
Machine Learning in Earth Science Problems

Lecture 1 - Learning from Data

University of Toronto, Department of Earth Sciences,

Hosein Shahnas

1

ESS2222

2

 Learning from Data

Y. S. Abu-Mostafa

 Python Machine Learning
S. Raschka, PACKT, Open Source

 Building Machine Learning Systems

with Python Mastering Machine
W. Richert & L. P. Coelho, PACKT, Open Source

 Learning with scikit-learn
G. Hackeling, PACKT, Open Source

 Look at the other relevant books published by PACKT

Some Useful References

3

 Machine Learning and the Feasibility of Learning

 Linear and Nonlinear Models

 Testing, Training, Error and Noise

 Generalization Theory

 The VC Dimension

 Bias-Variance Trade-off

 Overfitting and Regularization

 Support Vector Machine

 Validation

 Kernel Methods

 Random Forest

 Neural Networks

 Convolutional Networks

 Regression Learning

 Multi Class Learning

 Machine Learning in Earth Sciences

Outline of the Course

4

Machine Learning

 Learning Components

 Illustrative Example

 PLA - A simple model

 Adaline Algorithm

 Types of learning

5

Machine Learning: Learning from data (exploring a target function)

Mathematical Aspects: Provides a conceptual framework

Practical Aspects: How to do it in real work

Learning from data

Components of learning – Criteria to be checked:

1- The problem cannot be elaborated mathematically  (F = mg ?)

2- There is data 

3- A pattern exists 

6

Perceptron Rule

F(z) =
1, 𝑖𝑓 𝑧 > q

−1 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

First concept of a simplified brain cell (McCulloch–Pitts (MCP)

neuron,1943)

The first concept of the perceptron learning rule based on the

MCP neuron model (Frank Rosenblatt, 1957)

Z = x.w = wi
𝑛
1 𝑥𝑖 = w1 x1 + w2 x2 + … + wm xm Net input

7

Input:

Customer application =

Age, Gender, Marital status, Credit limit, Past payment details, salary,

Current debt, Past debts, Employment status, Years in job,, Years in residence

Output: good / bad (customer)

1- Is there a formula to solve this problem?

2- Do we have data?

3- Does a pattern exist?

Credit Approval Example

8

Input:

Customer application =

Age, Gender, Marital status, Credit limit, Past payment details, salary,

Current debt, Past debts, Employment status, Years in job,, Years in residence

Output: good / bad (customer)

1- Is there a formula to solve this problem? No 

2- Do we have data? Yes 

3- Does a pattern exist? Yes 

Credit Approval Example

9

Input: Output: y =
0
1

We are looking for a target function: f: X  y

 X y

 f

 m-dim 2-dim
𝑥1

𝑥𝑚

𝑋1

𝑋2

𝑋𝑛

Credit Approval Example

X =

𝑥1
𝑥2
𝑥3
. .
 . .
 𝑥𝑚

Feature: An individual measurable property or characteristic of a phenomenon being observed,

age gender salary Yrs of
residence

Yrs in job … … Current
debt

x11
x21 x31 … … … … xm1

x12
x22 x32 … … … … xm2

x1n
x2n x3n … … … … xmn

X1

X2

…

Xi

…

Xn

Applicant information

n: customers

m: features

y

good

bad

good

y1

y2

…

yi

…

yn

Credit Approval Example

10

11

Formalization

Data: (x1, y1), (x2, y2),, (xN, yN) Known historical records

Xi: previous customer’s application records

yi: customer’s behaviour

We want: to Learn from these data or equivalently get a hypothesis (h)

Hypothesis: A function (h) to approximate the target function

g: X  y

 h g ≈ f

f: unknown

g: known

Learning: A process by which we start with h and make it as much as possible close to f (g ≈f).

12

Learning Diagram

f: X  y Unknown target func.

Training set

(x1, y1), (x2, y2),, (xN, yN)

Final Hypothesis

𝑔: 𝑋 → 𝑦
𝑔 ≈ 𝑓

Learning algorithm

A

Hypothesis set

H

Ideal credit approval function

Historical records of customers

Credit approval formula

Learning Model

Generate training samples

13

Learning model

𝑇𝑕𝑒 𝑕𝑦𝑝𝑜𝑡𝑕𝑒𝑠𝑖𝑠 𝑠𝑒𝑡

𝐻 = 𝑕 𝑔 ∈ 𝐻

𝑇𝑕𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚
𝐴

Formalization

g: Final hypothesis

e.g., 𝐻 = 𝑝𝑒𝑟𝑐𝑝𝑡𝑟𝑜𝑛, 𝑆𝑉𝑀,𝐷𝑁𝑁, 𝐶𝑁𝑁, 𝑒𝑡𝑐.

e.g., A= 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚, 𝐵𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑖𝑜𝑛, 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔

h1

…

…

g=hk

…

…

hn

14

n

n: Number of samples

m: Number of features

m n

Matrix Representation

𝑋 =

𝑥11 𝑥21 𝑥31 ………… 𝑥𝑛1
𝑥12 𝑥22 𝑥32 ………… 𝑥𝑛2

𝑥1𝑖 𝑥2𝑖 𝑥3𝑖 ………… 𝑥𝑛𝑖

𝑥1𝑚 𝑥2𝑚 𝑥3𝑚 ………… 𝑥𝑛𝑚

𝑦 =

𝑦1
𝑦2

𝑦𝑖

𝑦𝑛

𝑦𝑖 = -1, +1

or

𝑦𝑖 = 0, 1

or

𝑦𝑖 = F, T

14

15

A Simple Hypothesis:

Perceptron

What does the perceptron do?

 𝑤𝑖 𝑥𝑖
𝑚
𝑖=1 > 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 Approve credit

 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 Deny credit

h(x) = sign 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 − 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 set of hypothesis

 Credit score

For convenience: 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 𝑤0𝑥0
where 𝑥0 = 1 Artificial feature (coordinate)

 h(x) = sign 𝑤𝑖𝑥𝑖
𝑚
𝑖=0

h1

g = hk

Linearly separable

Final hypothesis

Feature matrix

n

m+1

n: Number of samples

m+1: Number of features

Matrix Representation

In vector form

𝒚 = h(x) = sign 𝒘𝑻𝑿 , y: label, 𝒚 :calculated label

𝑋 =

𝑥10 𝑥20 𝑥30 ………… 𝑥𝑛0
𝑥11 𝑥21 𝑥31 ………… 𝑥𝑛1

𝑥1𝑖 𝑥2𝑖 𝑥3𝑖 ………… 𝑥𝑛𝑖

𝑥1𝑚 𝑥2𝑚 𝑥3𝑚 ………… 𝑥𝑛𝑚

n y=

𝑦1
𝑦2

𝑦𝑖

𝑦𝑛

𝑦𝑖 = -1, +1

or

𝑦𝑖 = 0, 1

or

𝑦𝑖 = F, T

16

17

𝑤 =

𝑤0
𝑤1

𝑤𝑖

𝑤𝑚

𝒘𝑻𝑿 =

𝑋 =

𝑥10 𝑥20 𝑥30 ………… 𝑥𝑛0
𝑥11 𝑥21 𝑥31 ………… 𝑥𝑛1

𝑥1𝑖 𝑥2𝑖 𝑥3𝑖 ………… 𝑥𝑛𝑖

𝑥1𝑚 𝑥2𝑚 𝑥3𝑚 ………… 𝑥𝑛𝑚

𝑤0, 𝑤1, 𝑤2, . . 𝑤𝑗, . . 𝑤𝑚

𝑥10 𝑥20 𝑥30 ………… 𝑥𝑛0
𝑥11 𝑥21 𝑥31 ………… 𝑥𝑛1

𝑥1𝑖 𝑥2𝑖 𝑥3𝑖 ………… 𝑥𝑛𝑖

𝑥1𝑚 𝑥2𝑚 𝑥3𝑚 ………… 𝑥𝑛𝑚

 =

𝑧1
𝑧2

𝑧𝑖

𝑧𝑛

Matrix Representation

18

Set of hypothesis: h(x) = sign 𝒘𝑻𝑿 ∈ 𝑯

Data: (X1, y1), (X2, y2),, (Xm, ym) Current customers’ records and their behaviour

Algorithm: Takes data and searches for misclassified items,

If sign 𝒘𝑻𝑿𝒏 ≠ yn then update the weight vector w  w + ∆ w

Perceptron Learning Algorithm (PLA)

19

Suppose 𝑦𝑛 =F 𝒘𝑻𝑿𝒏 = + 𝟏, but yn = - 1

Or 𝑦𝑛 =F 𝒘𝑻𝑿𝒏 = − 𝟏, but yn
= + 1

Perceptron Learning Algorithm (PLA)

w

X

w

X w

w

X
X

w

w

20

Perceptron Learning Algorithm (PLA)

PLA iteration (Rosenblatt's initial perceptron rule):

I - Initialize the weights w to 0 or small random numbers

II- For each training sample from (X1, y1), (X2, y2),, (Xm, ym)

and apply PLA on it:

 1 – Compute output value 𝑦𝑖

 2 – Update the weights:

 wj  wj + ∆wj (𝑦
𝑖= ± 1, 𝑦𝑖 = ± 1)

 ∆ wj = 𝜂(𝑦𝑖 − yi) 𝑋𝑖 j
 0 < 𝜂 ≪ 1 Learning rate

It can be proved that if the data are linearly separable, the iteration

converges.

21

𝒛 = 𝒘𝑻𝑿 = 𝒘𝟎, 𝒘𝟏, 𝒘𝟐, . . 𝒘𝒋, . . 𝒘𝒎

𝒙𝟏𝟎 𝒙𝟐𝟎 𝒙𝟑𝟎 ………… 𝒙𝒏𝟎
𝒙𝟏𝟏 𝒙𝟐𝟏 𝒙𝟑𝟏 ………… 𝒙𝒏𝟏

𝒙𝟏𝒊 𝒙𝟐𝒊 𝒙𝟑𝒊 ………… 𝒙𝒏𝒊

𝒙𝟏𝒎 𝒙𝟐𝒎 𝒙𝟑𝒎 ………… 𝒙𝒏𝒎

 =

𝑧1
𝑧2

𝑧𝑘

𝑧𝑛

𝑦 =

𝑦1
𝑦2

𝑦𝑖

𝑦𝑛

 𝑦 = F(z) = sign(z) =
1, 𝑧 > 0
−1, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

Matrix Representation

Quantizer:

22

ADAptive LInear NEuron (Adaline) Algorithm

 PLA Adeline

 F(z) = sign(z) F(z) = z

In Adaline algorithm (Widrow-Hoff rule) the weights are updated based on a linear

activation function.

F(z) F(z)

−1

1
Fq(z)

F(z)

23

ADAptive LInear NEuron (Adaline) Algorithm

Minimizing cost functions with gradient descent ("batch" gradient descent):

1 - Define a cost function as the Sum of Squared Errors (SSE):

𝑱 𝒘 =
𝟏

𝟐
 𝒚𝒊 −𝝓(𝒛𝒊)

𝟐
𝒊

2- Use gradient decent optimization algorithm to find weights that minimise

the cost function and therefore the error.

w= 𝐰+ 𝚫𝒘

𝚫𝒘 = − 𝜼 𝚫𝑱(𝒘)

𝚫𝒘𝒋 = − 𝜼
𝝏𝑱

𝝏𝒘𝒋
 = 𝜼 𝒚𝒊 −𝝓(𝒛𝒊)𝒊 𝒙𝒊j

i: Sample index, j: Feature index

Updates: Based on all samples (batch of samples). In Perceptron updates are

incrementally after each sample.

1) Supervised learning

2) Unsupervised learning

3) Reinforcement learning

A) Classification Problem

B) Regression Problem

24

Types of Learning

1) Supervised learning: If the outputs of the data are explicitly given, we have

supervised learning,

(X1, y1), (X2, y2), ……(Xn, yn) yi

Xi  yi
Previous customer Credit behaviour

To classify the future customer’s credit

25

Types of Learning

25

1
5

10

Supervised learning
Size

Mass 25

1
5

10

Supervised learning
Size

Mass

Learned Model

?

1) Supervised learning: The outputs are known. Ex: Vending machine – Coin recognition

D

Q

N

P

26

(X1, y1), (X2, y2), ……(Xn, yn)

Types of Learning

25

1
5

10

Supervised learning
Size

Mass 25

1
5

10

Supervised learning
Size

Mass

Learned Model

D

Q

N

P

27

1) Supervised learning: The outputs are known. Ex: Vending machine – Coin recognition

(X1, y1), (X2, y2), ……(Xn, yn)

Types of Learning

Unsupervised learning
Size

Mass Type 4

Type 2

Type 3

Type 1

Unsupervised learning
Size

Mass

(X1, y1), (X2, y2), ……(Xn, yn)

28

2) Unsupervised learning: The outputs are not known. Ex: Vending machine – Coin recognition

Types of Learning

Size

Mass

29

Types of Learning

Higher Level Representation of Input Data

Unsupervised learning
Size

Mass Type 4

Type 2

Type 3

Type 1

Unsupervised learning
Size

Mass

(X1, y1), (X2, y2), ……(Xn, yn)

Types of Learning

30

2) Unsupervised learning: The outputs are not known. Ex: Vending machine – Coin recognition

3) Reinforcement learning

Input + some output (but not very clear)

(Xi, yi)

Learning about the outputs by: Positive and Negative Rewards

31

Types of Learning

3) Reinforcement learning

Input + some output (but not very clear)

Backgammon

(Xi, yi)

Start with a crazy move

Win or lose

Propagate back the credit

Do this hundred billion times

32

Types of Learning

In classification machine learning the samples are classified in one of two (binary) or

more (multi) classes and the outputs (y) form a discrete spectrum.

Example: Classifying the customers of a bank in bad and good credit customers.

In regression machine learning the outputs (y) are continues.

Example: The amount of the credit.

33

Classification vs Regression

34

Perceptron Algorithm

in Python

35

Perceptron Algorithm

in Python

36

Perceptron Algorithm

in Python

37

Perceptron Algorithm

in Python

38

Perceptron Algorithm

in Python

39

Perceptron Algorithm

in Python

40

Applications and Packages for Practical Work

 Open-source high-level programming language

Python is an interpreted, object-oriented, high-level programming language. Since there

is no compilation step, the edit-test-debug cycle is incredibly fast.

https://www.python.org/

https://www.python.org/downloads/

https://docs.python.org/3.6/index.html (Documentation)

https://www.python.org/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.python.org/3.6/index.html
https://docs.python.org/3.6/index.html
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwis2-3HoNLfAhUC2IMKHTreAp4QjRx6BAgBEAU&url=https://pngio.com/PNG/575-python-logo-png.html&psig=AOvVaw1DhPh-4BFQOyzfX1hmTT70&ust=1546626800931734

41

 Open-source Python Data Science Platform

The open source Anaconda Distribution is the fastest and easiest way to do Python and R

data science and machine learning on Linux, Windows, and Mac OS X. It's the industry

standard for developing, testing, and training on a single machine.

https://anaconda.org/

https://www.anaconda.com/download/

Applications and Packages for Practical Work

https://anaconda.org/
https://anaconda.org/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwicqqidsNLfAhWo6YMKHRi1BHYQjRx6BAgBEAU&url=https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)&psig=AOvVaw3B6ERFrOGYOiWCVXxJy3JE&ust=1546631169853271

42

 Open-source software library

Canopy is a tailor-made for the workflows of scientists and engineers, combining a

streamlined integrated analysis environment over 450 proven scientific and analytic

Python packages from the trusted Enthought Python Distribution. Canopy provides a

complete, self-contained installer that gets you up and running with Python and a library

of scientific and analytic tools – fast.

https://www.enthought.com/product/canopy/

Applications and Packages for Practical Work

https://www.enthought.com/product/canopy/
https://www.enthought.com/product/canopy/
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjm-fbGttLfAhUR0IMKHXjLAkwQjRx6BAgBEAU&url=https://quintagroup.com/cms/python/canopy&psig=AOvVaw0xO3rlIM_sCq54ymJgYqKd&ust=1546632867409227

43

 Open-source software library

TensorFlow™ is an open source software library for high performance numerical

computation. Its flexible architecture allows easy deployment of computation across a

variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to

mobile and edge devices. Originally developed by researchers and engineers from the

Google Brain team within Google’s AI organization, it comes with strong support for

machine learning and deep learning and the flexible numerical computation core is used

across many other scientific domains.

https://www.tensorflow.org/

https://www.tensorflow.org/install/

conda create --name tensorflow python=3.5

activate tensorflow

conda install jupyter

conda install scipy

pip install tensorflow-gpu

Applications and Packages for Practical Work

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj92-XbodLfAhXD5oMKHRG7DPcQjRx6BAgBEAU&url=http://induced.info/?s=Get+Started++TensorFlow&psig=AOvVaw00IE_Hzg2JeeVQ_tYwnYu6&ust=1546627245455358

44

 Open-source software library

The open source Anaconda Distribution is the fastest and easiest way to do Python and R

data science and machine learning on Linux, Windows, and Mac OS X. It's the industry

standard for developing, testing, and training on a single machine.

https://anaconda.org/conda-forge/keras

conda install -c conda-forge keras

Applications and Packages for Practical Work

https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/keras
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=2ahUKEwjs9N70tdLfAhUW3YMKHTwdDEwQjRx6BAgBEAU&url=https://keras.io/&psig=AOvVaw1sFqwS9Dpu2r1CveYlpxLL&ust=1546632695435281

45

 Open-source web application

The Jupyter Notebook is an open-source web application that allows you to create and

share documents that contain live code, equations, visualizations and narrative text. Uses

include: data cleaning and transformation, numerical simulation, statistical modeling,

data visualization, machine learning, and much more.

https://jupyter.org/

http://jupyter.org/install

Applications and Packages for Practical Work

http://jupyter.org/install
http://jupyter.org/install
http://jupyter.org/install
http://jupyter.org/install
http://jupyter.org/install
https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjpnP2VodLfAhWh0YMKHX07CvgQjRx6BAgBEAU&url=https://docs.poppy-project.org/en/getting-started/program-the-robot.html&psig=AOvVaw1DhPh-4BFQOyzfX1hmTT70&ust=1546626800931734

