

ESS2222

Lecture 2 - Feasibility of Learning

Hosein Shahnas

University of Toronto, Department of Earth Sciences,

Review of Lecture 1

Machine learning: Learning from data

Criteria: Data√, pattern√, no formula√


```
Perceptron:
```

$$\Phi(z) = \operatorname{sign}(z) = \begin{cases} 1, & z > 0 \\ -1, & otherwise \end{cases} \qquad \hat{y} = \Phi(z)$$

Adeline:

$$\Phi(z) = z \qquad \qquad \hat{y} = \begin{cases} 1, & \Phi(z) > 0\\ -1, & otherwise \end{cases}$$

$$J(w) = \frac{1}{2} \sum_{i} (y^{i} - \phi(z^{i}))^{2}$$

- 1) Supervised learning
- 2) Unsupervised learning
- 3) Reinforcement learning
- A) Classification Problem
- B) Regression Problem

Feasibility of Learning - Outline

- Probabilistic Aspects of Learning
- Hoeffding's Inequality
- Generalization of Hoeffding's Inequality
- Permutation & Scaling
- Stochastic gradient decent

- Can we learn from a finite data set (samples) and generalize it (trough the mapping function) to the outside world?
- The learned function (g)works on the sample set. How is the function outside?
- The answer is the main subject of this lecture.

Consider a bin with green and red marbles: Pick N marbles independently (one by one).

Assume the fraction of the red marbles in the bin is μ and the size of bin is infinite.

Then: P(picking a red marble) = μ P(picking a green marble) = $1 - \mu$

 μ = unknown (for us) and will remain unknown.

Bin

μ = Probability of red marbles

How ν is related to μ ? Can we say anything about μ having ν ?

 μ = Probability of red marbles

Bin

How ν is related to μ ? Can we say anything about μ having ν ?

No

Because sample can be mostly green while bin is mostly red.

μ = Probability of red marbles

Bin

How ν is related to μ ? Can we say anything about μ having ν ?

No

Because sample can be mostly green while bin is mostly red.

And yes

Because if the sample is large enough, sample frequency ν is likely close to bin probability μ .

•••••••

Distinction between two answers: Possible versus probable

 μ = Probability of red marbles

Bin

A Probabilistic Situation What does ν say about μ ?

What does ν say about μ ?

For a big sample (large N) ν is probably close to μ (within ϵ). Mathematically:

$$\mathbf{P}[|\boldsymbol{\nu} - \boldsymbol{\mu}| > \boldsymbol{\epsilon}] \leq 2e^{-2\boldsymbol{\epsilon}^2 N}$$

bad event

Hoeffding's inequality

Bound does not depend on μ .

A Probabilistic Situation What does ν say about μ ?

What does ν say about μ ?

For a big sample (large N) ν is probably close to μ (within ϵ). Mathematically:

$$\mathbf{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
Hoeffding's inequality
bad event

As the number of samples increases the probability of bad event decreases: $P \longrightarrow 0$

However, as $\epsilon \longrightarrow 0$, $P \longrightarrow 2$

A Probabilistic Situation What does ν say about μ ?

 $\mathbf{P}[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N} \quad \forall \ \epsilon, \mathbf{N} \quad \text{Hoeffding's inequality}$

So the statement " $\mu = \nu$ " is probably approximately correct (PAC).

□ Despite P depends on μ , the bound $(2e^{-2\epsilon^2 N})$ does not, which is good because μ is unknown.

□ Hoeffding's inequality dictates that in order to have lower tolerance (ϵ) we need large number of samples (N).

□ Note that the inequality says that: $\nu \approx \mu$, because ν is affected by μ (μ : the cuase, ν the effect), however, we infer $\mu \approx \nu$ due to the symmetry in the Hoeffding's inequality.

What are unknowns?

Bin: The unknown quantity is μ **Learning:** The unknown is f: x \rightarrow y

Each marble is a point in X space: $x \in X$

Try a single (particular) hypothesis *h* (an approx. to *f*):

Learning

Hypothesis predicts correctlyh(x) = f(x)Hypothesis predicts wrong $h(x) \neq f(x)$

μ

What are unknowns?

Bin: The unknown quantity is μ **Learning:** The unknown is f: x \rightarrow y

Each marble is a point in X space: $x \in X$

Try a single (particular) hypothesis *h* (an approx. to *f*):

Hypothesis predicts correctly Hypothesis predicts wrong

h(x) = f(x) $h(x) \neq f(x)$

Learning

More hypothesis:

- **Learning is not trying a single hypothesis** *h***. Trying a single hypothesis is just a verification.**
- **D** Before generalizing ν to μ , we have to search for the set of hypothesis and find the best hypothesis.

Generalization

More hypothesis:

- **Learning is not trying a single hypothesis** *h***. Trying a single hypothesis is just a verification.**
- **D** Before generalizing ν to μ , we have to search for the set of hypothesis and find the best hypothesis.

Generalization

Generalization

Red marble Green marble

μ: unknown (exact value)

Generalization

- Red marble Green marble
 - *μ*: unknown (exact value)

Wrong predictionCorrect prediction

Try to minimize the number of wrong predictions by search

 $\mu \approx \nu$ with the bounded probability P

 ν and μ depend on *h*. We introduce the error rates corresponding to ν and μ .

 $\nu \text{ (in-sample)} \longrightarrow E_{in}(h)$ $\mu (\text{out-sample)} \longrightarrow E_{out}(h)$

Then the Hoeffding's inequality becomes:

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

$$\longrightarrow P[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

 $E_{out}(h)$

 ν and μ depend on h. We introduce the error rates corresponding to ν and μ .

 $\nu \text{ (in-sample)} \longrightarrow E_{in}(h)$ $\mu(\text{out-sample)} \longrightarrow E_{out}(h)$

Then the Hoeffding's inequality becomes:

$$\begin{split} \mathbf{P}[|\nu - \mu| > \epsilon] &\leq 2e^{-2\epsilon^2 N} \\ &\longrightarrow \mathbf{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \leq 2e^{-2\epsilon^2 N} \\ \end{split}$$
The probability that in-sample performance deviates from out-sample performance by more than ϵ , is less than $2e^{-2\epsilon^2 N}$.

 $E_{in}(h) = \frac{1}{N} \sum_{1}^{N} [[h(x_n) \neq f(x_n)]] \text{ for classification prob.}$ $[[h(x_n) \neq f(x_n)]] = 1 \text{ if } h(x) \neq f(x), = 0 \text{ otherwise}$ $E_{out}(h) = P [[h(x) \neq f(x)]]$

 $E_{out}(h)$

20

Correct prediction

Wrong prediction Correct prediction Hoeffding's inequality doesn't apply to multiple bin.

Consider coin analogy

Prob. 1: If you toss a fair coin 10 times, what is the probability that you get 10 heads?

A Problem!

Sol.: $P = \frac{\# of events}{total \# of events} = \frac{1}{2^{10}}$

P(k) =
$$\binom{n}{k} p^k q^{n-k}$$
, $C^n_k = \binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{P^n_k}{k!}$,
n = 10, # of flips where $P^n_k = \frac{n!}{(n-k)!}$ (k-permutations of n)
k = 10, # of heads
p = 1/2. Prob. of success
q = 1 -p = 1/2, Prob. of failure

$$P(10) = \frac{1}{2^{10}} \approx 0.001 \rightarrow P(10) \approx 0.1\%$$

В С

А

3!

CA

A B

С

А С В

А

A Problem!

Hoeffding's inequality doesn't apply to multiple bin.

Consider coin analogy

Prob. 2: If you toss 1000 fair coins 10 times each, what is the probability that some coin gets 10 heads?

Sol.: Two steps:

$$P_{1} = {\binom{10}{0}} {\binom{1}{2}}^{10} {\binom{1-\frac{1}{2}}{0}}^{0} = \frac{1}{2^{10}}, \qquad P_{2} = {\binom{1000}{1}} {\binom{P_{1}}{1-P_{1}}}^{1} {\binom{1-P_{1}}{999}},$$

$$P_{2} = {\binom{1000}{1}} {\binom{\frac{1}{2^{10}}}{1}}^{1} {\binom{1-\frac{1}{2^{10}}}{999}}^{999} \approx 0.368, \qquad \text{exactly 1 out of 1000 coins}$$
shows up 10 heads on 10 tosses

$$P = 1 - {\binom{1000}{0}} \left(\frac{1}{2^{10}}\right)^0 \left(1 - \frac{1}{2^{10}}\right)^{1000} \approx 0.624, \quad \text{at least 1 out of 1000 coins}$$

Shows up 10 heads on 10 tosses

The Analogy

Now suppose $\mu = 0.5$ (i.e. half of marbles green and half of them red). The same probability we have in flipping a fair coin.

This is not reflecting the reality (the real probability),

A Simple Solution

Getting 10 heads in tossing a fair coin 10 times does not reflect the reality. But if we try too hard, something bad will happen somewhere.

In mathematical language: Hoeffding's inequality applies for a single experiment (not multiple).

P(g) for the final hypothesis is less than any P(h) and therefore less than the union of them:

 $P[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq P[||E_{in}(h_{1}) - E_{out}(h_{1})| > \epsilon$ or $|E_{in}(h_{2}) - E_{out}(h_{2})| > \epsilon$ g: best of h or $|E_{in}(h_{k}) - E_{out}(h_{k})| > \epsilon]$ $\leq \sum_{m=1}^{k} P[|E_{in}(h_{m}) - E_{out}(h_{m})| > \epsilon]$ Union bound

This explains that why we got high probability (~ 0.63) for that bad event.

 $\mathbf{P}[|E_{in}(\mathbf{g}) - E_{out}(\mathbf{g})| > \epsilon] \le \sum_{m=1}^{k} \mathbf{P}[|E_{in}(\mathbf{h}_{m}) - E_{out}(\mathbf{h}_{m})| > \epsilon]$

$$\leq \sum_{m=1}^{k} 2e^{-2\epsilon^2 N}$$

A Simple Solution

 $\mathbf{P}[|E_{in}(\mathbf{g}) - E_{out}(\mathbf{g})| > \epsilon] \le 2\mathbf{M}e^{-2\epsilon^2 N}$

The factor M at the right had side of the Hoeffding's inequality increases the probability bound which is not good, however, as we will see later, the inequality can be improved.

Learning Diagram

Scaling for Optimal Performance

Feature scaling:

1) Min-max normalization:

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}}$$

2) Mean normalization:

$$x' = \frac{x - \mu}{x_{max} - x_{min}}$$

3) Normalization to a range (
$$r_{min}$$
, r_{max}): $x' = \frac{x - x_{min}}{x_{max} - x_{min}} (r_{max} - r_{min}) + r_{min}$

4) Standardization: gives data the property of a standard normal distribution.

$$x' = \frac{x - \mu}{\sigma}$$
, μ : mean, σ : standard diviation

The set of new data (X') has zero mean and unit variance, but not bounded.

1 - Gradient decent (GD) method ((Batch gradient descent): $w = w + \Delta w$ $\Delta w = -\eta \Delta J(w)$

$$\Delta wj = -\eta \frac{\partial J}{\partial w_j} = \eta \sum_i (y^i - \phi(z^i)) x^i_j$$

i: Sample index, j: Feature index

Based on all samples

2 – Stochastic gradient decent (SGD) method (an approx. for GD for large data):

$$\Delta w j = -\eta \frac{\partial J}{\partial w_i} = \eta \left(y^i - \phi(z^i) \right) x^i_j \qquad \text{Based on random samples}$$

 η :Variable learning rate (decreasing with iteration)

In SGD **a**) the error is noisier than in GD (because $\Delta w's$ are based on single samples), **b**) The convergence is faster than GD (more frequent updates), **c**) the local minima can be escaped faster which is good, **d**) to get accurate results the samples must be shuffled,

Permutation

```
2Simultaneous permutation of class labels and features
 3Hosein Shahnas
 5 import sys
 6import os.path
 8 import os
 9 import numpy as np
11 save_path = os.path.dirname(os.path.abspath( file ))
12print(save path)
14 name of file = 'Features'
15completeName = os.path.join(save path, name of file+".dat")
16Feature data = np.loadtxt(completeName)
18name of file = 'Classe Labels'
19 completeName = os.path.join(save path, name of file+".dat")
20Target data = np.loadtxt(completeName)
22print ('Feature data.shape = ', Feature data.shape)
23print ('Target_data.shape = ', Target_data.shape)
25np.unique(Target data)
26print ('np.unique(Target data) = ', np.unique(Target data)) #Returns the sorted unique elements of an array.
29y size = Target data.size
30X size = Feature data.size
31Feature size = int(X size/y size)
33print ('y_size = ', y_size)
34print ('X_size = ', X_size)
35print ('Feature size = ', Feature size)
```

Permutation

38

```
40 perm = np.random.permutation(Target data.size) # get the index numbers for random shuffle (permutation)
41print ('perm = ', perm)
43Feature data = Feature data[perm]
                                    # based on perm shuffle features
44Target data = Target data[perm]
47#_______wite data
48name of file = 'Perm Classe Labels Features'
49 completeName = os.path.join(save path, name of file+".dat")
50file1 = open(completeName, "w")
51 for i in range(0, Target_data.size):
     file1.write("%5i %5i " % (perm [i], Target data [i]))
     for j in range(0,Feature size):
         file1.write(" %20.12e " % (Feature data [i,j]))
     file1.write(" \n " )
56file1.close();
58 name of file = 'Perm Classe Labels'
59 completeName = os.path.join(save path, name of file+".dat")
60file1 = open(completeName, "w")
61for i in range(0,Target_data.size):
     file1.write("%5i \n" % (Target data [i]))
63file1.close();
65 name of file = 'Perm Features'
66completeName = os.path.join(save path, name of file+".dat")
67file1 = open(completeName, "w")
68 for i in range(0, Target data.size):
     for j in range(0,Feature size):
         file1.write(" %20.12e " % ( Feature data [i,j]))
     file1.write(" \n " )
72 file1.close();
```

```
2Scaling of features
 3Hosein Shahnas
5 import sys
 6 import os.path
8 from sklearn import preprocessing
9 import os
10 import numpy as np
13 save path = os.path.dirname(os.path.abspath( file ))
14print(save path)
16name of file = 'Perm Features'
17 completeName = os.path.join(save path, name of file+".dat")
18Fearures = np.loadtxt(completeName)
20 name of file = 'Perm Classe Labels'
21completeName = os.path.join(save path, name of file+".dat")
22Class Labels = np.loadtxt(completeName)
24print ('Fearures.shape = ', Fearures.shape)
25print ('Class Labels.shape = ', Class Labels.shape)
27np.unique(Class Labels)
28print ('np.unique(Class Labels) = ', np.unique(Class Labels)) #Returns the sorted unique elements of an array.
29y size = Class Labels.size
30X size = Fearures.size
31Feature_size = int(X_size/y_size)
```

Scaling

Scaling

```
35min max scaler = preprocessing.MinMaxScaler()
36Fearures s = min max scaler.fit transform(Fearures)
40 name of file = 'Perm Classe Labels Features Scaled'
41 completeName = os.path.join(save path, name of file+".dat")
42file1 = open(completeName, "w")
43 for i in range(0, Class Labels.size):
     file1.write("%5i %5i " % (i, Class Labels [i]))
    for j in range(0,Feature size):
         file1.write(" %20.12e " % (Fearures s [i,j]))
47
     file1.write(" \n " )
48file1.close();
51name of file = 'Perm Features Scaled'
52 completeName = os.path.join(save path, name of file+".dat")
53 file1 = open(completeName, "w")
54 for i in range(0, Class Labels.size):
    for j in range(0,Feature size):
         file1.write(" %20.12e " % ( Fearures s [i,j]))
     file1.write(" \n " )
58file1.close();
61#sys.exit('Program stopped here')
62
```

```
21 class Perceptron(object):
     """Perceptron classifier.
     Parameters
     eta : float
         Learning rate (between 0.0 and 1.0)
     n iter : int
         Passes over the training dataset.
     Attributes
     w : 1d-array
         Weights after fitting.
     errors : list
         Number of misclassifications (updates) in each epoch.
     def init (self, eta=0.01, n iter=10):
         self.eta = eta
         self.n iter = n iter
     def fit(self, X, y):
         """Fit training data.
         Parameters
         X : {array-like}, shape = [n samples, n features]
             Training vectors, where n samples is the number of samples and
             n features is the number of features.
         y : array-like, shape = [n samples]
             Target values.
         Returns
         self : object
```

```
self.w = np.zeros(1 + X.shape[1])
          self.errors = []
          for in range(self.n iter):
              errors = 0
              for xi, target in zip(X, y):
                  update = self.eta * (target - self.predict(xi))
                  self.w [1:] += update * xi
                  self.w [0] += update
                  errors += int(update != 0.0)
              self.errors .append(errors)
          return self
      def net input(self, X):
          """Calculate net input"""
          return np.dot(X, self.w [1:]) + self.w [0]
      def predict(self, X):
          """Return class label after unit step"""
          return np.where(self.net input(X) >= 0.0, 1, -1)
82print(50 * '=')
83print('Section: Training a perceptron model on the Iris dataset')
84print(50 * '-')
86df = pd.read csv('https://archive.ics.uci.edu/ml/'
                   'machine-learning-databases/iris/iris.data', header=None)
88print(df.tail())
```

```
93print(50 * '=')
 94print('Plotting the Iris data')
 95print(50 * '-')
 98y = df.iloc[0:100, 4].values
99y = np.where(y == 'Iris-setosa', -1, 1)
102X = df.iloc[0:100, [0, 2]].values
107plt.scatter(X[:50, 0], X[:50, 1],
               color='red', marker='o', label='setosa')
109plt.scatter(X[50:100, 0], X[50:100, 1],
               color='blue', marker='x', label='versicolor')
112plt.xlabel('sepal length [cm]')
113plt.ylabel('petal length [cm]')
114plt.legend(loc='upper left')
118plt.show()
120
```

```
122print(50 * '=')
123print('Training the perceptron model')
124print(50 * '-')
126ppn = Perceptron(eta=0.1, n iter=30)
128ppn = Perceptron()
129ppn = Perceptron(eta=0.1, n iter=5)
131ppn.fit(X, y)
135print('len(ppn.errors ) = ', len(ppn.errors ))
138plt.plot(range(1,31), ppn.errors , marker='o')
140plt.xlabel('Epochs')
141plt.ylabel('Number of misclassifications')
145 plt.show()
149 resolution=0.02
150x1 min, x1 max = X[:, 0].min() - 1, X[:, 0].max() + 1
151x2 min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
152xx1, xx2 = np.meshgrid(np.arange(x1 min, x1 max, resolution),
                         np.arange(x2 min, x2 max, resolution))
154print('xx1.shape = ', xx1.shape)
155 \times 11 = \times 1.ravel()
156print('xx11.shape = ', xx11.shape)
```

```
160print(50 * '=')
161print('A function for plotting decision regions')
162print(50 * '-')
164 def plot decision regions(X, y, classifier, resolution=0.02):
       markers = ('s', 'x', 'o', '^', 'v')
       colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
       cmap = ListedColormap(colors[:len(np.unique(y))])
       # plot the decision surface
       x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
       x2 min, x2 max = X[:, 1].min() - 1, X[:, 1].max() + 1
       xx1, xx2 = np.meshgrid(np.arange(x1 min, x1 max, resolution),
                              np.arange(x2 min, x2 max, resolution))
       print('xx1.shape = ', xx1.shape)
       print('xx2.shape = ', xx2.shape)
       xx1[i,j]: the first feature at each grid point
       xx2[i,j]: the second feature at each grid point
       features = np.array([xx1.ravel(), xx2.ravel()]).T
       print('xx1.ravel().shape = ', xx1.ravel().shape)
       print('xx2.ravel().shape = ', xx2.ravel().shape)
       print('features.shape = ', features.shape)
       features has a shape of (n,m), where n is the number of smaples and m is the number of features
```

```
Z = classifier.predict(features)
       print('Z.shape1 = ', Z.shape)
       Z = Z.reshape(xx1.shape)
       print('Z.shape2 = ', Z.shape)
       plt.contourf(xx1, xx2, Z, alpha=0.1, cmap=cmap) # alpha: color level, cmap: color map
       plt.xlim(xx1.min(), xx1.max())
       plt.ylim(xx2.min(), xx2.max())
       print('y.shape = ', y.shape)
       print('np.unique(y) = ', np.unique(y)) # Returns the sorted unique elements of an array.
       print('np.unique(y).shape = ', np.unique(y).shape)
       for idx, cl in enumerate(np.unique(y)):
           plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], # i.e., ixx = 1, cl = -1 and idx = 1, cl =1
                        alpha=0.8, c=cmap(idx), s=50,
                        marker=markers[idx], label=cl)
211 \times 0 = X[y == -1, 0]
212 print('x0 = ', x0)
213print()
214 \times 0 = X[y == 1, 0]
215 print('x0 = ', x0)
216print()
217 \times 0 = X[y = -1, 1]
218 print('x0 = ', x0)
219print()
220 \times 0 = X[y == 1, 1]
221 print('x0 = ', x0)
```

Perceptron


```
240print(50 * '=')
241print('Implementing an adaptive linear neuron in Python (GD)')
242print(50 * '-')
245 class AdalineGD(object):
       """ADAptive LInear NEuron classifier.
       Parameters
       eta : float
           Learning rate (between 0.0 and 1.0)
       n iter : int
           Passes over the training dataset.
      Attributes
       w : 1d-array
           Weights after fitting.
       cost : list
           Sum-of-squares cost function value in each epoch.
      def __init__(self, eta=0.01, n_iter=50):
           self.eta = eta
           self.n iter = n iter
      def fit(self, X, y):
```

268	""" Fit training data.
209	Parameters
271	
272	X : {array-like}, shape = [n_samples, n_features]
2/3	Iraining vectors, where n_samples is the number of samples and
274 275	n_teatures is the number of features.
275	y . array-iike, shape = [h_sampies] Target values
277	
278	Returns
279	
280	self : object
281	
282	
283	<pre>self.w_ = np.zeros(1 + X.shape[1]) # dimension of w array = number of features + 1</pre>
284	<pre>self.cost_ = []</pre>
285	
286	<pre>for i in range(self.n_iter):</pre>
287	<pre>output = self.net_input(X)</pre>
288	errors = (y - output)
289	<pre>self.w_[1:] += self.eta * X.T.dot(errors)</pre>
290	<pre>self.w_[0] += self.eta * errors.sum()</pre>
291	cost = (errors**2).sum() / 2.0
292	self.costappend(cost)
293	return self

```
def net input(self, X):
         """Calculate net input"""
         return np.dot(X, self.w_[1:]) + self.w_[0]
     def activation(self, X):
         """Compute linear activation"""
         return self.net input(X)
      def predict(self, X):
         """Return class label after unit step"""
         return np.where(self.activation(X) >= 0.0, 1, -1)
309fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) # figure with sub-plots (one row, two columns)
312ada1 = AdalineGD(n iter=10, eta=0.01).fit(X, y)
313 ax[0].plot(range(1, len(ada1.cost ) + 1), np.log10(ada1.cost ), marker='o')
314ax[0].set xlabel('Epochs')
315 ax[0].set ylabel('log(Sum-squared-error)')
316ax[0].set title('Adaline - Learning rate 0.01')
320ada2 = AdalineGD(n iter=10, eta=0.0001).fit(X, v)
321ax[1].plot(range(1, len(ada2.cost ) + 1), ada2.cost , marker='o')
322ax[1].set xlabel('Epochs')
323ax[1].set ylabel('Sum-squared-error')
324ax[1].set title('Adaline - Learning rate 0.0001')
```

```
334print('standardize features')
335X std = np.copy(X) # copies x in X std
336X std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
337X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()
341ada = AdalineGD(n iter=15, eta=0.01)
342ada.fit(X_std, y)
346 plot decision regions(X std, y, classifier=ada)
347 plt.title('Adaline - Gradient Descent')
348plt.xlabel('sepal length [standardized]')
349plt.ylabel('petal length [standardized]')
350plt.legend(loc='upper left')
353plt.show()
355plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
356 plt.xlabel('Epochs')
357 plt.ylabel('Sum-squared-error')
361 plt.show()
363print('=================================End of the Adaline-GD Algorithm')
364print()
365print()
```

Adaline-GD


```
368print(50 * '=')
369print('Large scale machine learning and stochastic gradient descent (SGD)')
370print(50 * '-')
372 class AdalineSGD(object):
       """ADAptive LInear NEuron classifier.
       Parameters
       eta : float
           Learning rate (between 0.0 and 1.0)
       n iter : int
           Passes over the training dataset.
       Attributes
      w : 1d-array
           Weights after fitting.
       cost : list
           Sum-of-squares cost function value averaged over all
           training samples in each epoch.
       shuffle : bool (default: True)
           Shuffles training data every epoch if True to prevent cycles.
       random state : int (default: None)
           Set random state for shuffling and initializing the weights.
       def init (self, eta=0.01, n iter=10, shuffle=True, random state=None):
           self.eta = eta
           self.n iter = n iter
           self.w initialized = False
           self.shuffle = shuffle
           if random state:
               np.random.seed(random state)
```

404 405 406	<pre>def fit(self, X, y): """ Fit training data.</pre>					
407	Parameters					
409	X : {array-like}, shape = [n_samples	X : {array-like}, shape = [n_samples, n_features]				
410	Training vectors, where n_samples is the number of samples and					
411	n_features is the number of features.					
412	y : array-like, shape = [n_samples]					
413	Target values.					
414						
415	Returns					
416						
417	self : object					
418						
419						
420		# initialize the weight factors us	ing _initialize_weights			
421	<pre>selfinitialize_weights(X.shape[1])</pre>	# dimension of w array = number of	features (exclude w0)			
422	<pre>self.cost_ = []</pre>					
423	for i in range(self.n_iter):					
424	it self.shuttle:	# if shuffle = true then shuffle d	ata by the defined function _shuffle			
425	X, $y = selfshuftle(X, y)$					
426	cost = []	# initiate cost array with unknown	diimension			
427	for x1, target in zip(X, y):					
428	cost.append(selfupdate_wei	ghts(x1, target)) # find the				
429	avg_cost = sum(cost) / len(y)					
430	self.costappend(avg_cost)					
431	return self					

```
def partial_fit(self, X, y):
    """Fit training data without reinitializing the weights"""
    if not self.w initialized:
        self. initialize weights(X.shape[1])
    if v.ravel().shape[0] > 1:
        for xi, target in zip(X, y):
            self. update weights(xi, target)
        self._update_weights(X, y)
    return self
def shuffle(self, X, y):
    """Shuffle training data"""
    r = np.random.permutation(len(y)) # get the index numbers for random shuffle (permutation )
    return X[r], y[r]
def _initialize_weights(self, m):
    """Initialize weights to zeros"""
    self.w = np.zeros(1 + m)
    self.w initialized = True
def update weights(self, xi, target): # (3)
    """Apply Adaline learning rule to update the weights"""
    output = self.net input(xi)
    error = (target - output)
    self.w_[1:] += self.eta * xi.dot(error)
    self.w [0] += self.eta * error
    cost = 0.5 * error**2
    return cost
```

402			
	<pre>def net_input(self, X):</pre>		
464	"""Calculate net input"""		
465	return np.dot(X,		
466			
467	<pre>def activation(self, X):</pre>		
468	"""Compute linear activation"""		
469	<pre>return self.net_input(X)</pre>		
470			
471	<pre>def predict(self, X):</pre>		
472	"""Return class label after unit step"""		
4/3	<pre>return np.where(self.activation(X) >= 0.0, 1</pre>	l, -1) # predict the class	Labe: y_hat = 1 if z>=0, y_hat = -1 otherwise
4/4			
4/5#===		========= aaaline stocnas	tic graaient descent (SGD) algorithm
4/0			Loanning algorithm with initial pata-0.01
4//#===	- Adalinascova itan-15 ata-0.01 mandam stata-1	-======== Call Adulthe-SGL	learning algorithm with thittal eata=0.01
470 aua	= AdditheSob(n_icer=is, eca=0.01, random_scale=)	L)	
479 dua	.iit(x_stu, y)		
400 //81 nri/	nt(ada predict(X std))		
482 #cm	s evit('Program stonned here')		
183 <i>#</i>		call Adaline-SGG	learning algorithm with initial eqta-0 01

486plot decision regions(X std, y, classifier=ada) 487plt.title('Adaline - Stochastic Gradient Descent') 488plt.xlabel('sepal length [standardized]') 489plt.ylabel('petal length [standardized]') 490 plt.legend(loc='upper left') 492# plt.tight layout() **493**# plt.savefig('./adaline_4.png', dpi=300) 494plt.show() 496plt.plot(range(1, len(ada.cost) + 1), ada.cost , marker='o') 497 plt.xlabel('Epochs') 498plt.ylabel('Average Cost') 502plt.show() 504print() 505print() 510 sys.exit('Program stopped here')

Adaline-SGD

