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 Learning from Data  

Y. S. Abu-Mostafa 

 

 Python Machine Learning  
S. Raschka, PACKT, Open Source 

 

 Building Machine Learning Systems  

with Python Mastering Machine  
W. Richert & L. P. Coelho, PACKT, Open Source 

 

 Learning with scikit-learn 
G. Hackeling, PACKT, Open Source 

 

 Look at the other relevant books published by PACKT 

 

Some Useful References 
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 Machine Learning and the Feasibility of Learning  

 Linear and Nonlinear Models 

 Testing, Training, Error and Noise 

 Generalization Theory  

 The VC Dimension 

 Bias-Variance Trade-off 

 Overfitting and Regularization  

 Support Vector Machine 

 Validation  

 Kernel Methods 

 Random Forest 

 Neural Networks 

 Convolutional Networks 

 Regression Learning 

 Multi Class Learning 

 Machine Learning in Earth Sciences  

Outline of the Course 
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Machine Learning 
 

 Learning Components  

 Illustrative Example 

 PLA - A simple model 

 Adaline Algorithm 

 Types of learning 

 



5 

Machine Learning: Learning from data (exploring a target function) 

 

 

Mathematical Aspects: Provides a conceptual framework 

Practical Aspects: How to do it in real work 

 

Learning from data 
 

 

 

 

Components of learning – Criteria to be checked: 

 

1- The problem cannot be elaborated mathematically                  (F = mg ?) 

2- There is data  

3- A pattern exists  
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Perceptron Rule  
 

F(z) =  
1,  𝑖𝑓 𝑧 > q

−1       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 

First concept of a simplified brain cell (McCulloch–Pitts (MCP) 

neuron,1943) 

The first concept of the perceptron learning rule based on the 

MCP neuron model (Frank Rosenblatt, 1957) 

 

Z =  x.w =  wi
𝑛
1 𝑥𝑖  = w1 x1 + w2 x2 + … + wm xm       Net input 
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Input: 

Customer application = 

Age,  Gender,  Marital status,  Credit limit,  Past payment details,  salary,  

Current debt,  Past debts, Employment status, Years in job, . . . . .,  Years in residence 
 

 

 

Output:  good / bad (customer)  

 

 

1- Is there a formula to solve this problem? 

2- Do we have data? 

3- Does a pattern exist? 

 

 

 

 

 

Credit Approval Example 
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Input: 

Customer application = 

Age,  Gender,  Marital status,  Credit limit,  Past payment details,  salary,  

Current debt,  Past debts, Employment status, Years in job, . . . . .,  Years in residence 
 

 

 

Output:  good / bad (customer)  

 

 

1- Is there a formula to solve this problem? No   

2- Do we have data? Yes   

3- Does a pattern exist? Yes   

 

 

 

 

 

Credit Approval Example 
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Input:     Output:     y =  
0
1

 

 

 

 

 

 

We are looking for a target function:    f:  X    y 

 

 

                X                                      y 

                                           f 

 

              m-dim                            2-dim 
𝑥1 

𝑥𝑚 

𝑋1 

𝑋2 

𝑋𝑛 

Credit Approval Example 

X = 

𝑥1
𝑥2
𝑥3
. .
 . .
 𝑥𝑚

     

Feature: An individual measurable property or characteristic of a phenomenon being observed, 



age gender salary Yrs of 
residence 

Yrs in job … … Current 
debt 

x11 
x21 x31 … … … … xm1 

x12 
x22 x32 … … … … xm2 

x1n 
x2n x3n … … … … xmn 

X1 

X2 

… 

Xi 

 

 

… 

 

Xn 

 

Applicant information 

n: customers 

m: features 

y 

good 

bad 

good 

y1 

y2 

… 

yi 

 

 

… 

 

yn 

Credit Approval Example 

10 
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Formalization 
 

Data: (x1,  y1), (x2, y2), . . . . ., (xN, yN)                   Known historical records  

 

Xi: previous customer’s application records 

yi: customer’s behaviour 

 

We want: to Learn from these data or equivalently get a hypothesis (h) 

 

Hypothesis: A function (h) to approximate the target function 

 

 

g:  X    y 

                                             h             g  ≈ f      

f: unknown 

g: known 

Learning: A process by which we start with h and make it as much as possible close to f (g ≈f).    
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Learning Diagram 

f:  X    y  Unknown target func. 

Training set 

(x1,  y1), (x2, y2), . . . . ., (xN, yN) 

Final Hypothesis  

𝑔: 𝑋 → 𝑦 
𝑔 ≈ 𝑓 

Learning algorithm 

A 

Hypothesis set 

H 

Ideal credit approval function 

Historical records of customers 

Credit approval formula 

Learning Model  

Generate training samples 
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Learning model 

𝑇𝑕𝑒 𝑕𝑦𝑝𝑜𝑡𝑕𝑒𝑠𝑖𝑠 𝑠𝑒𝑡 

𝐻 = 𝑕     𝑔 ∈ 𝐻

𝑇𝑕𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚
𝐴

  

Formalization 
 

g: Final hypothesis 

 

 

 

e.g., 𝐻 = 𝑝𝑒𝑟𝑐𝑝𝑡𝑟𝑜𝑛, 𝑆𝑉𝑀,𝐷𝑁𝑁, 𝐶𝑁𝑁, 𝑒𝑡𝑐.  

 

e.g., A= 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚, 𝐵𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑖𝑜𝑛, 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔   

h1 

 

 

 

… 

… 

g=hk 

 

 

 

 

 

 

 

 

… 

… 

 

hn  
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n 

n: Number of samples 

m: Number of features 

 

m n 

Matrix Representation 
 

𝑋 =  

𝑥11    𝑥21    𝑥31  …………     𝑥𝑛1
𝑥12    𝑥22    𝑥32  …………     𝑥𝑛2

𝑥1𝑖    𝑥2𝑖    𝑥3𝑖  …………     𝑥𝑛𝑖

𝑥1𝑚    𝑥2𝑚    𝑥3𝑚  …………     𝑥𝑛𝑚

 
𝑦 =

𝑦1
𝑦2

𝑦𝑖

𝑦𝑛

 

𝑦𝑖 = -1, +1 

or 

𝑦𝑖 = 0, 1 

or 

𝑦𝑖 = F, T 

14 
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A Simple Hypothesis: 

Perceptron 
 

What does the perceptron do? 

 

 

  𝑤𝑖 𝑥𝑖
𝑚
𝑖=1 > 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑      Approve credit 

 

 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑        Deny credit 

 

 

h(x) = sign  𝑤𝑖𝑥𝑖
𝑚
𝑖=1  − 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑    set of hypothesis 

 

 

                       Credit score 

 

For convenience: 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑                       𝑤0𝑥0 
where   𝑥0  = 1     Artificial feature (coordinate) 

 

 h(x) = sign  𝑤𝑖𝑥𝑖
𝑚
𝑖=0  

 

h1  

g = hk  

Linearly separable   

Final hypothesis 



Feature matrix 

n 

m+1 

n: Number of samples 

m+1: Number of features 

 

Matrix Representation 

In vector form 

 

𝒚 = h(x) = sign 𝒘𝑻𝑿 ,       y: label, 𝒚 :calculated label 

𝑋 =  

𝑥10    𝑥20    𝑥30  …………     𝑥𝑛0
𝑥11    𝑥21    𝑥31  …………     𝑥𝑛1

𝑥1𝑖    𝑥2𝑖    𝑥3𝑖  …………     𝑥𝑛𝑖

𝑥1𝑚    𝑥2𝑚    𝑥3𝑚  …………     𝑥𝑛𝑚

 

n y=

𝑦1
𝑦2

𝑦𝑖

𝑦𝑛

 

𝑦𝑖 = -1, +1 

or 

𝑦𝑖 = 0, 1 

or 

𝑦𝑖 = F, T 

16 
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𝑤 =

𝑤0
𝑤1

𝑤𝑖

𝑤𝑚

 

𝒘𝑻𝑿 =  

𝑋 =  

𝑥10    𝑥20    𝑥30  …………     𝑥𝑛0
𝑥11    𝑥21    𝑥31  …………     𝑥𝑛1

𝑥1𝑖    𝑥2𝑖    𝑥3𝑖  …………     𝑥𝑛𝑖

𝑥1𝑚    𝑥2𝑚    𝑥3𝑚  …………     𝑥𝑛𝑚

 

𝑤0, 𝑤1, 𝑤2, . . 𝑤𝑗, . .    𝑤𝑚   

𝑥10    𝑥20    𝑥30  …………     𝑥𝑛0
𝑥11    𝑥21    𝑥31  …………     𝑥𝑛1

𝑥1𝑖    𝑥2𝑖    𝑥3𝑖  …………     𝑥𝑛𝑖

𝑥1𝑚    𝑥2𝑚    𝑥3𝑚  …………     𝑥𝑛𝑚

 =

𝑧1
𝑧2

𝑧𝑖

𝑧𝑛

 

Matrix Representation 
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Set of hypothesis: h(x) = sign 𝒘𝑻𝑿  ∈ 𝑯 

 

Data: (X1,  y1), (X2, y2), . . . . ., (Xm, ym)                  Current customers’ records and their behaviour  

 

 

Algorithm:  Takes data and  searches for misclassified items, 

 

If sign 𝒘𝑻𝑿𝒏  ≠ yn    then       update the weight vector     w  w +  ∆ w  
 

 

Perceptron Learning Algorithm (PLA) 
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Suppose 𝑦𝑛   =F 𝒘𝑻𝑿𝒏  = + 𝟏,   but    yn  = - 1 

 

 

 

 

 

 

 

Or           𝑦𝑛   =F 𝒘𝑻𝑿𝒏  = − 𝟏,   but    yn  
= + 1 

Perceptron Learning Algorithm (PLA) 
 

w 

X 

w 

X w 

w 

X 
X 

w 

w 
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Perceptron Learning Algorithm (PLA) 
 

PLA iteration (Rosenblatt's initial perceptron rule): 

 

I - Initialize the weights w to 0 or small random numbers 

 

II- For each training sample from (X1,  y1), (X2, y2), . . . . ., (Xm, ym)   

and apply PLA on it: 

 

 1 – Compute output value 𝑦𝑖  

 2 – Update the weights: 

  wj    wj  + ∆wj                      (𝑦
𝑖= ± 1, 𝑦𝑖  = ± 1 ) 

  ∆ wj = 𝜂(𝑦𝑖  −  yi ) 𝑋𝑖 j 
                    0 < 𝜂 ≪ 1      Learning rate  

 

It can be proved that if the data are linearly separable, the iteration  

converges. 
 

 

 

 

 

 



21 

𝒛 =  𝒘𝑻𝑿 = 𝒘𝟎, 𝒘𝟏, 𝒘𝟐, . . 𝒘𝒋, . .    𝒘𝒎    

𝒙𝟏𝟎    𝒙𝟐𝟎    𝒙𝟑𝟎  …………     𝒙𝒏𝟎
𝒙𝟏𝟏    𝒙𝟐𝟏    𝒙𝟑𝟏  …………     𝒙𝒏𝟏

𝒙𝟏𝒊    𝒙𝟐𝒊    𝒙𝟑𝒊  …………     𝒙𝒏𝒊

𝒙𝟏𝒎    𝒙𝟐𝒎    𝒙𝟑𝒎  …………     𝒙𝒏𝒎

 =  

𝑧1
𝑧2

𝑧𝑘

𝑧𝑛

  

𝑦 =   

𝑦1
𝑦2 

𝑦𝑖 

𝑦𝑛 

 

 𝑦 = F(z) = sign(z) =  
1,            𝑧 > 0
−1,      𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 

Matrix Representation 
 

Quantizer: 
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ADAptive LInear NEuron (Adaline) Algorithm 

 

 

 

 

 

 

                     PLA                                       Adeline 

              F(z) = sign(z)                               F(z) = z 

 

 

In Adaline algorithm (Widrow-Hoff rule) the weights are updated based on a linear 

activation function.  

 

 

 

 

 

F(z)  F(z)  

−1 

1 
Fq(z) 

F(z) 
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ADAptive LInear NEuron (Adaline) Algorithm 

 

Minimizing cost functions with gradient descent ("batch" gradient descent): 

 

1 - Define a cost function as the Sum of Squared Errors (SSE): 

 

𝑱 𝒘 =  
𝟏

𝟐
  𝒚𝒊 −𝝓(𝒛𝒊) 

𝟐
𝒊  

 

2-  Use gradient decent optimization algorithm to find weights that minimise 

the cost function and therefore the error.   

 

w= 𝐰+  𝚫𝒘 

𝚫𝒘 = − 𝜼 𝚫𝑱(𝒘) 
 

𝚫𝒘𝒋 = − 𝜼 
𝝏𝑱

𝝏𝒘𝒋
 = 𝜼  𝒚𝒊 −𝝓(𝒛𝒊)𝒊 𝒙𝒊j 

i: Sample index,    j: Feature index 

 

Updates: Based on all samples (batch of samples). In Perceptron updates are 

incrementally after each sample.  



1) Supervised learning 

2) Unsupervised learning 

3) Reinforcement learning 

 

A) Classification Problem 

B) Regression Problem 

24 

Types of Learning 
 



1) Supervised learning: If the outputs of the data are explicitly given, we have 

supervised learning, 

(X1, y1), (X2, y2), ……(Xn, yn)  yi 

Xi    yi 
Previous customer Credit behaviour 

To classify the future customer’s credit 

25 

Types of Learning 
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1 
5 

10 

Supervised learning 
Size 

Mass 25 

1 
5 

10 

Supervised learning 
Size 

Mass 

Learned Model 

? 

1) Supervised learning: The outputs are known. Ex: Vending machine – Coin recognition  

D 

Q 

N 

P 

26 

(X1, y1), (X2, y2), ……(Xn, yn)  

Types of Learning 
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1 
5 

10 

Supervised learning 
Size 

Mass 25 

1 
5 

10 

Supervised learning 
Size 

Mass 

Learned Model 

D 

Q 

N 

P 
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1) Supervised learning: The outputs are known. Ex: Vending machine – Coin recognition  

(X1, y1), (X2, y2), ……(Xn, yn)  

Types of Learning 
 



Unsupervised learning 
Size 

Mass Type 4 

Type 2 

Type 3 

Type 1 

Unsupervised learning 
Size 

Mass 

(X1, y1), (X2, y2), ……(Xn, yn)  
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2) Unsupervised learning: The outputs are not known. Ex: Vending machine – Coin recognition  

Types of Learning 
 



Size 

Mass 
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Types of Learning 

Higher Level Representation of Input Data 
 



Unsupervised learning 
Size 

Mass Type 4 

Type 2 

Type 3 

Type 1 

Unsupervised learning 
Size 

Mass 

(X1, y1), (X2, y2), ……(Xn, yn)  

Types of Learning 
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2) Unsupervised learning: The outputs are not known. Ex: Vending machine – Coin recognition  



3) Reinforcement learning 

Input + some output (but not very clear)  

(Xi, yi)  

Learning about the outputs by: Positive and Negative Rewards 

31 

Types of Learning 
 



3) Reinforcement learning 

Input + some output (but not very clear)  

Backgammon 

(Xi, yi)  

Start with a crazy move  

Win or lose  

Propagate back the credit 

Do this hundred billion times 
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Types of Learning 
 



In classification machine learning the samples are classified in one of two (binary) or 

more (multi) classes and the outputs (y) form a discrete spectrum.  

Example: Classifying the customers of a bank in bad and good credit customers. 

 

In regression machine learning the outputs (y) are continues. 

Example: The amount of the credit.  

33 

Classification vs Regression  
 



34 

Perceptron Algorithm 

in Python 
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Perceptron Algorithm 

in Python 
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Perceptron Algorithm 

in Python 
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Perceptron Algorithm 

in Python 
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Perceptron Algorithm 

in Python 
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Perceptron Algorithm 

in Python 
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Applications and Packages  for Practical Work 

              Open-source high-level programming language 

 

 

Python is an interpreted, object-oriented, high-level programming language. Since there 

is no compilation step, the edit-test-debug cycle is incredibly fast. 

 

https://www.python.org/  

https://www.python.org/downloads/ 

https://docs.python.org/3.6/index.html       (Documentation) 

 

 

 

https://www.python.org/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.python.org/3.6/index.html
https://docs.python.org/3.6/index.html
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwis2-3HoNLfAhUC2IMKHTreAp4QjRx6BAgBEAU&url=https://pngio.com/PNG/575-python-logo-png.html&psig=AOvVaw1DhPh-4BFQOyzfX1hmTT70&ust=1546626800931734
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                       Open-source Python Data Science Platform 

 

 

The open source Anaconda Distribution is the fastest and easiest way to do Python and R 

data science and machine learning on Linux, Windows, and Mac OS X. It's the industry 

standard for developing, testing, and training on a single machine. 

 

https://anaconda.org/ 

https://www.anaconda.com/download/ 

 

 

 

 

 

Applications and Packages  for Practical Work 

https://anaconda.org/
https://anaconda.org/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwicqqidsNLfAhWo6YMKHRi1BHYQjRx6BAgBEAU&url=https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)&psig=AOvVaw3B6ERFrOGYOiWCVXxJy3JE&ust=1546631169853271
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                     Open-source software library  

 

Canopy is a tailor-made for the workflows of scientists and engineers, combining a 

streamlined integrated analysis environment over 450 proven scientific and analytic 

Python packages from the trusted Enthought Python Distribution. Canopy provides a 

complete, self-contained installer that gets you up and running with Python and a library 

of scientific and analytic tools – fast.   

 

https://www.enthought.com/product/canopy/ 

 

Applications and Packages  for Practical Work 

https://www.enthought.com/product/canopy/
https://www.enthought.com/product/canopy/
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjm-fbGttLfAhUR0IMKHXjLAkwQjRx6BAgBEAU&url=https://quintagroup.com/cms/python/canopy&psig=AOvVaw0xO3rlIM_sCq54ymJgYqKd&ust=1546632867409227
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                   Open-source software library  

 

TensorFlow™ is an open source software library for high performance numerical 

computation. Its flexible architecture allows easy deployment of computation across a 

variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to 

mobile and edge devices. Originally developed by researchers and engineers from the 

Google Brain team within Google’s AI organization, it comes with strong support for 

machine learning and deep learning and the flexible numerical computation core is used 

across many other scientific domains. 

 

https://www.tensorflow.org/ 

https://www.tensorflow.org/install/ 

 

conda create --name tensorflow python=3.5  

activate tensorflow  

conda install jupyter  

conda install scipy  

pip install tensorflow-gpu 

Applications and Packages  for Practical Work 

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj92-XbodLfAhXD5oMKHRG7DPcQjRx6BAgBEAU&url=http://induced.info/?s=Get+Started++TensorFlow&psig=AOvVaw00IE_Hzg2JeeVQ_tYwnYu6&ust=1546627245455358
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                     Open-source software library  

 

The open source Anaconda Distribution is the fastest and easiest way to do Python and R 

data science and machine learning on Linux, Windows, and Mac OS X. It's the industry 

standard for developing, testing, and training on a single machine. 

 

https://anaconda.org/conda-forge/keras 

 

conda install -c conda-forge keras 

Applications and Packages  for Practical Work 

https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/keras
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwjs9N70tdLfAhUW3YMKHTwdDEwQjRx6BAgBEAU&url=https://keras.io/&psig=AOvVaw1sFqwS9Dpu2r1CveYlpxLL&ust=1546632695435281
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            Open-source web application  

 

The Jupyter Notebook is an open-source web application that allows you to create and 

share documents that contain live code, equations, visualizations and narrative text. Uses 

include: data cleaning and transformation, numerical simulation, statistical modeling, 

data visualization, machine learning, and much more. 

 

https://jupyter.org/ 

http://jupyter.org/install 

 

Applications and Packages  for Practical Work 

http://jupyter.org/install
http://jupyter.org/install
http://jupyter.org/install
http://jupyter.org/install
http://jupyter.org/install
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjpnP2VodLfAhWh0YMKHX07CvgQjRx6BAgBEAU&url=https://docs.poppy-project.org/en/getting-started/program-the-robot.html&psig=AOvVaw1DhPh-4BFQOyzfX1hmTT70&ust=1546626800931734

