data to allow convergence of the optimization in the 

presence of misclassifications under the appropriate cost penalization.  

 

 wT xi ≥ 1      if yi  = 1 - 𝜉𝑖 

 wT xi ≤ - 1    if yi  = 1 + 𝜉𝑖 

 

The new objective to be minimized is: 

 
1
2
 𝑤  + C  𝜉𝑖

𝒊  

 

C(penalty strength): Controls the penalty for misclassification. 

 

Increasing the value of C increases the bias and lowers the  

variance of the model. If the penalty is small the number of  

training points that define the separating hyperplane is large. 

 

Soft-margin Classification 



28 

Nested Cross-Validation 

Cross-Validation (CV):  
1- Train a model on a subset of data, and validate the trained model on the remaining data 

(validation data). 

2- Repeat this for all splits and average the validation error. This gives an estimate of the 

generalization performance of the model. Chose the parameter leading to the best score. 

 

Model selection in CV uses the same data to tune model parameters and evaluate model 

performance. Information may thus “leak” into the model and overfit the data. 

 

Choosing the parameters that maximize the scores in non-nested CV biases the model to the 

dataset, yielding an overly-optimistic score. 

 

 

 

 

 

 

 

 

 

 

 

                                                                 5-fold validation  

 

 20% 

 

 20%   20%   20%   20% 

Training data 

 

Training data Training data Training data Validation 

Training data 

 

Training data Training data Validation Training data 

Training data 

 

Training data Validation Training data Training data 

Training data 

 

Validation Training data Training data Training data 

Validation 

 

Training data Training data Training data Training data 



29 

Nested Cross-Validation 

 

 

         Testing - Generalization               Outer loop - Testing 

 

                                                     Inner loop – Validating  

 

             Validation – Parameter tuning  

 

 

 

 

 

 

 

 

 

 
                      Training set (outer resampling) 

                      Testing set (outer resampling) 

                      Training set (inner resampling) 

                      Testing set (inner resampling) 



30 

Nested Cross-Validation 

Nested Cross-Validation:  
1- The hyper-parameter tuning is carried out in the inner loop. 

2- In the outer loop the generalization error of the underlying layer is estimated. The inner 

loop is responsible for model selection / hyper-parameter tuning., while the outer loop is for 

error estimation (test set). 

 
In sklearn the hyper-parameters are turned by GridSearchCV in the inner loop. In the outer 

loop generalization error is estimated by averaging test set scores (using cross_val_score) 

over several dataset splits 

 

 

 

 

 

 

 

 

 

 

 

Non-nested and nested cross-validation strategies on a classifier of the iris data set. 
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html 

 

https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html


31 

K-Nearest Neighbours (KNN) Algorithm 

K-Nearest Neighbours – A Lazy Learning Algorithm 

 
It is called lazy because it doesn't learn a discriminative function from the training data but 

memorizes the training dataset instead. 

  

Steps: 
1. Choose the number of k and a distance metric. 

2. Find the k nearest neighbours of the sample to be classified. 

3. Assign the class label by majority vote. 

𝑑 

The right choice of k is crucial to find a good balance 

 between over- and underfitting. 

 

 

                                             Minkowski distance 

 



32 

K-Nearest Neighbours (KNN) Algorithm 

Iris Example 

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py 

 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier 

 

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html


33 

K-Nearest Neighbours (KNN) Algorithm 

Iris Example 

  

 

 

 

 

 

 

 

 

 

 
 

 

                    

 

 

 

Sklearn: 

clf = neighbors.KNeighborsClassifier(n_neighbors, weights=distance, p=2, metric='minkowski') 

clf.fit(X, y) 

 


