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Review of Lecture 1 
  

Machine learning: Learning from data 

 

Criteria: Data, pattern, no formula 

 

                                    

 

 

 

Learning model 

𝑇𝑒 𝑦𝑝𝑜𝑡𝑒𝑠𝑖𝑠 𝑠𝑒𝑡 

𝐻 =      𝑔 ∈ 𝐻

𝑇𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑚
𝐴

  

 

f:  X    y 

g:  X    y 

h             g  ≈ f        

 

 

 

 

Perceptron: 

F(z) = sign(z) =  
1,            𝑧 > 0
−1, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

           𝑦 = F(z)  

 

Adeline: 

F(z) = z                             𝑦 =  
1,        F(z) > 0

−1,      𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑱 𝒘 = 
𝟏

𝟐
  𝒚𝒊 − 𝝓(𝒛𝒊) 

𝟐
𝒊  

 
 

1) Supervised learning 

2) Unsupervised learning 

3) Reinforcement learning 

 

A) Classification Problem 

B) Regression Problem 
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Feasibility of Learning - Outline 
 

 Probabilistic Aspects of Learning 

 Hoeffding's Inequality 

 Generalization of Hoeffding's Inequality 

 Permutation & Scaling 

 Stochastic gradient decent  
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Is Learning Feasible? 
 

Can we learn from a finite data set (samples) and generalize it (trough the 

mapping function) to the outside world? 

 

The learned function (g)works on the sample set. How is the function 

outside? 

 

The answer is the main subject of this lecture. 
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Sample (N) 

A Probabilistic Situation  

An Experiment 
 

Bin 

𝝁 = Probability  

of red marbles 

Consider a bin with green and red marbles: 

Pick N marbles independently (one by one). 

 

Assume the fraction of the red marbles in  

the bin is 𝝁 and the size of bin is infinite. 

 

Then: 

P(picking a red marble) = 𝝁 

P(picking a green marble) = 𝟏 − 𝝁 

 

𝝁  = unknown (for us) and will remain  

unknown. 

 

 

 

𝝂 = fraction 

of red marbles 
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Sample (N) 

A Probabilistic Situation  

An Experiment 
 

Bin 

𝝁 = Probability  

of red marbles 

𝝂 = fraction 

of red marbles 

How 𝝂 is related to 𝝁? 

Can we say anything about 𝝁 

having 𝝂? 
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Sample (N) 

A Probabilistic Situation  

An Experiment 
 

Bin 

𝝁 = Probability  

of red marbles 

𝝂 = fraction 

of red marbles 

How 𝝂 is related to 𝝁? 

Can we say anything about 𝝁 

having 𝝂? 
 

No 

Because sample can be mostly green while  

bin is mostly red. 
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Sample (N) 

A Probabilistic Situation  

An Experiment 
 

Bin 

𝝁 = Probability  

of red marbles 

𝝂 = fraction 

of red marbles 

How 𝝂 is related to 𝝁? 

Can we say anything about 𝝁 

having 𝝂? 
 

No 

Because sample can be mostly green while  

bin is mostly red. 

 

And yes 

Because if the sample is large enough,  

sample frequency 𝝂  is likely close to bin 

p𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝝁. 

 

 

Distinction between two answers: Possible versus probable  
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A Probabilistic Situation  

What does 𝝂 say about 𝝁? 

What does 𝝂 say about 𝝁? 
 

For a big sample (large N) 𝝂 is probably close to 𝝁 (within  𝝐).  

Mathematically: 

 

P 𝝂 − 𝝁 > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵
            Hoeffding's inequality 

 

               bad event 

 

Bound does not depend on 𝝁. 
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A Probabilistic Situation  

What does 𝝂 say about 𝝁? 

What does 𝝂 say about 𝝁? 
 

For a big sample (large N) 𝝂 is probably close to 𝝁 (within  𝝐).  

Mathematically: 

 

P 𝝂 − 𝝁 > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵
            Hoeffding's inequality 

 

               bad event 

 

As the number of samples increases the probability of bad event  

decreases:     P             0 

 

However,  as 𝝐             0,       P             2 
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A Probabilistic Situation  

What does 𝝂 say about 𝝁? 

 

P 𝝂 − 𝝁 > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵
      ∀  𝝐, N      Hoeffding's inequality 

 

 So the statement    " 𝝁 = 𝝂"  is probably approximately correct (PAC). 

 

 Despite P depends on 𝝁, the bound (𝟐𝒆−𝟐𝝐𝟐𝑵) does not, which is good because 

𝝁 is unknown.  

 

 Hoeffding's inequality dictates that in order to have lower tolerance (𝝐) we 

need large number of samples (N). 

 

 Note that the inequality says that: 𝝂 ≈ 𝝁 , because 𝝂 is affected by 

𝝁 ( 𝝁: 𝐭𝐡𝐞 𝐜𝐮𝐚𝐬𝐞, 𝝂 𝐭𝐡𝐞 𝐞𝐟𝐟𝐞𝐜𝐭), however, we infer 𝝁 ≈ 𝝂 due to the symmetry 

in the Hoeffding's inequality. 
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Learning 

𝝁 

 

X  

What are unknowns?                                 

                                                                                                                         

 

Bin: The unknown quantity is 𝝁 

Learning: The unknown is  f: x y 

 

Each marble is a point in X space:  x ∈ 𝑿 

 

Try a single (particular) hypothesis h (an approx. to f): 

 

Hypothesis predicts correctly     h(x) = f(x) 

Hypothesis predicts wrong         h(x) ≠ f(x) 
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Learning 

𝝁 

 

h(x) = f(x) 

       h(x) ≠ f(x) 

 

f(x)  

X  

𝒚  

X  

𝒚   h(x)  

X  

What are unknowns?                               Note that h(x) = f(x) does not 

                                                                                                                       necessarily mean h = f 

 

Bin: The unknown quantity is 𝝁 

Learning: The unknown is  f: x y 

 

Each marble is a point in X space:  x ∈ 𝑿 

 

Try a single (particular) hypothesis h (an approx. to f): 

 

Hypothesis predicts correctly     h(x) = f(x) 

Hypothesis predicts wrong         h(x) ≠ f(x) 
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hk 

 
𝝁𝒌 

h2 

 
𝝁𝟐 

h1 

 
𝝁𝟏 

Generalization 

More hypothesis: 

 
 Learning is not trying a single hypothesis h. Trying a single hypothesis is just a verification. 

 Before generalizing 𝝂  to  𝝁,  we have to search for the set of hypothesis and find the best 

hypothesis. 

. . . . . . . . .  

𝝂𝟏 𝝂𝟐 𝝂𝒌 

  
Wrong prediction 

Correct prediction 



15 

hk 

 
𝝁𝒌 

h2  

 
𝝁𝟐 

h1 

 
𝝁𝟏 

Generalization 

. . . . . . . . .  

𝝂𝟏 𝝂𝟐 𝝂𝒌 

  

Generalize to bin 

g = h2 Wrong prediction 

Correct prediction 

More hypothesis: 

 
 Learning is not trying a single hypothesis h. Trying a single hypothesis is just a verification. 

 Before generalizing 𝝂  to  𝝁,  we have to search for the set of hypothesis and find the best 

hypothesis. 

good  
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Generalization 

Red marble 

Green marble 

 

𝝁: unknown (exact value) 
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Generalization 

Red marble 

Green marble 

 

𝝁: unknown (exact value) 

 

 

 

 

Wrong prediction 

Correct prediction 

 

Try to minimize the number of wrong 

predictions by search 

 

𝝁 ≈ 𝝂  with the bounded probability P 

 

X 
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Errors 

𝝂  a𝐧𝐝 𝝁 depend on h. We introduce the error rates corresponding to 𝝂  a𝐧𝐝 𝝁.  

 

 𝝂 (in-sample)            Ein(h)    

 𝝁(out-sample)            Eout(h) 

 

Then the Hoeffding's inequality becomes: 

 

 

P 𝝂 − 𝝁 > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵                     

         P Ein(h) − Eout(h) > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵 

 

    

 

Eout(h) 

Ein(h) 
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Errors 

Eout(h) 

Ein(h) 

𝝂  a𝐧𝐝 𝝁 depend on h. We introduce the error rates corresponding to 𝝂  a𝐧𝐝 𝝁.  

 

 𝝂 (in-sample)            Ein(h)    

 𝝁(out-sample)            Eout(h) 

 

Then the Hoeffding's inequality becomes: 

 

 

P 𝝂 − 𝝁 > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵                     

         P Ein(h) − Eout(h) > 𝝐 ≤ 𝟐𝒆−𝟐𝝐𝟐𝑵 
The probability that in-sample performance deviates from out-sample  

performance by more than 𝝐, is less than 𝟐𝒆−𝟐𝝐𝟐𝑵. 

    

 

Ein(h) = 
𝟏

𝑵
  𝒉 𝒙𝒏 ≠ 𝒇 𝒙𝒏

𝑵
𝟏     for classification prob. 

𝒉 𝒙𝒏 ≠ 𝒇 𝒙𝒏  = 1   if 𝒉 𝒙 ≠ 𝒇 𝒙 ,    = 0 otherwise 

Eout(h) = P 𝒉 𝒙 ≠ 𝒇 𝒙  
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. . . . . . . . .  

𝝂𝟏 𝝂𝟐 𝝂𝒌 

  
Wrong prediction 

Correct prediction 

hk 

 
𝝁𝒌 

h2 

 
𝝁𝟐 

h1 

 
𝝁𝟏 

Errors 
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. . . . . . . . .  

Ein(h1) Ein(h2) Ein(𝒉𝒌) 

  
Wrong prediction 

Correct prediction 

hk 

 
Eout(𝒉𝒌) 

h2 

 
Eout(h2) 

h1 

 
Eout(h1) 

Errors 
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A Problem! 

Hoeffding's inequality doesn’t apply to multiple bin.  

 

Consider coin analogy 

 

Prob. 1: If you toss a fair coin 10 times, what is the probability that you get 10 

heads? 

Sol.:  P = 
# 𝒐𝒇 𝒆𝒗𝒆𝒏𝒕𝒔

𝒕𝒐𝒕𝒂𝒍 # 𝒐𝒇 𝒆𝒗𝒆𝒏𝒕𝒔
 = 

𝟏

𝟐𝟏𝟎 

 

P(k) = 
𝒏
𝒌

 𝒑𝒌 𝒒𝒏−𝒌,  𝑪𝒏
𝒌 = 𝒏

𝒌
=

𝒏!

𝒏−𝒌 !𝒌!
 =  

𝑷𝒏
𝒌

𝒌!
,  

n = 10,    # of flips                  where    𝑷𝒏
𝒌 = 

𝒏!

𝒏−𝒌 !
   (k-permutations of n) 

k = 10,   # of heads 

p = 1/2.       Prob. of  success    

q = 1 –p = 1/2,    Prob. of failure  

 

P(10) = 
𝟏

𝟐𝟏𝟎 ≈ 𝟎. 𝟎𝟎𝟏    P(10) ≈ 0.1% 

 
 

https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
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A Problem! 

Hoeffding's inequality doesn’t apply to multiple bin.  

 

Consider coin analogy 

 

Prob. 2: If you toss 1000 fair coins 10 times each, what is the probability that 

some coin gets 10 heads? 

 

Sol.:   Two steps: 

 

𝑷𝟏 = 
𝟏𝟎
𝟎

 
𝟏

𝟐

𝟏𝟎
𝟏 −

𝟏

𝟐

𝟎
 =

𝟏

𝟐𝟏𝟎,              𝑷𝟐 = 
𝟏𝟎𝟎𝟎

𝟏
 𝑷𝟏

𝟏 𝟏 − 𝑷𝟏
𝟗𝟗𝟗 , 

 

𝑷𝟐 = 
𝟏𝟎𝟎𝟎

𝟏
 

𝟏

𝟐𝟏𝟎

𝟏
𝟏 −

𝟏

𝟐𝟏𝟎

𝟗𝟗𝟗
 ≈ 𝟎. 𝟑𝟔𝟖,            exactly 1 out of 1000 coins     

                     shows  up 10 heads on 10 tosses 

                                               
 

P = 1 - 
𝟏𝟎𝟎𝟎

𝟎
 

𝟏

𝟐𝟏𝟎

𝟎
𝟏 −

𝟏

𝟐𝟏𝟎

𝟏𝟎𝟎𝟎
 ≈ 𝟎. 𝟔𝟐𝟒,      at least 1 out of 1000 coins  

                     shows up 10 heads on 10 tosses 

                Prob. of getting no 10-heads 
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The Analogy 

. . . . . . . . .  . . . . . . . . .  

This is not reflecting the reality 

(the real probability), 

Now suppose 𝝁 = 0.5 (i.e. half of marbles green and half of them red). 

The same probability we have in flipping a fair coin. 

https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Rev.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Rev.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Rev.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
https://en.wikipedia.org/wiki/File:US_One_Cent_Obv.png
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A Simple Solution 

Getting 10 heads in tossing a fair coin 10 times does not reflect the reality. But if we try 

too hard, something bad will happen somewhere. 

 

In mathematical language: Hoeffding's inequality applies for a single experiment (not 

multiple).  

 

P(g) for the final hypothesis is less than any P(h) and therefore less than the union of 

them: 

 

P Ein(g) − Eout(g) > 𝝐 ≤     P  Ein(h1) − Eout(h1) > 𝝐 

                                                           or 

                                                           Ein(h2) − Eout(h2) > 𝝐  

   g: best of h                                          . . . . . .  . . . 

                                                           or 

                                                                  Ein(hk) − Eout(hk) > 𝝐    
 

                                                               ≤   P Ein(hm) − Eout(hm) > 𝝐

𝒌

𝒎=𝟏

 

                                                                                    Union bound 

 

This explains that why we got high probability (~0.63) for that bad event. 
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A Simple Solution 

 

P Ein(g) − Eout(g) > 𝝐 ≤  P Ein(hm) − Eout(hm) > 𝝐𝒌
𝒎=𝟏  

 

                                                           ≤   𝟐𝒆−𝟐𝝐𝟐𝑵𝒌
𝒎=𝟏     

 

P Ein(g) − Eout(g) > 𝝐 ≤ 𝟐𝑴𝒆−𝟐𝝐𝟐𝑵 

 

 

The factor M at the right had side of the Hoeffding's inequality increases the 

probability bound which is not good, however, as we will see later, the inequality 

can be improved. 
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Learning Diagram 

f:  X    y  Unknown target func. 

Training set 

(x1,  y1), (x2, y2), . . . . ., (xN, yN) 

Final Hypothesis  

𝑔:𝑋 → 𝑦 

𝑔 ≈ 𝑓 

Learning algorithm 

A 

Hypothesis set 

H 

Learning Model  

Probability dist.  

P on X 
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Scaling for Optimal Performance 

Feature scaling: 

 

1) Min-max normalization:          𝑥′= 
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 

 

2) Mean normalization:                     𝑥′= 
𝑥−𝜇

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 

 

 

3) Normalization to a range (rmin, rmax): 𝑥
′= 

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛  + 𝑟𝑚𝑖𝑛 

 

 

4) Standardization:  gives data the property of a standard normal distribution. 

 

𝑥′= 
𝑥 −𝜇

𝜎
,   μ:𝑚𝑒𝑎𝑛,  𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑖𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

    

The set of new data (X′) has zero mean and unit variance, but not bounded.       
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1 - Gradient decent (GD) method ((Batch gradient descent): 

 w= 𝐰 +  𝚫𝒘 

𝚫𝒘 = − 𝜼 𝚫𝑱(𝒘) 

 

𝚫𝒘𝒋 = − 𝜼 
𝝏𝑱

𝝏𝒘𝒋
 = 𝜼  𝒚𝒊 − 𝝓(𝒛𝒊)𝒊 𝒙𝒊

j                    Based on all samples  

i: Sample index,    j: Feature index 

                                                                                                                         local 

                                                                                                                                 global 

2 – Stochastic gradient decent (SGD) method  

(an approx. for GD for large data): 

 

𝚫𝒘𝒋 = − 𝜼 
𝝏𝑱

𝝏𝒘𝒋
 = 𝜼 𝒚𝒊 − 𝝓(𝒛𝒊)  𝒙𝒊

j                        Based on random samples  

𝜂 ∶Variable learning rate (decreasing with iteration) 

 

In SGD a) the error is noisier than in GD (because 𝛥𝑤′𝑠 are based on single samples), 

b) The convergence is faster than GD (more frequent updates), c) the local minima can be 

escaped faster which is good, d) to get accurate results the samples must be shuffled,  

 

Stochastic Gradient Decent Method 
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Permutation 
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Permutation 
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Scaling 
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Scaling 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Adaline-GD 



48 

Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Perceptron, Adaline-GD, Adaline-SGD 

Algorithms 
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Adaline-SGD 


