ESS2222

Lecture 2 - Feasibility of Learning

Hosein Shahnas

University of Toronto, Department of Earth Sciences,

Review of Lecture 1

Machine learning: Learning from data
Criteria: Data \checkmark, pattern \checkmark, no formula \checkmark


```
f: X }->\textrm{y
g: X }->\textrm{y
\longrightarrow}g\approx
```


Perceptron:
$\Phi(z)=\operatorname{sign}(z)=\left\{\begin{array}{l}1, \\ -1, \\ - \text { otherwise }\end{array} \quad \hat{y}=\Phi(z)\right.$
Adeline:
$\Phi(\mathrm{z})=\mathrm{z} \quad \hat{y}=\left\{\begin{array}{cc}1, & \Phi(\mathrm{z})>0 \\ -1, & \text { otherwise }\end{array}\right.$
$J(w)=\frac{1}{2} \sum_{i}\left(y^{i}-\phi\left(z^{i}\right)\right)^{2}$

1) Supervised learning
2) Unsupervised learning
3) Reinforcement learning
A) Classification Problem
B) Regression Problem

Feasibility of Learning - Outline

- Probabilistic Aspects of Learning
\square Hoeffding's Inequality
Generalization of Hoeffding's Inequality
\square Permutation \& Scaling
\square Stochastic gradient decent
Neuron

Is Learning Feasible?

Can we learn from a finite data set (samples) and generalize it (trough the mapping function) to the outside world?

The learned function (g)works on the sample set. How is the function outside?

The answer is the main subject of this lecture.

A Probabilistic Situation

An Experiment

Consider a bin with green and red marbles: Pick \mathbf{N} marbles independently (one by one).

Assume the fraction of the red marbles in the bin is μ and the size of bin is infinite.

Then:
$P($ picking a red marble $)=\mu$
$\mathbf{P}($ picking a green marble $)=1-\mu$
$\mu=$ unknown (for us) and will remain unknown.

A Probabilistic Situation

An Experiment

How v is related to μ ?
Can we say anything about μ having v ?

Bin

$$
\begin{gathered}
\mu=\text { Probability } \\
\text { of red marbles }
\end{gathered}
$$

A Probabilistic Situation

An Experiment

How v is related to μ ?
Can we say anything about μ having v ?

No
Because sample can be mostly green while bin is mostly red.

Bin

$$
\begin{aligned}
& \mu=\text { Probability } \\
& \text { of red marbles }
\end{aligned}
$$

A Probabilistic Situation

An Experiment

How v is related to μ ?
Can we say anything about μ having v ?

No
Because sample can be mostly green while bin is mostly red.

And yes
Because if the sample is large enough, sample frequency v is likely close to bin probability μ.

Bin

Sample (N)
-०००००००००
$v=$ fraction of red marbles
$\mu=$ Probability of red marbles

Distinction between two answers: Possible versus probable

A Probabilistic Situation What does v say about μ ?

What does v say about $\boldsymbol{\mu}$?

For a big sample (large \mathbf{N}) \boldsymbol{v} is probably close to $\boldsymbol{\mu}$ (within $\boldsymbol{\epsilon}$).
Mathematically:
$\mathbf{P}[\underbrace{|\nu-\mu|>\epsilon}_{\text {bad event }}] \leq 2 e^{-2 \epsilon^{2} N} \quad$ Hoeffding's inequality

Bound does not depend on $\boldsymbol{\mu}$.

A Probabilistic Situation What does v say about μ ?

What does v say about $\boldsymbol{\mu}$?

For a big sample (large \mathbf{N}) \boldsymbol{v} is probably close to $\boldsymbol{\mu}$ (within $\boldsymbol{\epsilon}$).
Mathematically:
$\mathbf{P}[\underbrace{|\nu-\mu|>\epsilon}_{\text {bad event }}] \leq 2 e^{-2 \epsilon^{2} N} \quad$ Hoeffding's inequality

As the number of samples increases the probability of bad event decreases: $\mathbf{P} \longrightarrow \mathbf{0}$

However, as $\epsilon \longrightarrow \mathbf{0}, \quad \mathbf{P} \longrightarrow \mathbf{2}$

A Probabilistic Situation What does v say about μ ?

$\mathbf{P}[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N} \quad \forall \epsilon, \mathbf{N} \quad$ Hoeffding's inequality
\square So the statement " $\mu=\boldsymbol{v}$ " is probably approximately correct (PAC).
Despite P depends on μ, the bound $\left(2 e^{-2 \epsilon^{2} N}\right)$ does not, which is good because μ is unknown.
\square Hoeffding's inequality dictates that in order to have lower tolerance (ϵ) we need large number of samples (\mathbf{N}).
\square Note that the inequality says that: $v \approx \mu$, because v is affected by μ (μ : the cuase, v the effect), however, we infer $\mu \approx v$ due to the symmetry in the Hoeffding's inequality.

Learning

What are unknowns?

Bin: The unknown quantity is μ Learning: The unknown is $f: x \rightarrow y$

Each marble is a point in \mathbf{X} space: $\mathrm{x} \in X$

X

Learning

What are unknowns?

Bin: The unknown quantity is μ Learning: The unknown is $\mathbf{f}: \mathbf{x} \rightarrow \mathbf{y}$

Each marble is a point in \mathbf{X} space: $\mathrm{x} \in \boldsymbol{X}$

Try a single (particular) hypothesis \boldsymbol{h} (an approx. to f):

Hypothesis predicts correctly

$$
\boldsymbol{h}(x)=\boldsymbol{f}(x)
$$ Hypothesis predicts wrong $\quad \boldsymbol{h}(x) \neq \boldsymbol{f}(x)$

Note that $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$ does not necessarily mean $h=f$

Generalization

More hypothesis:

\square Learning is not trying a single hypothesis h. Trying a single hypothesis is just a verification.
\square Before generalizing v to μ, we have to search for the set of hypothesis and find the best hypothesis.

h_{k}

Generalization

More hypothesis:

Learning is not trying a single hypothesis h. Trying a single hypothesis is just a verification.
Before generalizing v to μ, we have to search for the set of hypothesis and find the best hypothesis.

Generalization

- Red marble
- Green marble
μ : unknown (exact value)

- Red marble
- Green marble
μ : unknown (exact value)

- Wrong prediction
- Correct prediction

Try to minimize the number of wrong predictions by search
$\mu \approx \nu$ with the bounded probability P

Errors

ν and μ depend on h. We introduce the error rates corresponding to v and μ.

$$
\begin{aligned}
& v \text { (in-sample) } \\
& \mu(\text { out-sample })
\end{aligned} \longrightarrow E_{\text {in }}(h)
$$

Then the Hoeffding's inequality becomes:
$\mathbf{P}[|v-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}$ $\mathrm{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}$
$\boldsymbol{E}_{\text {out }}(\boldsymbol{h})$

Errors

ν and μ depend on h. We introduce the error rates corresponding to v and μ.

$$
\begin{aligned}
& v \text { (in-sample) } \longrightarrow E_{\text {in }}(h) \\
& \mu(\text { out-sample })
\end{aligned} E_{\text {out }}(h)
$$

Then the Hoeffding's inequality becomes:

$$
\begin{aligned}
& \mathbf{P}[|v-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N} \\
& \quad \mathrm{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} N}
\end{aligned}
$$

The probability that in-sample performance deviates from out-sample performance by more than ϵ, is less than $2 e^{-2 \epsilon^{2} N}$.
$E_{i n}(h)=\frac{1}{N} \sum_{1}^{N} \llbracket h\left(x_{n}\right) \neq f\left(x_{n}\right) \rrbracket \quad$ for classification prob. $\llbracket h\left(x_{n}\right) \neq f\left(x_{n}\right) \rrbracket=1$ if $h(x) \neq f(x), \quad=0$ otherwise
$\boldsymbol{E}_{\text {out }}(\boldsymbol{h})$

$E_{i n}(h)$ $\boldsymbol{E}_{\text {out }}(\boldsymbol{h})=\boldsymbol{P} \llbracket \boldsymbol{h}(\boldsymbol{x}) \neq \boldsymbol{f}(\boldsymbol{x}) \rrbracket$

A Problem!

Hoeffding's inequality doesn't apply to multiple bin.

Consider coin analogy
Prob. 1: If you toss a fair coin 10 times, what is the probability that you get 10 heads?
Sol.: $P=\frac{\# \text { of events }}{\text { total } \# \text { of } \text { events }}=\frac{1}{2^{10}}$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{k})=\binom{n}{k} p^{k} q^{n-k}, \quad C_{k}^{n}=\binom{n}{k}=\frac{n!}{(n-k)!k!}=\frac{P_{k}^{n}}{k!}, \\
& \mathrm{n}=10, \text { \# of flips } \quad \text { where } P_{k}^{n}=\frac{n!}{(n-k)!}(k \text {-permutationsofn }) \\
& \mathrm{k}=10, \text { \# of heads } \\
& \mathrm{p}=1 / 2 . \quad \text { Prob. of success } \\
& \mathrm{q}=1-\mathrm{p}=1 / 2, \text { Prob. of failure } \\
& \mathrm{P}(10)=\frac{1}{2^{10}} \approx 0.001 \rightarrow P(10) \approx 0.1 \%
\end{aligned}
$$

A	B		
	A	B	
		A	B
A			B
A		B	
	A		B
B	A		
	B	A	
		B	A
B			A
B		A	
	B		A
P_{2}^{4}			

A Problem!

Hoeffding's inequality doesn't apply to multiple bin.
Consider coin analogy
Prob. 2: If you toss 1000 fair coins 10 times each, what is the probability that some coin gets 10 heads?

Sol.: Two steps:

$$
P_{1}=\binom{10}{0}\left(\frac{1}{2}\right)^{10}\left(1-\frac{1}{2}\right)^{0}=\frac{1}{2^{10}}, \quad P_{2}=\binom{1000}{1}\left(P_{1}\right)^{1}\left(1-P_{1}\right)^{999}
$$

$P_{2}=\binom{1000}{1}\left(\frac{1}{2^{10}}\right)^{1}\left(1-\frac{1}{2^{10}}\right)^{999} \approx 0.368, \quad$ exactly 1 out of 1000 coins shows up 10 heads on 10 tosses

$$
P=1-\underbrace{\binom{1000}{0}\left(\frac{1}{2^{10}}\right)^{0}\left(1-\frac{1}{2^{10}}\right)^{1000} \approx 0.624, \quad \begin{array}{l}
\text { at least } 1 \text { out of } 1000 \text { coins } \\
\text { shows up } 10 \text { heads on } 10 \text { tosses }
\end{array}}
$$

The Analogy

Now suppose $\mu=0.5$ (i.e. half of marbles green and half of them red). The same probability we have in flipping a fair coin.

This is not reflecting the reality (the real probability),

A Simple Solution

Getting 10 heads in tossing a fair coin 10 times does not reflect the reality. But if we try too hard, something bad will happen somewhere.

In mathematical language: Hoeffding's inequality applies for a single experiment (not multiple).
$P(g)$ for the final hypothesis is less than any $P(h)$ and therefore less than the union of them:
$\mathrm{P}\left[\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right] \leq \mathrm{P}\left[\left|E_{\text {in }}\left(h_{1}\right)-E_{\text {out }}\left(h_{1}\right)\right|>\epsilon\right.$
or
$\left|E_{\text {in }}\left(h_{2}\right)-E_{\text {out }}\left(h_{2}\right)\right|>\epsilon$
g : best of h

$$
\begin{aligned}
& \text { or } \\
& \left.\left|E_{\text {in }}\left(h_{k}\right)-E_{\text {out }}\left(h_{k}\right)\right|>\epsilon\right] \\
& \leq \sum_{m=1}^{k} \mathrm{P}\left[\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right] \\
& \text { Union bound }
\end{aligned}
$$

A Simple Solution

$$
\begin{gathered}
\mathrm{P}\left[\left|E_{\text {in }}(\mathrm{g})-E_{\text {out }}(\mathrm{g})\right|>\epsilon\right] \leq \sum_{m=1}^{k} \mathrm{P}\left[\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right] \\
\leq \sum_{m=1}^{k} 2 e^{-2 \epsilon^{2} N}
\end{gathered} \begin{aligned}
& \mathrm{P}\left[\left|E_{\text {in }}(\mathrm{g})-E_{\text {out }}(\mathrm{g})\right|>\epsilon\right] \leq 2 M e^{-2 \epsilon^{2} N}
\end{aligned}
$$

The factor M at the right had side of the Hoeffding's inequality increases the probability bound which is not good, however, as we will see later, the inequality can be improved.

Learning Diagram

Scaling for Optimal Performance

Feature scaling:

1) Min-max normalization: $\quad x^{\prime}=\frac{x-x_{\text {min }}}{x_{\max }-x_{\text {min }}}$
2) Mean normalization:

$$
x^{\prime}=\frac{x-\mu}{x_{\max }-x_{\min }}
$$

3) Normalization to a range $\left(\mathrm{r}_{\text {min }}, \mathrm{r}_{\max }\right) ; x^{\prime}=\frac{x-x_{\min }}{x_{\max }-x_{\min }}\left(r_{\max }-r_{\min }\right)+r_{\text {min }}$
4) Standardization: gives data the property of a standard normal distribution.
$x^{\prime}=\frac{x-\mu}{\sigma}, \mu: m e a n, \sigma:$ standard diviation
The set of new data $\left(\mathrm{X}^{\prime}\right)$ has zero mean and unit variance, but not bounded.

Stochastic Gradient Decent Method

1 - Gradient decent (GD) method ((Batch gradient descent):

$$
\mathbf{w}=\mathbf{w}+\Delta \boldsymbol{w}
$$

$\Delta w=-\eta \Delta J(w)$
$\Delta w j=-\eta \frac{\partial J}{\partial w_{j}}=\boldsymbol{\eta} \sum_{i}\left(\boldsymbol{y}^{i}-\boldsymbol{\phi}\left(\mathbf{z}^{i}\right)\right) \boldsymbol{x}_{\mathrm{j}}^{\boldsymbol{i}}$
Based on all samples
i: Sample index, j: Feature index

2 - Stochastic gradient decent (SGD) method (an approx. for GD for large data):
$\Delta \boldsymbol{w} \boldsymbol{j}=-\boldsymbol{\eta} \frac{\boldsymbol{J} \boldsymbol{J}}{\partial w_{j}}=\boldsymbol{\eta}\left(\boldsymbol{y}^{\boldsymbol{i}}-\boldsymbol{\phi}\left(\mathbf{z}^{i}\right)\right) \boldsymbol{x}_{\mathbf{j}}^{\boldsymbol{i}} \quad$ Based on random samples
η :Variable learning rate (decreasing with iteration)
In SGD a) the error is noisier than in GD (because $\Delta w^{\prime} s$ are based on single samples),
b) The convergence is faster than GD (more frequent updates), c) the local minima can be escaped faster which is good, d) to get accurate results the samples must be shuffled,

```
2Simultaneous permutation of class labels and features
3Hosein Shahnas
4'''
5import sys
6import os.path
7#from skLearn.preprocessing import scale
8import os
9import numpy as np
10#============================================================================= import data
11save_path = os.path.dirname(os.path.abspath(__file__))
12 print(save_path)
13
14name_of_file = 'Features'
15completeName = os.path.join(save_path, name_of_file+".dat")
16Feature_data = np.loadtxt(completeName)
1 7
18name_of_file = 'Classe_Labels'
19 completeName = os.path.join(save_path, name_of_file+".dat")
20 Target_data = np.loadtxt(completeName)
21
22print ('Feature_data.shape = ', Feature_data.shape)
23print ('Target_data.shape = ', Target_data.shape)
24
25np.unique(Target_data)
26print ('np.unique(Target_data) = ', np.unique(Target_data)) #Returns the sorted unique elements of an array.
27
28
29y_size = Target_data.size
# get the size of target array
30X_size = Feature_data.size # get the size of features array
31Feature_size = int(X_size/y_size) # get the number of features
32
33print ('y_size = ', y_size)
34print ('X_size = ', X_size)
35 print ('Feature_size = ', Feature_size)
36
```

```
38
-------=---=-----=--- shuffle data
40perm = np.random.permutation(Target_data.size)
# get the index numbers for random shuffle (permutation )
41 print ('perm = ', perm)
4 2
43Feature_data = Feature_data[perm] # based on perm shuffle features
44 Target_\overline{data = Target_data[perm] # based on perm shuffle targets}
45#=========================================================================== shuffle data
4 6
47 #============================================================================== write data
48name_of_file = 'Perm_Classe_Labels_Features'
49 completēName = os.path.join(save_path, name_of_file+".dat")
50file1 = open(completeName, "w")
51for i in range(0,Target_data.size):
52 file1.write("%5i %5i
53 for j in range(0,Feature_size):
54 file1.write(" %20.12e " % (Feature_data [i,j]))
55 file1.write(" \n " ) # go to the next line
56 file1.close();
57
58name_of_file = 'Perm_Classe_Labels'
59 completēName = os.path.join(save_path, name_of_file+".dat")
60file1 = open(completeName, "w")
61for i in range(0,Target_data.size):
6 2 ~ f i l e 1 . w r i t e ( " \% 5 i ~ \ n " ~ \% ~ ( T a r g e t \& d a t a ~ [ i ] ) ) ~
63file1.close();
64
65name_of_file = 'Perm_Features'
66 completēName = os.path.join(save_path, name_of_file+".dat")
67file1 = open(completeName, "w")
68for i in range(0,Target_data.size):
69 for j in range(0,Feature_size):
70 file1.write(" %20.12e " % ( Feature_data [i,j]))
71 file1.write(" \n " )
72file1.close();
73#================================================================================= write data
74
75#sys.exit('Program stopped here')
76
```

```
1''
2Scaling of features
3Hosein Shahnas
4'''
5import sys
6import os.path
7#from sklearn.preprocessing import scale
8from sklearn import preprocessing
9import os
10import numpy as np
11#============================================================================= import data
12
13 save_path = os.path.dirname(os.path.abspath(__file__))
14 print(save_path)
15
16name_of_file = 'Perm_Features'
17 completeName = os.path.join(save_path, name_of_file+".dat")
18Fearures = np.loadtxt(completeName)
19
20name_of_file = 'Perm_Classe_Labels'
21 completeName = os.path.join(save_path, name_of_file+".dat")
22Class_Labels = np.loadtxt(completeName)
23
24print ('Fearures.shape = ', Fearures.shape)
25print ('Class_Labels.shape = ', Class_Labels.shape)
26
27np.unique(Class_Labels)
28print ('np.unique(Class_Labels) = ', np.unique(Class_Labels)) #Returns the sorted unique elements of an array.
29y_size = Class_Labels.size
30X_size = Fearures.size
31Feature_size = int(X_size/y_size)
32#=========================================================================== import data
```


Scaling

```
33
```



```
35min_max_scaler = preprocessing.MinMaxScaler()
36Fearures_s = min_max_scaler.fit_transform(Fearures)
37 #=============================================================================== scale
38
39#============================================================================= write data
40name_of_file = 'Perm_Classe_Labels_Features_Scaled'
41 completeName = os.path.join(save_path, name_of_file+".dat")
42file1 = open(completeName, "w")
43for i in range(0,Class_Labels.size):
44 file1.write("%5i %5i " % (i, Class_Labels [i]))
45 for j in range(0,Feature_size):
46 file1.write(" %20.12e " % (Fearures_s [i,j]))
4 7 ~ f i l e 1 . w r i t e ( " ~ \ n ~ " ~ ) ~
48file1.close();
4 9
5 0
51name_of_file = 'Perm_Features_Scaled'
52 completeName = os.path.join(save_path, name_of_file+".dat")
53file1 = open(completeName, "w")
54for i in range(0,Class_Labels.size):
55 for j in range(0,Feature_size):
56 file1.write(" %20.12e " % ( Fearures_s [i,j]))
57 file1.write(" \n " )
58file1.close();
59#============================================================================= write data
6 0
61#sys.exit('Program stopped here')
6 2
```


Perceptron, Adaline-GD, Adaline-SGD Algorithms

```
1# Sebastian Raschka, 2015 (http://sebastianraschka.com)
2# Python Machine Learning - Code Examples
3#
4# Chapter 2 - Training Machine Learning Algorithms for Classification
5#
6# S. Raschka. Python Machine Learning. Packt Publishing Ltd., }2015
7# GitHub Repo: https://github.com/rasbt/python-machine-Learning-book
8#
9# License: MIT
10# https://github.com/rasbt/python-machine-Learning-book/blob/master/LICENSE.txt
11
12''' Iris Classification problem - Modified version'''
14import sys
15import numpy as np
16import pandas as pd
17import matplotlib.pyplot as plt
18 from matplotlib.colors import ListedColormap
19 #====================================================================
```


Perceptron, Adaline-GD, Adaline-SGD

Algorithms

```
20#-
21class Perceptron(object):
"""Perceptron classifier.
23
Parameters
eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    Attributes
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications (updates) in each epoch.
    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter
    def fit(self, X, y):
    """Fit training data.
        Parameters
        X : {array-like}, shape = [n_samples, n_features]
        Training vectors, where n_samples is the number of samples and
        n_features is the number of features.
        y : array-like, shape = [n_samples]
        Target values.
        Returns
        self : object
```

 """

Perceptron, Adaline-GD, Adaline-SGD Algorithms

```
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []
    for _ in range(self.n_iter):
        errors = 0
        for xi, target in zip(X, y):
        update = self.eta * (target - self.predict(xi))
        self.w_[1:] += update * xi
        self.w_[0] += update
        errors += int(update != 0.0)
        self.errors_.append(errors)
    return self
    def net_input(self, X):
    """Calculate net input"""
    return np.dot(X, self.w_[1:]) + self.w_[0]
    def predict(self, X):
    """Return class label after unit step"""
    return np.where(self.net_input(X) >= 0.0, 1, -1)
80
81#======================================================= import iris data from web source
82print(50 * '=')
83print('Section: Training a perceptron model on the Iris dataset')
84print(50 * '-')
85
86df = pd.read_csv('https://archive.ics.uci.edu/ml/'
87 'machine-learning-databases/iris/iris.data', header=None)
88print(df.tail())
89
90#========================================================== import iris data from web source
```


Algorithms

```
92* (rint(50 * '=')
94print('Plotting the Iris data')
95print(50 * '_')
96
97# select setosa and versicolor
98y = df.iloc[0:100, 4].values
99y = np.where(y == 'Iris-setosa', -1, 1)
100
101# extract sepal length and petal length
102X = df.iloc[0:100, [0, 2]].values
103#=============================================================== cunstruct arrays from raw data
104
105#=============================================================== scatter plot for Setosa and Versicolor iris
106# plot data
107 plt.scatter(X[:50, 0], X[:50, 1],
108 color='red', marker='o', label='setosa')
109plt.scatter(X[50:100, 0], X[50:100, 1],
110 color='blue', marker='x', label='versicolor')
1 1 1
112plt.xlabel('sepal length [cm]')
113plt.ylabel('petal length [cm]')
114plt.legend(loc='upper left')
1 1 5
116# plt.tight_layout()
117# plt.savefig('./images/02_06.png', dpi=300)
118plt.show()
119#================================================================== scatter plot for Setosa and Versicolor iris
```


Algorithms

```
121#=
122print(50 * '=')
123print('Training the perceptron model')
124 print(50 * '-')
125
126ppn = Perceptron(eta=0.1, n_iter=30)
127''
128ppn = Perceptron()
129ppn = Perceptron(eta=0.1, n_iter=5)
130'''
131ppn.fit(X, y)
132#========================================================================= Apply Perceptron Algorithm
133
134#======================================================================= error plot for Perceptron
135 print('len(ppn.errors_) = ', len(ppn.errors_))
136#plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
137
138plt.plot(range(1,31), ppn.errors_, marker='o')
139
140plt.xlabel('Epochs')
141plt.ylabel('Number of misclassifications')
142
143# plt.tight_layout()
144# plt.savefig('./perceptron_1.png', dpi=300)
145 plt.show()
146#================================================================= error plot for Perceptron
147
148#===================================================================== make the grid for decision plot
1 4 9 \text { resolution=0.02}
150x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
151x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
152xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
1 5 3 ~ n p . a r a n g e ( x 2 \_ m i n , ~ x 2 \& m a x , ~ r e s o l u t i o n ) ) ~
154 print('xx1.shape = ', xx1.shape)
155 xx11 = xx1.ravel()
156 print('xx11.shape = ', xx11.shape)
157 #=

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

J0
160print(50 * '=')
161print('A function for plotting decision regions')
162print(50 * '-')
1 6 3
164def plot_decision_regions(X, y, classifier, resolution=0.02):
165
166 \# setup marker generator and color map
167 markers = ('s', 'x', 'o', '^', 'v')
168 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
169 cmap = ListedColormap(colors[:len(np.unique(y))])
170 \# \# the decision surface
172 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
173 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
174 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
print('xx1.shape = ', xx1.shape)
print('xx2.shape = ', xx2.shape)
xx1[i,j]: the first feature at each grid point
xx2[i,j]: the second feature at each grid point
features = np.array([xx1.ravel(), xx2.ravel()]).T
print('xx1.ravel().shape = ', xx1.ravel().shape)
print('xx2.ravel().shape = ', xx2.ravel().shape)
print('features.shape = ', features.shape)
186 -!
187 features has a shape of (}n,m)\mathrm{ , where }n\mathrm{ is the number of smaples and m}\mathrm{ is the number of features

```

\section*{Perceptron, Adaline-GD, Adaline-SGD}

\section*{Algorithms}
```

 Z = classifier.predict(features)
 print('Z.shape1 = ', Z.shape)
 Z = Z.reshape(xx1.shape)
 print('Z.shape2 = ', Z.shape)
 plt.contourf(xx1, xx2, Z, alpha=0.1, cmap=cmap) # alpha: color level, cmap: color map
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())
 print('y.shape = , y.shape)
print('np.unique(y) = ', np.unique(y)) \# Returns the sorted unique elements of an array
print('np.unique(y).shape = ', np.unique(y).shape)
\#print('enumerate(np.unique(y)) = ', enumerate(-1,1)
\# plot class samples \# x=X[y ==cl, 0]: x-componentx for which y = cl(-1 or 1)
for idx, cl in enumerate(np.unique(y)): \# y=X[y == cl, 1]: y-componentx for which y = cl (-1 orting from idx = 0, cl takes the value of np.unique(y) members,

```

```

 alpha=0.8, c=cmap(idx), s=50, # s: size of the marker
 marker=markers[idx], label=cl) # markers from the List
 10'
211x0=X[y == -1, 0]
212print('x0 = ', x0)
213 print()
214x0=X[y == 1, 0]
215print('x0 = ', x0)
216print()
217x0=X[y == -1, 1]
218print('x0 = ', x0)
219print()
220x0=X[y == 1, 1]
221print('x0 = ' , x0)
222'
223\#\#=\#======\#=======\#== function for plotting decision region

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

224\#== plotting decision region for Perceptron
226plot_decision_regions(X, y, classifier=ppn) \# call for plot
227plt.xlabel('sepal length [cm]')
228plt.ylabel('petal length [cm]')
229plt.legend(loc='upper left')
230
231\# plt.tight_layout()
232\# plt.savefig('./perceptron_2.png', dpi=300)
233plt.show()
234 print ('=================================End of the Perceptron Algorithm')
235 print()
236 print()
237\#=== plotting decision region for Perceptron
238

```

\section*{Perceptron}


\section*{Perceptron, Adaline-GD, Adaline-SGD}

\section*{Algorithms}
```

240print(50 * '=')
241print('Implementing an adaptive linear neuron in Python (GD)')
242 print(50 * '-')
243
244
245 class AdalineGD(object):
246 """ADAptive LInear NEuron classifier.
247 Parameters
249
250 eta : float
2 5 1 ~ L e a r n i n g ~ r a t e ~ (b e t w e e n ~ 0 . 0 ~ a n d ~ 1 . 0) ~
252 n_iter : int
Passes over the training dataset.
254
255 Attributes
257 w_ : 1d-array
__ : 1d-array
cost_ : list
Sum-of-squares cost function value in each epoch.
def __init__(self, eta=0.01, n_iter=50):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

""" Fit training data.
Parameters
X : {array-like}, shape = [n_samples, n_features]
Training vectors, where \overline{n}_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
self : object
"""
self.w_ np.zeros(1 + X.shape[1]) \# dimension of w array = number of features + 1
self.cost_ = []
for i in range(self.n_iter):
output = self.net_input(X)
errors = (y - output)
self.w_[1:] += self.eta * X.T.dot(errors)
self.w_[0] += self.eta * errors.sum()
cost = (errors**2).sum() / 2.0
self.cost_.append(cost)
return self

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
"""Compute linear activation"""
return self.net_input(X)
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.activation(X) >= 0.0, 1, -1)
07\#== adaline gradient descent (GD) algorithm
308
309fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) \# figure with sub-plots (one row, two columns)
310
312ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)
313ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
314ax[0].set_xlabel('Epochs')
315ax[0].set_ylabel('log(Sum-squared-error)')
316ax[0].set_title('Adaline - Learning rate 0.01')

```

```

318
319\#== call Adaline-GD Learning algorithm with small eta
320ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)
321ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
322ax[1].set_xlabel('Epochs')
323ax[1].set_ylabel('Sum-squared-error')
324ax[1].set_title('Adaline - Learning rate 0.0001')
325\#=mall Adaline-GD learning algorithm with small eta
326
327 \#=== plot the errors for large and small eta(Learning rate)
328\# plt.tight_layout() Adaline-GD
329\# plt.savefig('./adaline_1.png', dpi=300)
330plt.show() \# show the figure
31\#== plot the errors for Large and small eta(learning rate,

```

\section*{Algorithms}
```

334 print('standardize features')
M35X_std = np.copy(X) \# copies X in X_std
338\#=====\#=== scale the data using standardization
3 3 9
Main using Adaline-GD
341 ada = AdalineGD(n_iter=15, eta=0.01)
342ada.fit(X_std, y)
343\#== train using Adaline-GD
344
345 \#
346plot_decision_regions(X_std, y, classifier=ada)
347plt.title('Adaline - Gradient Descent')
348plt.xlabel('sepal length [standardized]')
349plt.ylabel('petal length [standardized]')
350 plt.legend(loc='upper left')
351\# plt.tight_layout()
352\# plt.savefig('./adaline_2.png', dpi=300)
353plt.show()
355 plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
356plt.xlabel('Epochs')
357plt.ylabel('Sum-squared-error')
359\#\# plt.tight_layout()
360\# plt.savefig('./adaline_3.png', dpi=300)
361plt.show()
362
363print(' '================================End of the Adaline-GD Algorithm')
364 print()
365 print()

```


\section*{Adaline-GD}





\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

368print(50 * '=')
369print('Large scale machine learning and stochastic gradient descent (SGD)')
370print(50 * '-')
371
372class AdalineSGD(object):
373 """ADAptive LInear NEuron classifier.
374
375 Parameters
376 ------------
3 7 7 ~ e t a ~ : ~ f l o a t
378 Learning rate (between 0.0 and 1.0)
379 n_iter : int
380 Passes over the training dataset.
381
382 Attributes
383 -----------
384 W_ : 1d-array
Weights after fitting.
cost_ : list
Sum-of-squares cost function value averaged over all
training samples in each epoch.
shuffle : bool (default: True)
Shuffles training data every epoch if True to prevent cycles.
random_state : int (default: None)
Set random state for shuffling and initializing the weights.
392
"""
def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
self.eta = eta
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle
399
if random_state:
4 0 1
np.random.seed(random_state)

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

def fit(self, x, y):
""" Fit training data.
Parameters
X : {array-like}, shape = [n_samples, n_features]
Training vectors, where \overline{n}_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
self : object
" ""
\# initialize the weight factors using _initialize weights
self._initialize_weights(X.shape[1]) \# dimension of w array = number of features (exclude w0)
self.cost_ = []
for i in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X, y)
cost = [] \# initiate cost array with unknown diimension
for xi, target in zip(X, y):
cost.append(self._update_weights(xi, target)) \# find the
avg_cost = sum(cost) / len(y)
self.cost_.append(avg_cost)
return self

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

433
4 6 1
partial_fit(self, X, y):
"""Fit training data without reinitializing the weights"""
if not self.w initialized:
self. initialize_weights(X.shape[1])
if y.rave\overline{l}().shape[0] > 1:
for xi, target in zip(X, y):
self._update_weights(xi, target)
else:
self._update_weights(X, y)
ceturn self
def _shuffle(self, x, y):
"""Shuffle training data"""
r = np.random.permutation(len(y)) \# get the index numbers for random shuffle (permutation)
return X[r], y[r] \# shuffle }X\mathrm{ and }y\mathrm{ the same way
initialize_weights(self, m): \# (1)
"""Initialize weights to zeros"""
self.w_ = np.zeros(1 + m) \# set w to zero (including wo)
self.w_initialized = True \# after w's are initialized, set w initialized = True
def _update_weights(self, xi, target):
"""Apply Adaline learning rule to update the weights"""
output = self.net_input(xi)
error = (target - output)
self.w_[1:] += self.eta * xi.dot(error) \# w [1:]: elements of w starting from inxed 1 to the end
self.w_[0] += self.eta * error \# w_[0]: the first elements of w (index 0)
cost = 0.5 * error**Z
return cost

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

4 6 3 def net_input(self, X):
464 """Calculate net input"
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
"""Compute linear activation"""
return self.net_input(X)
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.activation(X) >=0.0, 1, -1) \# predict the class Labe: y_hat = 1 if z>=0, y_hat = -1 otherwise
475\#
47\#=== call Adaline-SGD Learning algorithm with initial eata=0.01
478 ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
479 ada.fit(X_std, y)
4 8 1 print(ada.predict(X_std))
482\#sys.exit('Program stopped here')
483\#== call Adaline-SGD Learning algorithm with initial eata=0.01

```

\section*{Perceptron, Adaline-GD, Adaline-SGD Algorithms}
```

485\#=== plot the decision regions and the errors for Adaline-SGD
486 plot_decision_regions(X_std, y, classifier=ada)
4 8 7 plt.title('Adaline - Stochastic Gradient Descent')
488plt.xlabel('sepal length [standardized]')
489plt.ylabel('petal length [standardized]')
490plt.legend(loc='upper left')
4 9 1
92\# pl.t.tight lavout()
493\# plt.savefig('./adaline_4.png', dpi=300)
494plt.show()
96plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o') \# error plot
497plt.xlabel('Epochs')
498plt.ylabel('Average Cost')
4 9 9
500\# plt.tight_Layout()
501\# plt.savefig('./adaline_5.png', dpi=300)
502plt.show()
503print(' ==============================End of the Adaline-SGD Algorithm')
504print()
5 0 5 print()
5%\#
07
508\#ada = ada.partial_fit(X_std[0, :], y[0])
5 0 9
10sys.exit('Program stopped here')

```

\section*{Adaline-SGD}

```

