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Stratosphere–Troposphere Dynamical Coupling

Steven Hardiman

This thesis is concerned with dynamical coupling between the stratosphere and

troposphere.

The first part of the thesis examines mechanisms whereby dynamical pertur-

bations to the upper stratosphere can lead to a significant response in the lower

stratosphere, looking particularly at how this response is determined by the extra-

tropical dynamics. A one dimensional model is used to show that the response

is much greater when the external parameters are such that the flow has multiple

stable states. The same principle is shown to apply to a fully three dimensional

flow and does not depend qualitatively on the representation of the troposphere and

tropospheric wave forcing. The dependence of the response on the height of the

applied dynamical perturbation, the amplitude of planetary wave forcing, and the

relaxation to radiative equilibrium temperatures is considered.

In the second part of the thesis we consider the interhemispheric differences in

the extratropical seasonal cycle and suggest that resonance of topographically forced

waves with free travelling planetary waves could be in part responsible for these

differences. The seasonal cycle in mass upwelling in the tropical lower stratosphere

is also considered. In particular we look at the differences in this upwelling caused

by the strength and location of tropospheric wave driving, the thermal relaxation

timescale of the atmosphere, baroclinic instability, and the seasonal cycle in the

tropospheric radiative equilibrium temperature field.

Finally we consider the interannual variability seen in the tropical mass upwelling.

We quantify the different parts of this variability – the part that can be considered

forced variability and the part that arises due to internal variability. We suggest

that the high forced variability seen in the mass upwelling may be due to it being

linked, via extratropical wave driving, to sea surface temperatures.
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Chapter 1

Introduction

1.1 Background

A traditional view is that the stratosphere responds passively to dynamical driv-

ing from the troposphere (e.g. upward propagation of planetary waves forced in the

troposphere). However, there is now evidence that this is not the case and that

the troposphere and stratosphere are dynamically coupled, each one affecting the

other. This raises several questions: How do changes in the stratosphere affect tropo-

spheric climate and weather? Would including more model levels in the stratosphere

of dynamical general circulation models (GCMs) allow them to better predict the

troposphere? Where exactly should we put these levels for the best predictions?

There are also implications for medium-range weather forecasting, namely can we

use the state of the stratosphere to predict change in the troposphere? It also high-

lights the need for a better understanding of the stratosphere–troposphere coupled

system.

I do not address many of the above questions directly, but attempt to better

understand the nature of the coupled stratosphere–troposphere dynamics. This the-

sis considers mechanisms whereby perturbations in the stratospheric circulation can

propagate downward through the stratosphere to the tropopause and thus poten-

tially alter the circulation of the troposphere. The influence of the seasonal cycle

may be relevant to this in the real atmosphere. In the second part of this thesis some

aspects of the seasonal cycle of the stratosphere and troposphere are considered.

1.2 Downward influence: Chapters 2–3

Can stratospheric anomalies affect surface weather and climate? It is now well known

that the answer to this question is yes. What is less well known are the mechanisms
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8 CHAPTER 1. INTRODUCTION

by which stratospheric anomalies propagate downward through the stratosphere and

penetrate the troposphere.

Baldwin and Dunkerton (2001) showed evidence for the downward phase prop-

agation of anomalies in the stratospheric circulation. The anomalies were seen to

propagate down through the stratosphere and were followed by anomalies in the

tropospheric circulation. This shows that the state of the stratosphere at a given

time may be used to predict the state of the troposphere at later times.

However Plumb and Semeniuk (2003), hereafter PS, studying the dynamics of

wave mean-flow interaction in the extratropical stratosphere using a Holton–Mass

model, showed that the response to time-varying Rossby wave forcing at the lower

boundary took the form of this downward phase propagation (i.e. downward mi-

grating zonal wind anomalies, see figure 1.1). PS made the point that downward

migration could therefore not be taken to imply any upper stratospheric forcing

for such anomalies. PS also showed that the downward migration did not require

downward wave reflection (which they eliminated using a WKB approximation for

the waves), nor did it require vertical non-locality in the zonal mean dynamics. The

QBO is a good example of this downward propagation in a flow that is forced from

below (Plumb 1977).

It is therefore important to make the distinction between the downward phase

propagation due to a disturbance (which implies upward group velocity for Rossby

waves) and downward group propagation (in other words the downward propagation

of real information, due to a disturbance in the stratosphere). The former influence

on the troposphere, although important as a predictor of tropospheric change, may

be influenced by conditions within the troposphere itself. The latter will not be,

until the disturbance reaches the troposphere.

Figure 1.2, taken from Reichler et al. (2005), is helpful in demonstrating how

easy it can be to confuse one form of downward propagation with another. How

do we interpret this figure? Does it suggest a single stage where wave driving from

the troposphere travels up into the stratosphere and back into the troposphere, in

which case the forcing certainly comes from the troposphere? Or does it suggest two

stages where wave driving from the troposphere breaks in the stratosphere caus-

ing an anomaly in the stratospheric circulation, and this anomaly then propagates

downwards into the troposphere? In this case we could ignore the first stage and

simply apply an equivalent anomaly directly to the stratosphere – definitely down-

ward propagation of information. It will turn out that we interpret this figure in

two stages – the downward propagation seen in our experiments (where forcing is

applied in the stratosphere) looks nothing like the downward phase anomalies shown
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Figure 1.1:
Downward migration of geopotential height and zonal wind anomalies caused by time
dependent wave forcing at the lower boundary. Figure from Plumb and Semeniuk
(2003)

in PS.

PS does not rule out (or indeed say anything about) the possibility for down-

ward propagation of disturbances imposed in the upper stratosphere (the downward

propagation of information). There have, however, been several studies on the mech-

anisms by which these disturbances can propagate down to the troposphere. They

could do so due to the non-local nature of PV inversion (Hartley et al. 1998), the

physical mechanism for this being the rapid propagation of inertio–gravity waves

required to maintain a state of geostrophic and hydrostatic balance (Haynes 2005).

However, Charlton et al. (2005) show that the troposphere responds to changes in

the stratosphere in a way that cannot be completely explained by large-scale ad-

justment of the tropospheric flow to the stratospheric PV distribution. Rossby wave

refraction in the lower stratosphere (Hartmann et al. 2000, Limpasuvan and Hart-

mann 2000, Chen and Robinson 1992) and reflection from higher in the stratosphere

(Perlwitz and Harnik 2003) are mechanisms by which the state of the stratosphere

can affect the tropospheric flow. The waves may break in the stratosphere apply-

ing a forcing to the zonal flow (Christiansen 2003). Alternatively, the stratospheric

perturbation in question could be due to solar UV heating (Kodera et al. 1990) or

indeed any thermal perturbation (Polvani and Kushner 2002, Kushner and Polvani

2004) applied directly to the stratosphere.

In chapters 2 and 3 we will explain and investigate a different mechanism whereby

stratospheric anomalies propagate downward through the stratosphere.



10 CHAPTER 1. INTRODUCTION

Figure 1.2:
Wave propagation into the troposphere, forced from the troposphere. One stage or
two stages? Figure from Reichler et al. (2005)

We investigate this mechanism using the same 1D model as PS (chapter 2) so

that it is possible to see which changes are causing which effects, and also using a 3D

mechanistic model to check that our results hold in that more realistic case (chapter

3). In the experiments a perturbation is applied to the model stratosphere, and

the affect of this on the flow at lower altitudes is analysed. By directly perturbing

the stratosphere and watching the change below we can be sure that what we see

is downward propagation of information and not simply downward phase propaga-

tion due to forcing from below. Understanding the mechanisms for the downward

influence of such disturbances is directly relevant to understanding the physical ef-

fects of the solar cycle (which are largely confined to the upper stratosphere) on the

circulation in the lower stratosphere and troposphere.

The way in which upper atmospheric anomalies affect the troposphere is split

into two phases. First information propagates downwards through the stratosphere.

There is then an interaction between the lower stratosphere and upper troposphere.

In this work we focus on the first phase.

We show that indeed it is possible, in some circumstances, for a significant down-

ward influence to occur from perturbations in the upper stratosphere, and further

that the state of the stratosphere is very important to the amount of downward

influence seen (contrary to the conclusions of Christiansen (2003) which instead

considers the growth of stratospheric influence in the troposphere due to instability

in the troposphere). We therefore conclude that the state of the stratosphere, and

any perturbations to the flow in the stratosphere, cannot be ignored.
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Finally it should be mentioned that the stratospheric perturbation reaching the

troposphere need not be large in order for it to affect the surface weather and

climate in a large way. This is because it is possible that the internal dynamics of

the troposphere would amplify small dynamical signals from the stratosphere (Song

and Robinson, 2004).

1.3 Seasonal and interannual variability: Chap-

ters 4–5

Although all the experiments in chapters 2–3 ignore the effects of a seasonal cycle,

the real troposphere responds to perturbations from the stratosphere under the

influence of a seasonal cycle. A better understanding of the nature of the seasonal

cycle and interannual variability seen in the stratosphere and troposphere is thus

important. The interhemispheric differences seen in the winter stratosphere, and

the seasonal cycle and interannual variability in mass upwelling in the tropical lower

stratosphere are considered in chapters 4–5.

Interhemispheric differences between seasons (in particular the difference between

northern hemisphere winter and southern hemisphere winter) are due to a number of

factors including different surface temperatures (due to the high altitudes and high

surface albedo of the Antarctic) and different amounts of dynamical wave forcing

(due to the larger land mass in the northern hemisphere). Yoden (1989) simulated

the difference between the cooler southern hemisphere winters and the warmer, more

disturbed, northern hemisphere winters using a simple 1D model. By using different

values of wave forcing, winters typical of both northern and southern hemispheres

were observed. In chapter 4 we take these experiments further, and suggest that a

resonance between the wave forcing and free travelling planetary waves could be the

reason for some runs being more disturbed.

The global scale stratospheric meridional circulation, partially responsible for

chemical distribution within the stratosphere and known as the Brewer–Dobson cir-

culation, also displays a seasonal cycle. The mass flux upwelling in the tropical

lower stratosphere is a good indication of the strength of the entire Brewer–Dobson

circulation. The reason for a seasonal cycle existing on the equator is not fully un-

derstood. It is well established that the circulation is driven by ‘gyroscopic pumping’

in which wave-induced zonal forces and coriolis forces cause air to move poleward.

The zonal forces are measured by the so called Eliassen–Palm flux divergence (EP

flux divergence). However, in the tropics where coriolis forces are relatively weak,

the way the pumping action works is less clear cut and not fully understood. In
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particular the relative importance of the EP flux divergence in extratropical versus

tropical latitudes is unclear. Yulaeva et al. (1994), Butchart and Scaife (2001), and

Randel et al. (2002), emphasise the extratropical EP flux divergence, although Kerr-

Munslow and Norton (2006) emphasise the tropical. Furthermore the mechanisms

whereby northern hemisphere EP flux divergences are stronger than southern are

not entirely clear. The second part of chapter 4 attempts to clarify some of these

issues.

We also consider the interannual variability in this mass upwelling. A source of

wave forcing contributing to this variability may be sea surface temperatures (SSTs).

There is evidence to suggest that warmer SSTs might cause a stronger stratospheric

circulation (Manzini et al. 2006, Zeng and Pyle 2005). There is also evidence to

suggest that warmer SSTs result in a warmer stratospheric polar vortex (Braesicke

and Pyle 2004). In addition, it is possible that the QBO of the zonal wind in the

tropics has an effect on mass upwelling in the tropical lower stratosphere (for exam-

ple, Butchart et al. 2003 shows that the QBO affects tropical ozone concentrations).

In chapter 5 we will consider the impact of the QBO and SSTs on the tropical lower

stratosphere and suggest a mechanism whereby warmer SSTs lead to greater mass

upwelling there, thus implying that they alter the strength of the Brewer–Dobson

circulation of the stratosphere. In agreement with Yulaeva et al. (1994) the mech-

anism described in chapter 5 shows that the predictability of the temperature in

the tropical lower stratosphere is not due solely to its predictability in the tropical

troposphere, but also to the global scale dynamics underlying the global scale EP

flux divergence.



Chapter 2

1D model experiments

2.1 Introduction

The purpose of this chapter is to establish a basic mechanism whereby a perturbation

in the stratosphere at high altitudes can affect the dynamics at lower altitudes in

the stratosphere and potentially, therefore, affect the dynamics of the troposphere.

We aim to understand which conditions in the real atmosphere will lead to this

mechanism being important.

Although a 1D model is not physically realistic it does allow one to see exactly

which changes are causing which effects. It is easy to see exactly how the downward

influence of an imposed disturbance is affected by any given variable and hence

to begin to understand how a mechanism works. It also runs very fast allowing

many experiments and requiring limited computer power. It is also easy to change

a boundary condition or method by which waves are generated in a 1D model and

hence to test the robustness of a mechanism. Of course, a mechanism should then

be tested using a 3D model to ensure it applies to that more physically realistic case,

and this is the subject of the next chapter.

As mentioned above, it is already known that the stratosphere can affect the

troposphere through a change in the PV distribution of the stratosphere, since the

inversion operator giving dynamical fields from PV is non-local. It is also known

that Rossby waves can be refracted or reflected by the stratosphere thus having an

impact on the troposphere. The mechanism described in this chapter is distinct

from both of these and it involves the non-linear two way interaction between waves

and zonal mean flow.

It is suggested that, if this mechanism is important, then improved resolution in

the stratosphere and improved gravity wave parametrisation schemes (with a model

extending beyond the top of the stratosphere) will greatly help computer models to

13



14 CHAPTER 2. 1D MODEL EXPERIMENTS

predict the dynamics of the troposphere.

2.2 The 1D model

The model used is that of Holton and Mass (1976), as described in PS, to which

the reader is referred for details. It is a severely truncated one-dimensional model,

completely specified by evolution equations for the quasi-geostrophic potential vor-

ticity (PV) perturbation q(z, t) and the mean-shear contribution to the PV gradient

Qy(z, t) (i.e. not including β). The evolution of the geopotential height Φ(z, t) and

zonal mean flow U(z, t) are governed by the evolution of q, Qy, and the Eliassen–

Palm flux (hereafter EP flux) F (z, t). The EP flux describes the momentum flux due

to planetary-scale Rossby waves, within the so-called transformed Eulerian-mean de-

scription of wave–mean flow interaction (e.g. Andrews et al. 1987). The model equa-

tions are

∂q

∂t
= −ikγUq − i

gk

f
(β + γQy)Φ − g

ρ

∂

∂z

(

ρ
αf

N2

∂Φ

∂z

)

, (2.1)

the wave PV equation, which is time stepped to find q,

∂Qy

∂t
=

π2

ρL2

∂F

∂z
+

1

ρ

∂

∂z

[

ρ
αf 2

N2

∂

∂z
(U − Ue)

]

, (2.2)

the mean PV equation, which is time stepped to find Qy. The wave PV is related

to Φ by

q = −g
f

(

k2 +
π2

L2
− 1

ρ

∂

∂z
ρ
f 2

N2

∂

∂z

)

Φ , (2.3)

the EP flux is

F = γρ
g2k

2N2
Re

(

iΦ
∂Φ∗

∂z

)

, (2.4)

and the mean PV gradient is related to U by

Qy =
π2

L2
U − C2

ρ

∂

∂z

(

ρ
f 2

N2

∂U

∂z

)

. (2.5)

The coefficient C is introduced for reasons to emerge in section 2.7. However, one

normally takes C = 1, as in Holton and Mass (1976) and PS, so that the equations

conform to standard quasi-geostrophic dynamics.

Here z is log-pressure height, ρ = ρ0e
−z/H is the basic state density where H

is a standard nominal density scale height taken as 7km, the radiative equilibrium
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profile of the zonal wind is given by Ue = (10 + 2z) m s−1 (z measured in nominal

km), α = [1.5+tanh((z−35)/7)]×10−6s−1 is the rate of Newtonian cooling at which

the mean flow relaxes towards the radiative equilibrium profile Ue, g is acceleration

due to gravity, f is the Coriolis parameter at 60◦N, γ = 8/(3π) is the projection of

sin2(πy/L) onto sin(πy/L) (we keep only this mode in the y direction), L = πa/3 is

the latitudinal scale of the PV anomaly (the β channel width), N = 2 × 10−2s−1 is

the buoyancy frequency, C determines the non-locality of the zonal mean dynamics,

and β = ∂f/∂y. Also

k = s/(a cos(π/3)) (2.6)

where a is the earth’s radius (a = 6400km) and s, the zonal planetary wavenumber,

is usually taken to be 2 (we keep only one wavenumber).

The model is centred at 60◦N with a domain of 70km between the upper and

lower boundaries. We use a time step of 0.05 days and a vertical resolution of 0.5

km. The model is stratosphere only. We include the dynamics of the troposphere

by specifying the geopotential height Φ = Φ0 and zonal flow U = U0 on the lower

boundary. We take ∂Φ
∂z

→ 0 and ∂U
∂z

→ 0 at the top boundary.

2.3 Problems with a WKB approach

Following PS any downward influence due to wave reflection can be ruled out by

imposing a WKB approximation for the waves rather than by solving for them from

the full equations. The ability to remove one possible source of downward influence

is the motivation for attempting to use this approximation.

In the WKB approximation

(

Φ

q

)

= Re

(

Φ(z)

q(z)

)

exp

(

z

2H
+

∫ z

0

im(z
′

)dz
′

)

(2.7)

with Φ and q slowly varying in z. The equation for the EP flux becomes:

F (z) = F (0)exp

[

−
∫ z

0

Λ(z
′

)dz
′

]

(2.8)

where

Λ(z) =
α

γkUm

(

m2 +
1

4H2

)

m(z) =
N

f

√

β + γQy

γU
− k2 − π2

L2
− f 2

4N2H2
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The only complicated issue is what to do when the vertical wave number, m,

becomes imaginary. This is dealt with in two cases. If m→ ∞ this means that the

wave is completely attenuated, so the EP flux is set to zero above that height. If m2

changes sign through 0, the EP flux is kept constant in height until m2 > 0 again.

This all follows PS.

In later sections it will become apparent that, not only can the Holton–Mass

model attain a steady or a vacillating stable state (for time independent lower

boundary wave forcing), but that these vacillations are crucial to any significant

downward influence by the mechanism that will be described. For now it is suffi-

cient to note that vacillations can exist in this WKB model in the same way that

they exist for fully calculated waves. Waves act as a drag on the mean flow, causing

U to become smaller. Once U becomes very small, Λ(z), becomes large and the

wave is attenuated (and hence trapped below that height) allowing U to relax back

to a background profile Ue thus allowing waves to propagate upwards again.

Unfortunately it seems that this approximation within this 1D model is too crude

to be usable. No matter how high the model resolution is increased, vacillations

occur for different values of lower boundary wave forcing and not in any regular or

obviously resolved way. There is no sign of the model converging as resolution is

increased.

Therefore this approximation is abandoned and in what follows the waves are

calculated from the full equations given in the previous section.

2.4 Vacillations in the Holton–Mass model

As mentioned in the previous section, the Holton–Mass model can attain steady and

vacillating stable states when the lower boundary wave forcing is time independent.

In a steady state, the two terms on the right hand side (rhs) of equation (2.2) exactly

balance so that the difference between the equilibrium flow profile Ue (attained from

a background temperature profile Te by thermal wind balance) and the steady state

profile U that is observed, balances the constant wave driving (due to planetary

waves breaking as they propagate upwards).

Despite the lower boundary wave forcing being time independent it is also pos-

sible for vacillations to be internally generated. Their period will depend on the

amplitude of the wave forcing. What occurs is the following. Breaking waves act

as a drag on the mean flow, causing the zonal mean wind (U) to become weaker

eastward (and sometimes westward). Due to the Charney–Drazin criteria (see An-

drews et al. 1987), once U becomes westward at a certain height (or, more precisely,
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becomes more westward than the phase speed of the driving waves) the forced plane-

tary waves become trapped below this height. This allows U to relax to Ue, becoming

eastward once again, and the pattern starts over.

Yoden (1987(a)) (hereafter Y87) investigated the values of lower boundary wave

forcing for which these states are stable. He performed several model runs with

a Holton–Mass model using many different initial profiles for the zonal wind (U).

Using the amplitude of wave forcing at the lower boundary, Φ0 (the prescribed value

of the geopotential height on the lower boundary), as a bifurcation parameter, he

mapped out a bifurcation diagram detailing which states (steady or vacillating) are

stable for which values of Φ0. This diagram is shown in figure 2.1(b) in which

Yoden’s HB denotes the present Φ0. It is important to note that for certain values

of Φ0 both steady and vacillating states are stable. The different flow profiles seen

in the steady state, and the state that bifurcates to vacillations are shown in figure

2.1(a).

Since I have implemented the Holton–Mass model in a slightly different parame-

ter regime to Y87, the bifurcation points in my model occur at different values of Φ0.

The steady state ceases to exist when Φ0 increases to 119m in my implementation.

The vacillating state exists above Φ0 ≈ 50m. The steady state velocity field is shown

in figure 2.2(a) and the vacillating state is shown in figure 2.2(b). Following Charney

and DeVore (1979), we refer to the steady state velocity as that stable state close

to radiative equilibrium (Yoden’s state A in figure 2.1(a)), and the vacillating state

velocity field (Yoden’s state C in figure 2.1(a), and the vacillations defined in the

figure caption as C’ – whichever is stable for the given value of Φ0) as that far from

radiative equilibrium.

2.5 Downward propagation experiments

To investigate the downward propagation of information through the stratosphere, a

disturbance has to be introduced at high altitudes, and the response at low altitudes

recorded. This disturbance can be introduced either by perturbing the velocity field

(the zonal mean zonal wind) or by adding an extra forcing to the rhs of equation

(2.2). In what follows we focus on the former method.

In the following experiments an initial 500 days are allowed for the model to settle

to its natural state, which is either steady, or oscillatory with periodic vacillations

of wave amplitude and mean flow. On day 500 of the integration the velocity field is

disturbed such that U → (U − 20)m s−1 for z between 30 and 40 km (let ∆U be the

imposed disturbance to U , so equal to 20m s−1 here). Results are found to be quite
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Figure 2.1:
(a) Steady zonal wind profiles and, (b) bifurcation diagram of stable states in the
Holton–Mass model. Figures from Yoden (1987(a)) (using a slightly different pa-
rameter regime to the one used in this chapter). Stable state A is close to radiative
equilibrium, stable state C is far from radiative equilibrium. State B is unstable.
HB denotes the present Φ0. In (b) all the states A are stable, all the states B are
unstable, and the states C for HB > 59m are all unstable, the amplitude of the
resulting stable vacillations (C’, say) being shown by the vertical bars.
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Figure 2.2:
(a) Zonal wind profile for steady regime (Φ0 = 118m) and, (b) flow evolution for
zonal wind, U (m s−1), in vacillating regime (Φ0 = 119m) in the current implemen-
tation of the Holton–Mass model. In figure (b) red contours correspond to positive
values of U and blue contours to negative values.
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insensitive to the height of the upper discontinuity, which can be taken to be the

top boundary. (It should be mentioned that the fact that U is made discontinuous

was found not to matter. Indeed the same results as we present here were found by

adding a forcing in the stratosphere such that U was varied in a continuous way –

see section 2.6. See also section 3.7). In each experiment the lower boundary wave

forcing Φ0 is kept constant. We consider how the response at low altitudes to the

imposed disturbance changes with Φ0. For each chosen value of Φ0 a second run is

made with no disturbance to the velocity field, and the difference between the two

runs is calculated and analysed. In all cases the initial velocity profile U(z, 0) = Ue

is used. The results for some chosen values of Φ0 are shown in Figure 2.3. (Note

that the height in km is not measured from the ground, but is measured from the

lower boundary of this stratosphere only model).

We see from Figure 2.3(a-c) that for 0m 6 Φ0 < 119m, when for our chosen initial

profile of U the solution branch found is the steady state, the dynamics does not

support any clear downward propagation. In this regime there is little dependence

of the change the imposed disturbance causes to the zonal velocity field on the value

of Φ0. All we see is the response of the zonally symmetric dynamics (Φ0 = 0),

with some weak modification due to increased wave forcing. The zonal wind U

simply relaxes, radiatively, back to its equilibrium profile. Theory for the zonally

symmetric dynamics shown in figure 2.3(a) has been considered in Dickinson (1968)

and Haynes et al. (1991). As we might expect, in the absence of any wave forcing

(figure 2.3(a)), the time the disturbance lasts for is inversely proportional to α, the

rate of Newtonian cooling. When wave forcing is present it also affects the timescale

of the disturbance causing the flow to re-equilibrate to a steady state slower than in

the zonally symmetric case. This wave forcing effect becomes less noticeable as α is

increased, and is negligible for α ≥ 2.5.

We can determine whether or not this response (shown in figures 2.3(a)-(c))

to the applied disturbance is linear by altering the magnitude of the disturbance.

Figure 2.4 shows the response (for Φ0 = 118m) with a change in U of 10m s−1 and

30m s−1 (contours plotted are 0.5 and 1.5 those used in figure 2.3(c) respectively). It

can be seen that the zonally symmetric response is linear. The decay rate and period

of the small vacillations due to increased wave forcing also appears linear. However,

the amplitude of these vacillations is not. It increases more than a linear response

would with increased disturbance magnitude (it also increases if we decrease α).

Considering further these small vacillations we look at how they alter with chang-

ing Φ0. It can be seen from figures 2.3(b)-(c) that the period of these small vacilla-

tions is roughly independent of Φ0. In fact it increases very slightly with increasing
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Figure 2.3:
The velocity field is perturbed such that U → (U -∆U)m s−1 for 30km < z < 40km
(∆U = 20m s−1), and the change in U that this causes is shown for different values
of Φ0. It can be seen that if the unperturbed solution is a steady state (Φ0 6

118m) then the disturbance dies out quickly, but if the unperturbed solution is
vacillating (Φ0 > 118m) the disturbance shifts the phase of the vacillations causing
the downward influence (i.e. change in U) to be greater and persist for all later
times.
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Figure 2.4:
As in figure 2.3(c), but ∆U now 10m s−1 and 30m s−1.

Φ0, going from 25.0 days at Φ0 = 50m to 25.9 days at Φ0 = 100m and 27.2 days at

Φ0 = 118m. It can also be seen that the amplitude of these vacillations increases

with Φ0.

Similar small vacillations are seen if we look at the EP flux field, F , rather than

U . We can show that these small vacillations are a wave mean-flow interaction effect,

and not a wave only effect. Just after the perturbation is applied to U , we set U to

be a constant value (either the value it has at the time, or the value it had before the

perturbation was applied). Figure 2.5 shows that the vacillations disappear from F

in both cases (compare with section 2.11.4 where we do find a wave only effect).

Increasing Φ0 from 118m to 119m alters the stable equilibrium state from a steady

state to a vacillating state. From figure 2.3(d) we see that once we are perturbing

a vacillating state, the perturbation alters the phase of the underlying vacillations

and this causes a much more significant downward influence, and one that lasts for

longer times. By comparing figure 2.3(d) to figure 2.2(b) we see that the largest

influence occurs during the most westward part of the vacillations. This response is

not linear. Increasing the size of applied perturbation causes the phase shift in the

vacillations to be greater, thus the response (change in U) is greatest at different

times (compare figure 2.3(d) to figure 2.6).

2.6 Multiple state regimes

As already mentioned, for some values of Φ0 multiple states (i.e. steady and vac-

illating) can exist for the same values of the external parameters so that choosing
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Figure 2.5:
Figures show EP flux, F . Contours used are [-2.68, -1.34, 1.34, 2.68] 10−10kg s−2.
Blue contours show negative values and red contours show positive. Here Φ0 =
118m. As before the perturbation imposed on U is U → (U − 20)m s−1 for 30km
< z < 40km.
(a) shows normal evolution due to perturbation,
(b) has U kept constant with perturbed value,
(c) has U kept constant with unperturbed value.
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Figure 2.6:
As in figure 2.3(d), but ∆U now 30m s−1. Notice that this larger perturbation has
caused a more significant shift in the phase of the vacillations.

different initial profiles for the zonal wind can lead to different states being attained

in a model run (Y87).

In the present model, for any value of Φ0 such that 50m < Φ0 < 119m, steady

and vacillating states are both stable (note that these values are slightly different to

those given in Y87 since we use slightly different values of the external parameters).

By applying a perturbation at high altitudes (using a larger disturbance magnitude

than that used in figure 2.3) it is found that we can force a model run from one of

these states to the other. This greatly increases how much response is caused at low

altitudes by the high level perturbation, and how long the response lasts.

We perform an experiment similar to that in section 2.5. Setting U(z, 0) = Ue

and subtracting ∆Um s−1 from the zonal mean velocity field from a height zc up to

the top boundary at time t = 0 causes such a transition between states. (The state

obtained is the vacillating one, when the unperturbed system chooses the steady

state. By looking at the flow profiles in figure 2.1(a) it seems plausible that for

a perturbation that acts to decrease U (and so simulate wave drag) the transition

caused will always be from steady state to vacillating state. This is found in all

known cases.) Figure 2.7 shows an example, showing the perturbed velocity field

(to make it clear what is happening, the perturbation in this figure is applied at

t = 100 days and not t = 0).

It can be seen that the downward influence caused by the transition can be

measured in tens of metres per second (anywhere from ∼ 20m s−1 to ∼ 60m s−1) as

distinct from the fractions of metres per second caused by a disturbance that acts
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Figure 2.7:
A perturbation to the velocity field (U → (U − ∆U)) is made above a height zc

(varied). In experiments this perturbation is made at t = 0, but it is made at
t = 100 days here to make it clear what is happening. As shown, disturbing the
velocity field at high altitudes can cause a jump between solution branches (i.e. from
steady state to vacillations. Here Φ0 = 115m.

to shift a vacillation or temporarily disturb a steady state.

We can quantify how the critical value ∆Uc of ∆U , that is the minimum amount

of disturbance needed to cause the transition between states, depends on the height,

zc, above which it is applied. For ∆U < ∆Uc, the perturbation causes a weak

response before the zonal wind relaxes back to a steady state. There is minimal

downward influence (as in figure 2.3(a-c)).

We now consider the response for different values of zc. Figure 2.8(a) shows ∆Uc

plotted against zc for 10km 6 zc 6 40km. This curve appears roughly exponential,

and this is confirmed (at least within the range of zc considered) by figure 2.8(b)

which shows ρ∆Uc plotted against zc. This graph is consistent with the long time

limit response to a prescribed zonal force that is ‘switched on’, detailed in Haynes

et al. (1991), in which ρ × change in U is constant below the level of the forcing.

Thus it seems likely that, in the present experiments, a given magnitude of response

ρ× change in U below the level of perturbation, zc, characterises a transition from

steady state to vacillations, regardless of the value of zc. Thus perturbations at

arbitrarily high altitudes can be effective if ∆U scales like ρ−1. Another set of ex-

periments were performed where a perturbation was applied by adding an additional

forcing S to the rhs of equation (2.2), instead of perturbing the velocity field. It was

found that critical values of ρS do not increase monotonically with zc, consistent
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Figure 2.8:
(a) Minimum amplitude of perturbation to U (∆Ucm s−1) at t = 0 required to
cause transition between solution branches plotted against height (zc) above which
it is applied,
(b) Perturbation weighted by basic state density (ρ∆Uc) plotted against height (zc)
above which it is applied.

with figure 2.8(b). Hence this result is not dependent on how the perturbation is

imposed. It should be mentioned that linear Rossby waves can only grow to a finite

amplitude before deforming irreversibly, i.e. breaking, and thus cannot grow indef-

initely in velocity amplitude ∝ ρ−1/2 with height. It would therefore be wrong to

conclude that any given Rossby wave would affect flow evolution in the troposphere

in the same way regardless of the height at which it breaks.

An important point to note from the above experiments is that, due to the non-

linear nature of the dynamics, a small change in the initial conditions can mean a very

large difference in the influence caused at lower altitudes by an imposed disturbance.

For example, increasing Φ0 by 1m causing the stable state to be vacillating rather

than steady, or increasing the magnitude of the imposed disturbance ∆U by 1m

s−1 such that a steady state is not regained but a transition to vacillations occurs,

the downward influence our perturbation causes is changed greatly. This sensitive

dependence to initial conditions has been seen in recent experiments using three

dimensional models (e.g. Gray et al. 2003).

This sensitivity suggests that to accurately simulate the atmosphere in com-

puter models (and a difference of 20m s−1 in the tropospheric zonal winds is sig-

nificant!), a well resolved stratosphere is a necessity, and an accurate gravity wave

drag parametrisation scheme and thermal relaxation profile is also important (since
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breaking gravity waves will perturb U , and an incorrect value of Te will change the

bifurcation diagram as detailed in Y87, possibly changing the state of the strato-

sphere from steady to vacillating and causing a huge change to the zonal winds (see

section 3.12)).

2.7 The non-locality of the zonal mean dynamics

In all the above we have full vertical non-locality in the zonal mean dynamics (so a

change in U at one height can cause changes at other heights because of the vertical

derivatives in equation 2.5). We can investigate the effect of this non-locality on

the downward influence of our disturbance by artificially varying C in equation

(2.5) between 1 and 0 (C = 1 corresponding to fully non-local dynamics and C

= 0 corresponding to fully local dynamics). The parameter C has been included

in equation (2.5) specifically for this purpose. When C 6= 1, for consistency we

should also include a C in the second term on the rhs of equation 2.2. We take a

slightly different approach and, following PS, relax to the background flow, Ue, using

frictional relaxation rather than Newtonian cooling. When C 6= 1 neither method

is actually physical, but the advantage of frictional relaxation is that we can look at

the effect of just altering one term in the equations. So equation 2.2 becomes:

∂Qy

∂t
=

π2

ρL2

∂F

∂z
− αR

π2

L2
(U − Ue) (2.9)

where

αR =







AR

[

1
200

+ z
60

(

1
2
− 1

200

)]

z 6 60km

AR

2
z > 60km

(2.10)

is a rate coefficient.

We repeat the experiments of taking 20ms−1 from U between altitudes of 30km

and 40km (after 500 days of spin up time). The disturbance caused to the velocity

field (i.e. the difference between the perturbed run and the control run) at a height

of 15km is recorded. The root mean square (rms) of this disturbance averaged over

100 days (i.e. between days 500 and 600 of the model run) is calculated for various

values of C. The results for the zonally symmetric response (Φ0 = 0) are shown

in figure 2.9. In the more general case (Φ0 6= 0) the rms value no longer decreases

monotonically to zero as C is decreased, but crucially it still becomes zero as C gets

small (and is still < 10−3m s−1 for C 6 0.2). Results are found to be insensitive

to the number of days that the rms value is averaged over. Note that for C = 0

no propagation of the imposed disturbance is possible above or below the height
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Figure 2.9:
The velocity field is perturbed between 30km and 40km and the root mean square
(rms) of the disturbance caused to the velocity field at 15km, averaged over the 100
days following the perturbation, is calculated as C is varied. The zonally symmetric
response (Φ0 = 0) is shown.

interval in which the disturbance is made.

We repeat the experiments of section 2.6, forcing the solution from steady state

to vacillations. It is important to remember that changing C or AR (defined in

equation (2.10)) changes the value of Φ0 for which a steady state solution ceases

to exist so that comparisons (in the forcing required to cause a transition between

states) must be made based on the distance of Φ0 from the bifurcation point at

which the steady state solution ceases to exist rather than on the absolute value

of Φ0. We find that, as C decreases, it becomes harder to force a transition from

steady state to vacillations, largely because the vacillations become weaker until for

C . 0.5 they cease to exist altogether and only a single, steady, state exists. The

smaller C becomes, and the further from the bifurcation point our value of Φ0 is,

for each value of C, so the smaller becomes the altitude, zc, perturbing above which

will not (for any reasonably sized perturbation) cause a transition between states.

There are two things to note here. One is that, as shown in figure 2.9, the

downward influence of the imposed disturbance that is due to the zonally symmetric

dynamics (cf figure 2.3(a)) tends to 0 as C tends to 0. In the case where C = 0 the

disturbance in figure 2.3(a) would simply travel horizontally, never above or below

the height at which it is applied. The other thing to note is that, as just mentioned,

as C tends to 0 we no longer find vacillations (or, therefore, a bifurcation structure)

in any parameter regime, and so causing a transition between two states as shown
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in figure 2.7 is no longer possible. Therefore, for local zonal mean dynamics no

downward influence is possible by either means. The vertical non-locality in U that

we find in the extratropics is essential for any downward influence of a perturbation

due to the non-linear nature of wave mean-flow interaction.

2.8 The QBO

To better understand the dynamics of downward propagation with vertically local

zonal mean zonal wind, U , we next study the so called quasi-biennial oscillation

(QBO), which is in fact a vacillation in almost exactly the present sense. More

precisely, the QBO is a vacillation of the zonal wind in the tropics from an westward

phase to a eastward phase and back again with an average period of about 28 months.

It has already been suggested that, since U becomes vertically local in the tropics,

no downward influence of an applied perturbation is possible (since the disturbance

itself does not travel vertically at all, and no vacillations exist). However, this is only

true if we are forcing with one wave, as we have been doing up to now. The QBO

exists due to forcing by more than one wave (where the waves must have different

phase speeds). As we shall see, the downward propagation in the QBO due to an

imposed perturbation at high altitudes is quite different to that we have seen above.

The QBO can be modelled using a 1D wave mean-flow interaction model which

is very similar to the Holton–Mass model, except that internal gravity waves provide

the wave driving instead of Rossby waves. The problems of using a WKB approxi-

mation for Rossby waves, discussed in section 2.3, do not arise with internal gravity

waves (e.g. Plumb 1977). Thus, in what follows, we use a WKB approximation for

the waves (which both follows the work of Plumb 1977 and eliminates the possibility

of downward propagating waves complicating the mechanism for downward influence

which we are studying).

Using the WKB approximation in a Boussinesq model, and non-dimensionalising

all the variables (as in Plumb 1977) the equations solved (in the notation of Plumb

1977) are:

Fn(z) = Fn(0)exp

[

−
∫ z

0

gn(z
′)dz′

]

gn(z) =
α

kn(U − cn)2

∂U

∂τ
− Λ

∂2U

∂z2
= −

∑

n

∂Fn

∂z

(2.11)

where Fn is the wave momentum flux of wave n, kn and cn are the wave number and
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wave speed of wave n, α is buoyancy frequency multiplied by thermal dissipation

rate, Λ is viscosity, and U is the horizontally averaged velocity (equivalent to zonal

mean zonal wind). All quantities are scaled so as to be dimensionless, and α = ki =

Fi = 1 ∀i. For equations of the full wave calculation (before a WKB approximation

is made) see Plumb (1977).

The explanation for there being downward phase propagation in the QBO, de-

spite the flow at all altitudes depending only on what happens below, was given by

Plumb (1977). A brief summary of that explanation follows.

At least two waves are required to give vacillations, one of positive phase speed

(c1 = 1) and one of negative phase speed (c2 = −1). (Note another difference to

the case of Rossby waves which can only propagate in one direction. Also note that

actually any two different phase speeds will do since a transformation to a frame

moving with a speed such that the phase speeds of the two waves are in opposite

directions will get us back to the case above.) Perturbing about the trivial solution

to equation (2.11) and linearising, we get

∂U

∂τ
− Λ

∂2U

∂z2
= 2

(

U −
∫ z

0

Udz′
)

e−z (2.12)

The rhs of this equation is the linearised wave forcing. The dominant term at

low levels is the first term on the rhs which arises due to the wave of positive phase

velocity being attenuated more rapidly for U > 0 (due to the 1/(U−cn)2 dependence

of g in equation (2.11)) leading to net positive mean flow acceleration, and vice versa

if U < 0. At upper levels the ‘shielding’ term (second term on rhs) dominates. The

change of sign in the wave forcing happens at a height z0 where these two terms

balance. Below z0, ∂U/∂τ > 0 and U > 0 so that the shielding term is increasing,

and to keep the balance between the wave forcing terms at z0, U at z0 must increase.

∂U(z0)/∂z < 0 so z0 must decrease. Hence the downward propagation of the change

in sign of the wave forcing is dependent only on flow evolution below z0. As the

positive U jet gets more confined to the lower boundary, the vertical viscosity Λ

destroys the shear layer created and the vacillation starts over again. So to get the

vacillations Λ has to be non-zero in some layer including the lower boundary. Plumb

(1977) points out that there is no downward influence whatever in any layer in which

Λ = 0.

Conversely, it was noted by Hampson (2000) that if Λ 6= 0 everywhere then the

model does permit downward influence. In what follows we look quantitatively at

how changes in Λ and α affect the downward propagation of an imposed disturbance.
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2.8.1 Downward influence experiments

Experiments are carried out as in section 2.5, introducing a perturbation at high

altitudes and looking at the change this has on the evolution below. In the following

experiment we use α = 1, Λ = 0.02, and initial profile

U(0) =







0.03z z < 10/3

0.1 z > 10/3
(2.13)

using a resolution dz = 0.05, dt = 0.005. We integrate to a height z = 4 and a

time τ = 50. Just as in Plumb (1977) we use two waves with k1 = k2 = 1, c1 = 1,

c2 = −1, F1 = 0.5, and F2 = −0.5.

Between days 1 and 1.5 we introduce an extra forcing term, G, given by

G =







−4.2 × 10−2 × z−2.5
dz

2.5 < z 6 2.75

−4.2 × 10−2 × 3−z
dz

2.75 < z 6 3
(2.14)

(This method of forcing is equivalent to what we call zonal-force perturbation in

section 3.7 below.) Since we are using two waves of different phase speeds, vacilla-

tions can occur in the mean flow. The imposed perturbation thus shifts the phase

of these vacillations as before (figure 2.3(d)). The vacillations in this model are

strongest at lower altitudes and so most disturbance is below the point of pertur-

bation (see figure 2.10). This is a clear example of the point made by Hampson

(2000) that, given a small amount of diffusivity (which introduces a small amount

of vertical non-locality into the model), a true downward influence is possible even

in the tropics.

Consider figure 2.10(c). There are two obviously different speeds of downward

propagation in the change in U . These are labelled cg and cp. We now look in more

detail at the mechanisms behind each speed.

When forcing with only 1 wave (take U(0) = 0, F1 = 1, and F2 = 0) no vacilla-

tions can exist and a steady state is achieved. The change in the velocity field due

to the applied disturbance (δU) is thus weak (with the zonal flow simply relaxing

back to the undisturbed state, similar to the Holton–Mass model). The change in

U (δU) only contains the disturbance propagating with speed cg in figure 2.10(c).

Performing the same experiment as above (in this section) we look at how cg

depends on Λ (the diffusivity required to give vacillations, but which also introduces

a small vertical non-locality into the mean flow dynamics).

In all cases (where either 1 wave or 2 waves are used to force the flow), we find
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that c2g is proportional to Λ. This is to be expected since, at high altitudes, we

essentially have zero wave driving leading to an essentially diffusive effect (where

z ∼
√

Λτ so that cg ∼
√

Λ/τ) which will not depend on the wave forcing. Note that

as we approach the limit of true vertical locality Λ → 0, we also find that cg → 0,

consistent with the theory of Plumb (1977).

As already mentioned, in the 2 wave forcing case, shown in figure 2.10, an applied

perturbation alters the phase of the vacillations. This gives the change in U whose

downward propagation speed is denoted cp in figure 2.10(c). cp is directly related to

the downward phase speed of the vacillations, and this will be affected by α.

We consider the various effects of α on the downward influence that we see. By

altering α (in the absence of any applied perturbation) we find that the period of

vacillations, T , is proportional to 1/α. As α is increased, the vacillations not only

get faster, but they become more confined to the lower boundary of the model.

To explain this, note from equation (2.11) that as α increases, g increases, so F

undergoes a much sharper decay to zero near the bottom boundary. This gives the

faster, more confined vacillations.

What this means is that, applying a disturbance at high altitudes has consid-

erably reduced downward influence as α is increased (beyond the value of α that

is used in figure 2.10). This is expected since, with ∂F/∂z virtually zero at higher

altitudes, we see the weak 1 wave response to an applied perturbation (with only a

diffusive type downward influence).

For values of α such that the vacillations are not too confined to the lower bound-

ary, we find that cp increases with α (from about 0.09 to 0.25 in non-dimensionalised

units as α increases from 0.25 to 1) but then remains constant before the effect disap-

pears due to vacillations being confined to the lower boundary (remaining at about

0.25 units as α is increased from 1 to 2.5).

Finally we should make the point that, despite similarities with the Rossby wave

dynamics of the Holton–Mass model, there is a notable difference. When perturbing

a vacillating state in the Holton–Mass model the response at all altitudes is almost

instant (figure 2.3(d)). In the QBO model the response is much slower (consider the

earliest 0 contour in figure 2.10(c)). By introducing a vertical non-locality into U ,

with coefficient Ω, so that the last equation (2.11) becomes

∂

∂τ

(

ū− Ω
∂2ū

∂z2

)

− Λ
∂2ū

∂z2
= −

∑

n

∂Fn

∂z
(2.15)

(similar to non-zero C in equation (2.5) in the Holton–Mass model) with Ω

non-zero we recover the almost instant response at all altitudes to the applied per-
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turbation (seen in figure 2.3(d) for the Holton–Mass model).

In the next section we return to considering the extratropical dynamics of the

Holton–Mass model (with Rossby wave driving).

2.9 A comparison with a new lower boundary

All the experiments discussed above use a lower boundary condition where the geopo-

tential height, Φ, and zonal mean flow, U , are given on the lower boundary. It is

important to make sure that the mechanism we have outlined for the downward in-

fluence of an upper level perturbation does not depend on the artificial nature of this

lower boundary condition. Therefore, we now use a more realistic lower boundary

condition which allows Φ and U to evolve on the boundary with the flow. The waves

in this case are produced by topography. In formulating this boundary condition it

is assumed that the fluid velocity normal to the surface (w) should vanish there (i.e.

a rigid lower boundary). Following Yoden (1987(c)) this new boundary condition is

specified by

(

∂

∂t
+ ikγU + α

)

∂Φ

∂z
− ikγΦ

∂U

∂z

+ ikγ
N2

g
h0U −

(

k2 +
π2

L2

)

N2

f
DEΦ = 0

(2.16)

∂

∂t

∂U

∂z
+ ik

π2

4L2
γ
N2g

f 2
(Φh∗0 − Φ∗h0) −

π2

L2

N2

f
DE(U − Ue) =

− α
∂(U − Ue)

∂z
+ ik

π2

4L2
γ
g2

f 2

(

Φ
∂Φ∗

∂z
− Φ∗

∂Φ

∂z

) (2.17)

on z = 0. DE = (4/f)1/2 is the coefficient of an Ekman pumping term, and ∗

denotes a complex conjugate. To allow the topography to fit in simply with the

truncated model the profile h(x, y) = Re[h0e
ikx]sin(πy/L) is used, where h0 specifies

the maximum height of the topography. As before, k = s/(a cos(π/3)), where s = 2,

and L = πa/3. α = [1.5 + tanh((z − 35)/7)] × 10−6s−1. From now on we will keep

with the notation of Wakata and Uryu (1987) and Yoden (1987(c)) and call this new

topographical boundary condition the W -condition (since u.n = 0 on the boundary

so that w = u.∇h there), and the original condition (where U and Φ are specified

on the boundary) the Φ-condition.

In the following experiments a new profile could have been chosen for Ue, or

the value of N2 altered, to make the model domain act more as if it included a

troposphere (since the Φ-condition can be thought to model the tropopause and the

W -condition to model the ground). But the interest here is on downward influence
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Figure 2.11:
Using the W -condition lower boundary, it is still the case that perturbing the
velocity field at high altitudes can cause a transition between solution branches.
(a) shows a transition between two steady states (h0 = 950m), and
(b) shows a transition between two vacillating states (h0 = 570m).

through the stratosphere. The purpose of checking results against a more realistic

lower boundary is simply to make sure that they do not arise solely because of the

non-physical nature of the Φ-condition lower boundary. So we keep the same Ue and

N2 as before.

Yoden (1987(c)) mapped out the bifurcation structure of stable solutions (steady

and vacillating) with bifurcation parameter h0 (the amplitude of the topography).

He found a new type of vacillation with thisW -condition where both U and Φ change

significantly on the lower boundary during the model run. By choosing appropriate

values of h0 and perturbing U at high altitudes it is possible to cause a transition

between solution branches (from either steady state or vacillation to either steady

state or vacillation) just as with the Φ-condition. Examples are shown in figure 2.11,

figure 2.11(a) showing a forced transition between two steady states (h0 = 950m),

and figure 2.11(b) showing a forced transition between two vacillating states (h0 =

570m).

The experiment performed in section 2.5 was repeated for this W -condition and,

as is shown in figure 2.12, the results obtained are qualitatively similar to those found

with the Φ-condition (cf figure 2.3). As before, only a weak downward influence

(essentially the zonal mean dynamics) is found whilst a steady state is the stable

one for the given value of h0. Once vacillations are found their phase can be shifted,

as before, and a stronger downward influence is seen. So the results of the previous
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Figure 2.12:
The velocity field is perturbed such that U → (U -20)m s−1 for 30km < z < 40km,
and the change in U that this causes is analysed, now using the W -condition lower
boundary. A comparison with figure 2.3 (a) and (d) shows that the same qualitative
behaviour is observed as with the Φ-condition lower boundary.

sections do not depend on the artificial properties of the Φ-condition.

2.10 A comparison with a new wave generation

mechanism

As a further test of the robustness of this mechanism, whereby the non-linear nature

of the dynamics at high values of wave forcing allows significant downward influence

of an upper level disturbance through wave mean-flow interaction, is to produce

the wave forcing in a different way. So far we have looked at waves produced by a

prescribed geopotential height anomaly, and by a simple topography.

Another way of producing waves is through tropospheric heating as was done

by Scott and Polvani (2004). They use a 3D general circulation model (GCM) with

mesospheric damping to keep the velocity field at a realistic size at high altitudes.

They also use a tropospheric damping to prevent baroclinic instability, and impose

a zonally-symmetric radiative equilibrium temperature profile, Te, to simulate the

cold polar vortex in the stratosphere. To allow waves to propagate vertically they

force a weak eastward flow in the troposphere. They introduce a parameter A0 to

characterise the amplitude of the tropospheric heating which is of the form

Q = A0G(φ)Z(z)s cosθ (2.18)
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where φ is latitude, θ is longitude, p is pressure, and s is the zonal wavenumber.

G(φ) = sin2[(φ− π/6)/(1/3)] for φ > π/6 and zero elsewhere, Z(z) = cos2(πz/2zT )

for z < zT (zT is the tropopause height, given below) and zero elsewhere, the tropo-

spheric weak westerlies, relaxed to at a rate kTZ(z), take the form uT (φ) = Usin2(2φ)

where U = 30m s−1, and the mesospheric damping takes the form ksp((psp−p)/psp)
2

for p > psp and zero elsewhere, with psp the pressure at the stratopause.

To use the equivalent heating and damping (given above) and temperature profile

(given below) in a Holton–Mass model, we follow Andrews et al. (1987, p.113–127)

to derive the new form of equations 2.1 and 2.2 starting from the primitive equations.

Working in a quasi-geostrophic β-channel centred at 60◦N we then truncate as

in the Holton–Mass model, keeping one zonal wavenumber and the appropriate

sinusoidal meridional profile (projecting non-linear terms onto this profile). The

final equations (replacing equations (2.1) and (2.2)) are

∂q

∂t
= − ikγUq − i

gk

f
(β + γQy)Φ − g

ρ

∂

∂z

(

ρ
αf

N2

∂Φ

∂z

)

+
f

ρ

∂

∂z

[

ρA0sin
2(1/2)cos2(πz/2zT )

Re−κz/H

N2H

]

+ ksp(1 − e(zsp−z)/H)2

(

k2 +
π2

L2

)

g

f
Φ

(2.19)

∂Qy

∂t
=
π2

ρL2

∂F

∂z
+

1

ρ

∂

∂z

[

ρ
αf 2

N2

∂

∂z
(U − Ue)

]

− π2

L2
kTcos2(πz/2zT )(U − UT )

− π2

L2
ksp(1 − e(zsp−z)/H)2U

(2.20)

with
f

ρ

∂

∂z

[

ρA0sin
2(1/2)cos2(πz/2zT )

Re−κz/H

N2H

]

from equation (2.19) and

−π
2

L2
kTcos2(πz/2zT )(U − UT )

from equation (2.20) included in the troposphere (z < zT ) only and

ksp(1 − e(zsp−z)/H)2

(

k2 +
π2

L2

)

g

f
Φ
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from equation (2.19) and

−π
2

L2
ksp(1 − e(zsp−z)/H)2U

from equation (2.20) included in the mesosphere (z > zsp) only. Suffix T relates to

the troposphere (with zT the height of the tropopause, taken to be 10km here, and

kT the coefficient of tropospheric damping) and suffix sp relates to the stratopause

(with zsp the height of the stratopause, taken to be 50km here, and ksp the coefficient

of mesospheric damping). A0 is the amplitude of the tropospheric heating, R the

gas constant for dry air, and κ = R/cp where cp is the specific heat at constant

pressure. We take UT = 22.5m s−1 (equivalent to Scott and Polvani (2004)).

A meridional temperature profile simulating the cold polar vortex in the strato-

sphere gives a new equilibrium profile Ue. Using the thermal wind equation

∂Ue

∂z
= − R

Hf0

∂T

∂y
(2.21)

the temperature profile

Te = (1 − w(φ))T0 + w(φ)TPV (p) (2.22)

where

w(φ) = (1 + tanh[(φ− φ0)/δφ])/2

and

TPV (p) = T0min[1, (p/pT )RΓ/g]

gives a background equilibrium velocity profile Ue satisfying

∂Ue

∂z
=











0 z 6 zT

RT0

Haf

9sech2(1/2)

2π
[1 − (5e−z/H)RΓ/g] z > zT

(2.23)

where we have used φ0 = 50◦, δφ = 20◦, and we take T0 = 240K, Γ = 2 × 10−3

K m−1, pT = 200hPa, and Ue(0) = UT , and we then relax to this profile using

Newtonian cooling with coefficient α as before. We also have to add extra terms

to the W -condition lower boundary so that boundary conditions (2.16) and (2.17)

become:
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(

∂

∂t
+ ikγU + α

)

∂Φ

∂z
− ikγΦ

∂U

∂z
+ ikγ

N2

g
h0U

−
(

k2 +
π2

L2

)

N2

f
DEΦ =

R

gH
A0 sin2(1/2)

(2.24)

∂

∂t

∂U

∂z
+ ik

π2

4L2
γ
N2g

f 2
(Φh∗0 − Φ∗h0) −

π2

L2

N2

f
DE(U − Ue) =

− α
∂(U − Ue)

∂z
+ ik

π2

4L2
γ
g2

f 2

(

Φ
∂Φ∗

∂z
− Φ∗

∂Φ

∂z

)

− kT
∂

∂z
(U − UT )

(2.25)

It turns out that the tropospheric damping is not needed in the 1D model as no

baroclinic instability is seen, and so we set kT = 0. The damping seems to have a

strong effect in the Holton–Mass type model and to prevent anything but a steady

state from being realised. We also find that there is no need to force a weak eastward

flow in a 1D model in order for waves to be able to propagate vertically – the model

generates a sufficiently eastward value of U without this forcing. We set wavenumber

s = 2 (even though Scott and Polvani (2004) use s = 1) which is permissible since

this does not change the physics in a 1D model (wavenumber defined in equation

(2.6)).

As is the case in Scott and Polvani (2004) vacillations are found to exist for

certain values of A0, and using A0 as a bifurcation parameter it is still the case that

a bifurcation structure exists (multiple states existing for some values of A0) and by

imposing a disturbance in U at high altitudes we can cause a jump between different

states creating significant downward influence as before. (Multiple states no longer

exist if h0 is used as a bifurcation parameter because of the new equilibrium profile,

Ue, that is used. h0 is kept at 0m now so that waves are solely produced by the

tropospheric heating). In the case of a steady state, weak downward influence as

seen in section 2.5 is still seen, although the structure of the change seen in the

velocity field, is slightly different (see figure 2.13).

We now return to considering the stratosphere only version of the Holton–Mass

model with Φ-condition lower boundary.

2.11 Other details on downward propagation

The following points, although not directly concerning the mechanism outlined in

this chapter, do nevertheless cast some light on the dynamics of vacillations (which

are crucial for large downward influence in the work detailed above).
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Figure 2.13:
Again, the velocity field is perturbed such that U → (U -20)m s−1 for 30km < z <
40km, and the change in U that this causes is analysed. This time waves are
produced by tropospheric heating, and the difference that makes is observed.
(a) shows weak downward influence with no tropospheric heating (zonal mean
dynamics),
(b) shows weak downward influence with tropospheric heating.

2.11.1 Downward phase speed

So far in this chapter the impression has been given that varying Φ0, the lower

boundary wave forcing, does not make much (if any) difference to the response at

lower altitudes to a perturbation in the upper stratosphere unless we happen to cross

a bifurcation point from one stable state to another (usually steady to vacillating).

It may seem, therefore, that the medium-range weather forecaster has no interest

(at least in this respect) in the amount of wave driving produced in an area by the

mountains or land–sea temperature differences. What we shall see in this section is

that the amount of wave driving, Φ0, does change the response at lower altitudes,

in a different way.

PS noted that by imposing a time dependent lower boundary forcing (Φ0(t)) a

downward phase propagation is seen in the mean flow anomaly, Uanom = (U – time

average of U). After several experiments we have verified that this downward phase

propagation is robust to whether the vacillations are naturally present or imposed,

and whether we use the Φ or W condition lower boundary. An example of Uanom

due to natural vacillations with the Φ boundary condition (Φ0 = 120m) is shown in

figure 2.14.

The interest then is in what affects the speed of this downward phase propagation
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Figure 2.14:
U anomaly (Uanom as defined in section 2.11.1) in m s−1 for Φ-condition lower

boundary, Φ0 = 120m.

(we saw that the non-dimensionalised buoyancy frequency × thermal dissipation rate

played a role in the case of the QBO). For a lower boundary forcing that depends

on time throughout the run (i.e. periodic forcing), as used in PS, it is not obvious

that the downward phase speed at any time does not depend on vacillations at an

earlier time in the run. So we consider one period of time dependent forcing, as used

in PS, and keep Φ0 constant for the rest of the run. In other words, we take

Φ0 =







K +B[1 − cos(2πt/T )] 200 days < t < 400 days

K otherwise
(2.26)

where T = 200 days. Thus we use a Φ condition lower boundary, and we run for

500 days. As usual, α = [1.5 + tanh((z − 35)/7)] × 10−6s−1, and U(0) = Ue.

It might be expected that downward phase speed changes withK, the equilibrium

value of the geopotential height on the lower boundary. B gives the amplitude of a

small time-oscillatory perturbation imposed in Φ0. What we will call phase speed

is calculated by looking at contours of Uanom. We look at the altitude (z) and time

co-ordinates of the lowest points of the contours closest to altitudes of 13km and

2km and calculate the phase speed from them. Although the phase speed is not

independent of z, using the same range of z for each calculation we can still get an

indication of the dependence of phase speed on K. The results are shown in table

2.1. Note that the qualitative dependence of phase speed on K does not depend on

B.
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Table 2.1:
Φ0 defined in terms of K and B as in equation (2.26)

Phase speed (km day−1)
K (m)

B = 10m B = 2m
100 8.59 7.44
80 7.75 6.79
60 7.09 6.28
40 6.56 5.87
20 6.66 6.11
0 7.02 7.23

Table 2.2:
α = E × 10−6s−1 as defined in section 2.11.1

Phase speed (km day−1)
E

K = 0m K = 40m K = 80m
1 10.7 10.8 12.3
2 22.3 25.3 29.6
3 37.2 45.6 53.6
4 56.0 57.0 97.8
5 74.9 95.2 116.9

Whilst we might expect the increase of phase speed with K seen for values of

K = 40m+ (since |Φ| is an indication of departure from the zonal mean dynamics)

the fact that phase speed also increases as K decreases to 0m seems worthy of

further investigation. It is worth looking at how phase speed depends on α. Set

α = E × 10−6s−1, constant in height and see how phase speed depends on α by

altering E. Results are given in table 2.2, where B = 2m throughout. Although

some of these phase speeds might seem large, we are using quite large values of α

when E = 3, 4, 5. It is the dependence of phase speed on K and E that is really of

interest.

The first thing to notice is that now phase speed increases with K. The effect

seen before of phase speed increasing as K decreased to 0 was simply due to α

being a function of z. The other thing to notice is that phase speed increases as α

increases. This makes sense – for the dynamics to re-equilibrate faster, we might

expect the phase speed to be faster.

Reichler et al. (2005) perform 3D experiments where the lower boundary wave

forcing in their model is perturbed, waves travel into the stratosphere and break

and the signals from that are seen again in the troposphere (see figure 1.2). They
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mention that the phase speed of the linear adjustment of the zonal-mean circulation

to stratospheric perturbations is proportional to α (Haynes et al. 1991) and that the

eddy driving of the mean flow is stronger if α is larger. Thus they expect the rate of

descent of stratospheric signals to increase as α increases (though they do not test

this). Indeed, this is what we find above.

The ability to use the stratosphere as a predictor for tropospheric change depends

on an understanding of the downward phase propagation. The amount of wave

driving and the radiative state are therefore of great interest to the medium-range

weather forecaster. It is worth again making the point, therefore, that a well resolved

stratosphere with a correct radiative state is a must if we want to accurately compute

what affect the stratosphere will have on the troposphere in model simulations.

2.11.2 Period of vacillations

Having considered the effect of α and Φ0 on the downward phase speed of vacillations

in this 1D model it makes sense to look at how the period of these vacillations, T ,

depends on these quantities. Attention is again confined to steady wave forcing

(B = 0,Φat lower boundary = K = Φ0 as previously).

The model is run with a Φ-condition lower boundary (in the same configuration

as sections 2.5 and 2.6. Using Φ0 = 180, 240, 300, 360, and 420m we measure the

period of vacillations in each case.

We might expect that, since ∂U
∂t

∝ ∇·F and ∇·F ∝ Φ2, we would find Φ2
0 ∝ 1/T .

However, from figure 2.15 we see that actually Φ0 ∝ 1/T .

Also, defining α = E × 10−6s−1 (as in the previous section) and setting Φ0 =

400m, the model is run for E = 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4. Since ∂U
∂t

∝ αU we

might expect that α ∝ 1/T . However, we find that T is essentially independent

of E, increasing slightly from 19.7 to 21.0 as E increases from 0.4 to 1.4. Plumb

(1977) found a similar result when, using the model of section 2.8, he considered the

dependence of T on Λ (in equation (2.11)).

These results are surprising. It may be that the vacillations generated in this 1D

model are rather artificial in nature. To test this we need to re-run these experiments

with a more realistic model. We return to this in the next chapter.

2.11.3 Generation of vacillations

Although vacillations in a 1D model are dynamically exciting, for them to be worth

studying they ought to exist also in more realistic models and in the atmosphere

itself. In the next chapter we will see that a more realistic, 3D, model, run in per-



2.11. OTHER DETAILS ON DOWNWARD PROPAGATION 43

150 200 250 300 350 400 450
0.025

0.03

0.035

0.04

0.045

0.05

0.055

Φ
0
 (m)

1/
T

 (
s−

1 )

Figure 2.15:
Φ0(m) verses 1/T (s−1) where T is the period of vacillations found to occur

naturally for lower boundary wave forcing amplitude Φ0.

petual January mode, exhibits repeated vacillations that resemble sudden warmings

in the real stratosphere. Thus we draw a parallel between the vacillations in a 1D

model and stratospheric sudden warmings.

Stratospheric sudden warmings, major and minor, occur when the wave driving

present is sufficient to significantly decrease the value of the mean wind U away

from its radiative equilibrium state Ue over a short time (equivalently, as the name

suggests, T in the stratosphere increases significantly over a short time). In the case

of minor warmings U becomes a weaker eastward wind, but in the case of major

warmings U becomes westward for a short time. Often, during northern hemisphere

winter, the winter polar vortex will undergo a sudden warming (this occurs in the

northern hemisphere due to the large amount of wave forcing there. Waves break

on the edge of the polar vortex eroding it and causing it to deform). At the end

of the winter it will undergo a final warming when the vortex disappears until the

following winter.

In the Holton–Mass model, a stable steady state can be thought of as a winter in

which the polar vortex does not undergo a sudden warming, and a vacillating state as

one when it does (although, admittedly, in the real atmosphere stratospheric sudden

warmings (SSWs) do not occur with the regular periodic nature of vacillations found

in the Holton–Mass model). To cause a transition from a steady to a vacillating state

by introducing a perturbation in the upper stratosphere, is for such a perturbation to

have caused a sudden warming of the vortex to occur when one would not otherwise

have done so. This makes clear the strong effect on the troposphere that such
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perturbations can have (since the effect of a sudden warming will cause change over

the whole depth of the stratosphere).

Yoden (1987(b)) investigates the dynamics of major and minor sudden warmings.

The Φ condition lower boundary is used. One of the slightly surprising things found

by Yoden is that generation of wave activity does not always come from the bottom

boundary, but can sometimes be generated by the internal dynamics and manifested

in a convergence of EP flux (actually seen as a dipole in the EP flux divergence).

He suggests that the period of each vacillation is split into two parts: a dynamically

active one in which the sudden warming occurs (brought about by the dipole in

EP flux divergence just mentioned) and a dynamically inactive one in which the

mean flow relaxes back towards the radiative equilibrium profile, the EP flux being

greatest at the lower boundary during this time. This relaxation can take place

since waves cannot propagate upward through westward winds due to the Charney–

Drazin criterion (see Andrews et al. 1987). In the case of the Φ condition lower

boundary, vacillations bifurcate from the steady solution for U that is very different

from the radiative equilibrium profile as we might expect (see figure 2.1).

Yoden (1987(b)) also mentions a different type of vacillation due to wave in-

terference which is realisable with the W condition lower boundary. This has no

dynamically inactive period, and bifurcates from the steady solution close to the

radiative equilibrium profile (more commonly associated with a steady state, see

figure 2.1).

What Yoden’s work seems not to make clear is that, for both W condition and

Φ condition lower boundaries, we can have vacillations bifurcating from the steady

solution far from radiative equilibrium, which are not generated by a dipole in the

EP flux divergence but where wave generation does come from the lower boundary.

This implies that the dynamics of the generation of vacillations is more subtle than

Yoden’s work suggests. (Indeed, Yoden’s work shows that minor warmings are

found to occur for values of Φ0 greater than, as well as less than, the required Φ0 to

give major warmings. The link between the two, then, as well as what causes the

generation of these vacillations, seems complicated.)

Figure 2.16 shows examples of SSWs occurring as described above. Figures a)

and b) show U and F for the Φ condition lower boundary. We have Φ0 = 58m,

α = [1.5 + tanh((z − 25)/7)] × 10−6s−1, and the initial condition

U(0) =







(30 − z)/3 + z(z − 20)(z − 30)/150 z < 30 km

2(z − 30) z > 30 km
(2.27)
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is used so that the model run follows the branch of solutions far from radiative

equilibrium. Figures c) and d) show U and F for the W condition lower boundary.

Here U(0) = Ue = 20 + 2z, α = [1.5 + tanh((z − 35)/7)] × 10−6s−1, and h0 =

600 + 250 (1 − cos(2πt/200)). The resolution used in both cases is dt = 0.05 days,

dz = 0.5 km.

2.11.4 Wave transience – downward propagation by a dif-

ferent mechanism

Periods of rapid growth of extratropical planetary waves are referred to as wave

transience. According to linear wave theory, the wave driving (EP flux divergence)

can be split into a wave transience term and a dissipation term, the wave transience

term being given by

Wt = − 1

2Qy

∂|q|2
∂t

(2.28)

Applying a disturbance at high altitudes, either to the velocity field (as done

in all our experiments above) or in the form of an extra forcing term on the rhs of

equation (2.2), induces a non-zero wave transience field. The exact form of the wave

transience field is dependent on the type of disturbance applied, but the pattern

seen near the lower boundary (see figure 2.17(a)) is always present.

We expect that this downward propagation is not due to wave-mean flow inter-

action (as is the case for the downward propagation seen in the U anomaly discussed

in section 2.11.1), but to wave effects only. To test this hypothesis we use a value of

Φ0 such that the stable state is steady (Φ0 = 90m, U(0) = Ue) and allow 500 days

for this state to be reached. We then impose U → (U−10)m s−1 for 30 < z < 40km

at t = 500 days and follow the evolution of the wave transience field thereafter. We

see (figure 2.17(a)) that as time progresses the pattern in the wave transience field

below 30km becomes horizontal (i.e. ceases to travel downwards) and (about 70 days

after the disturbance is applied) eventually becomes positive (in other words we see

an upward propagating anomaly). We know that this cannot be the phase speed

of the wave we are looking at since, for Rossby waves, vertical phase and group

velocities are always in opposite directions, and we know that the perturbation is

imposed at upper levels, hence the phase speed should be (and must be) upwards at

first, before Rossby waves reflect back up. The wave transience field simply gives an

indication of the region affected directly by our imposed perturbation and we would

like to know what causes this effect to spread downwards.

To this end, we impose the same perturbation but then at day 500.25 keep U

constant for all time. We see a similar pattern below 30km although after a time this
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Figure 2.16:
Examples of warmings, from the steady solution far from radiative equilibrium, not
generated by a dipole in the EP flux divergence. U is given in m s−1 and F in km2

day−2.
(a) and (b) show run with Φ-condition lower boundary
(c) and (d) show run with W -condition lower boundary
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is dominated by a much more rapidly vacillating disturbance due to the continuing

discontinuity in U at 30km (figure 2.17(b)). A better method of testing whether

this propagation is due to wave only effects is imposing the same disturbance in

U but then, at day 500.25, setting U equal to its unperturbed value (i.e. its value

just before 500 days) for all time. Doing this we regain the original behaviour in

the wave transience, showing that this downward phase propagation and indeed the

subsequent upward phase propagation are wave only effects (figure 2.17(c)).

2.12 Conclusions

As noted by PS, downward migrating anomalies are not evidence of true downward

propagation (downward propagation of information) in wave mean-flow interaction

models. In this chapter we have imposed perturbations and looked at change below

the height of the perturbation, so what is considered is definitely downward prop-

agation of information. Indications from our experiments for small and moderate

Φ0 are that the vertical non-locality of the mean-flow dynamics does not allow any

kind of simple downward propagation in the U and Φ fields. However, models of the

extratropical wave mean-flow interaction allow strongly non-linear behaviour, with

vacillations and multiple steady states. This behaviour allows a downward propa-

gation of a perturbation at upper levels in the sense that the dynamics are sensitive

to that perturbation and the resulting change occurs over the whole depth of the

stratosphere. The non-linear nature of the dynamics means that a small change to

the initial conditions or to the perturbation can mean large changes to the downward

propagation seen. The zonal mean response to an applied perturbation ∆U is found

to be potentially as significant when applied at high altitudes as at low altitudes in

the sense that the amplitude of perturbation, ρ∆U , required to cause a transition

from steady state to vacillations does not increase monotonically with the height at

which this perturbation is applied.

The presence of vacillations and multiple steady states is dependent on having

vertical non-locality in the zonal mean dynamics (as we do have in the extratropics

– C 6= 0 in equation (2.5)), as is the weak downward influence that we see for

small values of Φ0. We conclude that this non-locality is essential to the downward

propagation seen. When two or more waves of different phase speeds are present,

vacillations are present with vertically local U (although these vacillations require

a small viscosity which leads to vertically non-local dynamics) and hence a large

downward influence to an applied perturbation is possible. This is investigated in

terms of the QBO (driven by gravity waves). We see downward influence at two
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Figure 2.17:
Figures show wave transience as defined by equation (2.28). Contours used are [-6,
-4, -2, 2, 4, 6] 10−12m s−2. Blue colours show negative values, red show positive.
Time axis shows time after perturbation is applied to U .
(a) shows normal evolution due to disturbance,
(b) has U kept constant after 0.25 days, and
(c) has U kept constant at its unperturbed value after 0.25 days.
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different speeds, one diffusive (which becomes zero in the limit of vertically local

dynamics) and one due to the fact that the perturbation alters the phase of the

vacillations.

The results of the Holton–Mass model are shown not to be dependent on an

artificial lower boundary or wave generation mechanism, as similar results were seen

also with topographically forced waves and waves produced by tropospheric heating.

Although the most significant changes to downward influence occur for specific values

of Φ0 (namely those near the bifurcation points discovered by Yoden) it should be

noted that the value of Φ0 has a separate effect, altering the downward phase speed

of the disturbance through the stratosphere, and this is noticed for any value of Φ0.

(Although untested the same is likely to be true of h0 in section 2.9 and A0 in section

2.10).
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Chapter 3

3D model experiments

3.1 Introduction

So far we have considered the Holton–Mass model, a one dimensional quasi-geostrophic

beta channel model which simulates wave mean-flow interaction in the extratropical

stratosphere, the dynamics of the troposphere included as a geopotential height field

prescribed on the lower boundary.

One dimensional models are very good for looking at dynamical mechanisms since

it is easy to isolate the effect of a single parameter on the evolution. However, they

are not physically realistic when we consider the real atmosphere. More physical are

the three dimensional models used.

There are different kinds of three dimensional model. General Circulation Mod-

els (GCMs) simulate their own climate. They include a model troposphere. It is

often the equilibrium state of model runs that is of interest, rather than the initial

conditions, and as such GCMs are often run for several model years (and spun up

from rest). A 3D mechanistic circulation model (MCM) is a more simple model used

to study the dynamics of the atmosphere. It is likely to have reduced/no chemistry,

a simplified radiation scheme, and will run with significantly fewer variables than a

full GCM. It is models of this kind we will be most interested in here. One type

of MCM is a stratosphere–mesosphere model which includes the dynamics of the

troposphere only as a prescribed geopotential height field on the lower boundary (as

in the Holton–Mass model).

There have been several studies performed with GCMs and MCMs concerning the

dynamics of the stratosphere, and the effect of the stratosphere on the troposphere.

We now consider some of these studies that are relevant to the work of this thesis.

Scaife and James (2000) use an GCM containing only a stratosphere and a meso-

sphere (more precisely, the UK Met Office stratosphere-mesosphere model) run un-

51
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der perpetual January conditions. They show that 3 regimes are found for different

values of wave forcing – a steady and strongly vacillating state as in the Holton –

Mass model, and also a weakly vacillating state not found in the Holton – Mass

model. This gives hope that multiple stable states can be found in a 3D model.

Christiansen (2003) performed similar experiments to those of section 2.5 but

using a GCM. The zonal wind, or temperature field was perturbed using transient

vertically confined forcings. The applied perturbation took two forms – zonal forcing

and heating. A series of ensemble runs were performed, perturbing at different

heights and for different lengths of time.

Christiansen found a number of interesting results. Natural variability (in the

response to the applied perturbation) is found to be greater in the stratosphere than

the troposphere. However, the response grows faster in the troposphere, even when

the applied perturbation is in the stratosphere. Christiansen noted that, once the

effects of the applied perturbation have died away, the vertical structure of all fields

should be the same as before provided the forcing does not drive the atmosphere into

a different regime. The response to the perturbations seems uncoupled from the

background vacillations (when they are present) suggesting that downward propa-

gation is a robust feature determined more by the state of the troposphere than the

stratosphere.

It is encouraging that the idea of forcing the atmosphere between different stable

states carries over from the Holton–Mass model to three dimensional models. This

is a fact that will be demonstrated in this chapter, leaving no doubt as to the fact

that the bifurcation diagram mapped out by Yoden (and detailed in the previous

chapter) exists also in 3D MCMs. (Scott and Haynes 2000 also find multiple equi-

libria in a 3D model, although they use a severely truncated model keeping only

zonal mean flow and wavenumber 1). However, there is a difference between the

work in this chapter and that of Christiansen (2003). They were interested in the

growth of a perturbation, which was largest in the troposphere (and decoupled from

the stratospheric vacillations) because of baroclinic instability there. Here we shall

be more concerned with the effect that a high altitude perturbation has on flow

evolution at lower altitudes, rather than in the growth of the perturbation itself,

and as such the state of the stratosphere will be found to matter greatly.

More evidence of steady and vacillating regimes playing a role in three dimen-

sional models was given by the experiments of Gray et al. (2003). They use a

stratosphere–mesosphere model in which, as mentioned above, the dynamics of the

troposphere are included only in terms of a Φ-condition (geopotential specified on

the lower boundary). A series of ensemble runs are performed under perpetual Jan-
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uary radiative conditions (each using 20 integrations with initial conditions taken

from different days in August such that initially U is westward and undergoes a quick

readjustment due to the radiative relaxation). The only difference between the en-

semble members is their initial conditions. The amplitude, Φ0, of the geopotential

height (Φ-condition) is used as a bifurcation parameter in much the same way as in

section 2.5. For low values of Φ0 all ensemble members evolve to the same steady

state solution (as is the case in the Holton–Mass model). As Φ0 is increased the

steady stable state (considered in this 3D model as a state corresponding to a cold

winter containing no stratospheric sudden warmings, the polar vortex being strong

throughout) no longer remains the only stable state and a sensitive dependence on

initial conditions begins to appear in the ensemble runs, with approximately half of

the ensemble runs undergoing a sudden warming. This will be called the intermedi-

ate behaviour. Further increase of Φ0 and all ensemble runs show warmings, and in

some cases repeated warmings, suggesting that the vacillating state is now the only

stable one.

Considering the work of section 2.6 the intermediate behaviour is where we might

most likely find a strong downward influence to any perturbation in the upper strato-

sphere, since causing an ensemble member to warm when it would not otherwise have

done corresponds to causing a given ensemble member to undergo a transition be-

tween different solution branches. We might also expect a significant response at

larger Φ0 corresponding to shifting the phase of the vacillations seen in the solutions

(in other words the time at which the sudden warming occurs). In short, any value

of Φ0 for which a sensitive dependence to initial conditions is seen is one in which

the mechanism of chapter 2 may be important.

Gray et al. (2003) make the important point that although Φ0 is imposed, the EP

flux through lower boundary (flux of wave activity, and equivalent to the vertical flux

of angular momentum across isentropic surfaces) evolves with the flow and is partly

determined by flow in the mid and upper stratosphere (Gray et al. 2003 mention that

this phenomenon is less surprising if it is noted that the vertical distance between

the troposphere and mid-stratosphere is comparable to a vertical wavelength of the

stationary waves that are considered (large-scale planetary waves)). This point was

previously made by Dunkerton et al. (1981). This is a point we will return to towards

the end of this chapter.

Before commencing any work with 3D models, it is of interest to redo the Gray

et al. (2003) experiments using a Holton–Mass model since this makes it clear that

the variability they see in their ensemble runs can also be seen in the Holton–Mass

model and that it can therefore be linked to the idea of the multiple state equilibria
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discovered in Yoden (1987(a)).

3.2 Holton–Mass version of Gray et al.

In the same way as Gray et al. (2003), but using a Holton–Mass model, we perform

a number of ensemble runs, under perpetual January radiative conditions, using

slightly different westward initial profiles of U (typical of August):

U(0) = ǫ− z/(2 − ν) (3.1)

where ǫ = −2,−1, 0, 1 and ν = 0, 0.2, 0.4 so that each ensemble contains 12

members. We run at Φ0 = 30, 50, 52, 55, 70, 140, 300m and bear in mind that for the

initial U profiles chosen the stable state changes from the state very close to radiative

equilibrium to the state far from radiative equilibrium at Φ0 = 53m (vacillations set

in, for this state, when Φ0 ∼ 50m). In all runs we use dz = 0.5 km, dt = 0.05 days,

α = [1.5 + tanh((z− 35)/7)]× 10−6s−1 as before, and plot U at 30km. The question

is whether or not we see the same sensitive dependence to initial conditions as Gray

et al. (2003) do with their 3D model, and if so, whether it can be explained.

Looking at figure 3.1 we see that little difference is seen in any run up to Φ0 =

70m. Where vacillations are present the times they occur are shifted by 1 or 2

days, when a steady state is achieved (Φ0 = 30m) it is not altered at all. For

Φ0 = 140, 300m a slightly more significant shift in vacillations is found, and especially

at earlier times (up to day 150 for Φ0 = 300m) the value U can take is quite variable.

We also find that the frequency of vacillations increases for increased forcing. What

is not seen for any value of Φ0 is some ensemble members undergoing a warming

while others do not.

Therefore it seems a more significant change in U(0) is required to see any real

difference within an ensemble. Choosing Φ0 = 30, 52, 300 we set ν = 0 and use

ǫ = 30, 25, 20, 15, 10, 5, 0,−5,−10,−15,−20. We now see (figure 3.2) a significant

variation in the time at which U attains a steady state when Φ0 = 30m, vacillations

which occur at significantly different times when Φ0 = 300m, and the case of some

ensemble members undergoing a warming while others do not when Φ0 = 52m.

This corresponds (in the case of Φ0 = 52m) to the state close to radiative equi-

librium being stable for ǫ = 30, 25, 20 and the state far from radiative equilibrium

being stable for the other initial U profiles. Significantly different velocity profiles

are not required, therefore, to see this response at Φ0 = 52m provided that we use

profiles close to (and either side of) the value of ǫ at which the stable state is changed

(between 15 and 20).
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Therefore, our results agree quite well with Gray et al. (2003) (sensitive depen-

dence to initial conditions is seen) and suggest a possible reason for this sensitivity

(based on the underlying bifurcation structure).

This motivates what follows in this chapter. Perturbing a 3D model in the upper

stratosphere in a similar way as was done with the Holton–Mass model in section

2.5, can we find any links between dynamical sensitivity to initial conditions and

the effect of perturbations in the upper stratosphere on the lower stratosphere?

We would expect the greatest downward influence to such perturbations in regimes

where there is large sensitivity to initial conditions.

3.3 The 3D model

The model used is the Reading IGCM spectral 3D circulation model (see Hoskins and

Simmons 1975). We run the model in pressure coordinates and in mechanistic/dry

mode. A resolution of T31 is used with 31 vertical levels going from z = 16km to

z = 80km (so the model is run as a stratosphere–mesosphere model), and the model

runs on a full sphere. There are 16 Gaussian latitudes in each hemisphere and 64

longitudes on the spatial grid with a jagged triangular truncation scheme used when

calculating the spectral coefficients.

The reference temperature profile is given by T0 = 250K, and standard basic

temperature profile is calculated from the zonally symmetric radiative equilibrium

wind profile of Scott and Haynes (2002), hereafter SH02, by requiring gradient wind

balance (allowing the model to balance to the applied zonal wind profile and then

storing the temperature profile obtained). The radiative relaxation rate to this

temperature profile is given by α(z) = {1.5 + tanh[(z − 35)/7]} × 10−6s−1.

The zonally symmetric radiative equilibrium wind profile of SH02 is of the form

Ue(φ, z) = cos(φ)[u0tanh(b0(φ− φ0)) + J1 + J2] (3.2)

where

Ji = uisech[bi(φ− φi)]sech[ai(z − zi)] (i = 1, 2) (3.3)

for constants u0 = 30m s−1, b0 = 0.01, φ0 = 20◦, u1 = 210m s−1, a1 = 0.04, b1 =

0.06, φ1 = 60◦, z1 = 55km, u2 = −160m s−1, a2 = 0.04, b2 = 0.06, φ2 = −60◦, z2 =

60km (similarly to SH02).

A Rayleigh friction applied above z = 50km (relaxing to zero velocity at a rate

κ(z) = (1.02 − exp((50 − z)/40)) × 5 × 10−6s−1), a hyperdiffusion ∇8 (on vorticity,

divergence, and temperature), and shape of lower boundary (z = 16km) wave forcing
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Figure 3.1:
Zonal wind, U(m s−1), at 30km (for ensemble members with small differences in
U(0) – ǫ and ν in equation (3.1) vary a small amount), for Φ0 =:
(a) 30m
(b) 70m
(c) 140m
(d) 300m
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Figure 3.2:
Zonal wind, U(m s−1), at 30km (for ensemble members with significant differences
in U(0) – ǫ and ν in equation (3.1) vary a large amount), for Φ0 =:
(a) 30m
(b) 52m
(c) 300m
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Figure 3.3:
Initial U (m s−1) profile for control runs, modified slightly for each ensemble member.

Φ0 are all as given in SH02. Thus, on the lower boundary, Φ = Φ0E(t)G(φ) where

Φ0 is a constant forcing amplitude, E(t) increases smoothly from 0 to 1 over the

first 10 days of the model run (E(t) = 0.5(1− cos(0.1πt)) for 0 < t < 10 (t in days)

and 1 otherwise), and G(φ) = 4µ̂2(1 − µ̂2) where µ̂ = (µ− µ0)/(1 − µ0) for µ > µ0,

µ = sin(φ) and µ0 = 0.5. The forcing is wave 1.

One time step is taken every 7.5 minutes. Using the approach of Gray et al. (2003)

the model is initialised with an August profile. Several such profiles are achieved

by using the zonal wind profile (3.2) (modified slightly so we use jet strengths of

210m s−1 and -160m s−1 where they use 200m s−1 and -150m s−1) for φ → −φ
(causing the winter hemisphere to become the summer hemisphere, thus allowing an

August initial zonal wind profile) and then adding another jet, of strength 10m s−1

at various heights and latitudes. The added jet is specified by

U3(φ, z, 0)sech[b3(φ− φ3)]sech[a3(z − z3)] (3.4)

where b3 = 0.1, a3 = 0.1, U3 = 10m s−1 and φ3 and z3 vary (φ3 chosen always in

the southern hemisphere, or winter hemisphere during August). Control runs use

U3 = 0. Initial U profile for control runs is shown in figure (3.3).

We then relax the zonally symmetric part of the geopotential (again calculated

by the model when supplied with the initial zonal wind profile), over a period of 10

days, to January conditions (although it should be noted that the model takes about

100 days to relax, by Newtonian cooling, to January conditions). The basic state

temperature profile is perpetual January throughout the run. Following Gray et al.
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(2003) a Rayleigh friction was imposed on the equatorial zonal winds (timescales as

in Gray et al. (2003)).

3.4 Sensitivity in the tropics

Gray et al. (2003) impose different initial conditions to each member in their ensem-

ble run by initialising the run using data from a different day in August. This gives

the required small change in initial conditions but says nothing about what sort of

change in the initial conditions is likely to make a difference to a model run. In fact

they did find that the initial conditions should give an indication of whether a cold

winter or a disturbed winter will be seen since most of the cold runs were obtained

for initial conditions from consecutive days in August (Sparrow 2003). We try to

look further at what changes to the initial conditions will alter the flow evolution.

(It should be mentioned that Reichler et al. (2005) gave evidence that tropo-

spheric Rossby waves sent into the stratosphere will break and re-enter the tropo-

sphere at anomalously late times if, in the initial conditions, there is anomalously

high positive EP flux divergence in the extratropical lower stratosphere and anoma-

lously high positive geopotential in the extratropical upper stratosphere. This sup-

ports the idea that model evolution can, in some ways, be predicted from the initial

conditions.)

Scott and Haynes (1998) showed from a dispersion relation for momentum anoma-

lies that their rate of decay (assuming thermal damping but no frictional momentum

damping) tends to 0 at a rate which becomes zero when the Coriolis parameter, f,

is zero (i.e. on the equator). Thus in the tropics the ‘memory’ of the dynamics to

such anomalies is longer.

This suggests that if initial conditions that differ in the tropics are used then

members within ensemble runs are more likely to evolve showing dependence on

them.

As mentioned, we define different initial conditions by adding a weak jet (of

strength 10m s−1) to the zonal wind at different heights and latitudes. We add

the jet to the southern hemisphere where we expect to find the largest differences

between different days in August.

The model is run for several values of Φ0 to determine the cold, intermediate, and

warm regimes (equivalent to those in Gray et al. 2003). We find that, as expected,

when the jet is added at low latitudes (10◦S) sensitivity is seen within the model

runs. In figure 3.4, the two ensemble members seen to be different in the runs for

Φ0 = 294m and Φ0 = 305m (within the intermediate regime) had initial conditions
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with jets added at 10◦S and 35km or 45km from the bottom boundary. (Figure 3.4

shows, as a function of time t, zonal mean zonal wind, U , at 58◦N and 59km, but

the same qualitative behaviour is seen at lower altitudes). Other ensemble members

had initial conditions with jets added at higher latitudes (centred at 20◦S and 35km,

50◦S and 35km, 50◦S and 45km, 70◦S and 35km). Φ0 = 270m is too small an amount

of wave forcing for any sensitivity to be seen (the only stable state is a steady, cold

winter). Φ0 = 350m is a large enough value of wave forcing that every ensemble

member evolves differently (and indeed every winter is warm and disturbed) – the

difference in initial conditions is magnified whatever it is. The control run – with

no weak jet added – is shown in black in each figure.

Taking this further, we choose just one position to add a weak jet (center 10◦S and

45km) and run with jets of different strengths (U3 = -20, -15, -10, -5, 0 (control run),

5, 10, 15, and 20 m s−1). The results are shown in figure 3.5 for Φ0 = 294 and 305m.

It can be seen that the jet alters the flow in a predictable way, a negative (westward)

jet causing the warming to occur at later times (independent of the strength of the

jet) and a positive (eastward) jet causing the warming to occur at earlier times (a

stronger jet causing an earlier warming). It seems odd that a westward jet should

cause a later warming and an eastward jet an earlier warming. More work needs to

be done to understand this result.

For completeness, taking Φ0 = 294m, we perform 6 runs with weak jets added

in the northern hemisphere (at the same heights and latitudes as before – i.e. 20◦S

becoming 20◦N). From figure 3.6 we can see that this makes the sensitivity to initial

conditions that exists for Φ0 = 294m more obvious. All runs are warmer than the

control (the weak jets being eastward) and, as expected, the 3 runs that are most

different from the control run correspond to the weak jet being added at low latitudes

(10◦N and 20◦N).

Having found regimes of sensitivity in the model runs we can continue to intro-

duce perturbations at upper levels (again in the form of weak jets) and consider

their downward influence. (From now on we again use jets of strength 10m s−1 at

the jet center, centred at the original 6 different points in the height–latitude plane

(figure 3.4), to give different initial conditions.)

3.5 3D downward propagation experiments

The model is run for 365 days. Ensemble runs are performed for Φ0 = 270, 294,

305 and 350m. As mentioned above, each ensemble contains 6 members which differ

only in their initial condition, and sensitivity to initial conditions is seen for values
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Figure 3.4:
U at 58◦N and 59km.
Figures show four ensemble runs. Each ensemble member uses a different initial
condition defined by adding a weak jet to the zonal wind at different heights and
latitudes. Each ensemble uses a different value of wave forcing at the lower boundary,
Φ0. In the intermediate regime (Φ0 = 294m and 305m) differences are seen only
between members whose initial conditions differ by a jet added in the tropics (i.e.
10◦S). Control runs are shown in black.
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Figure 3.5:
Jets of different strengths are added to the initial conditions, centred at 10◦S and
45km. We see a predictable effect on U . Control runs are shown in black. Numbers
on curves give U3 (m s−1) for eastward jets.
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Figure 3.6:
Weak jets are added to the initial conditions, as in figure 3.4 but in the Northern
Hemisphere. We again see positive jets causing earlier warmings, with the most
noticeable difference when jets are added at low latitudes. The control run is shown
in black. Φ0 = 294m.
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Table 3.1: rms disturbance to U (m s−1) at 50◦N and 28km averaged from days
100-365

Φ0Jet in initial conditions
270 294 305 350

45km, 50◦S 0.7059 5.2071 8.2077 8.6522
35km, 70◦S 0.7073 6.1374 6.1487
35km, 10◦S 0.7180 8.7261 7.5160 8.2195
35km, 50◦S 0.7032 5.7558 5.5375 5.9527
45km, 10◦S 0.7072 7.3689 5.6157 6.0706
35km, 20◦S 0.7101 6.9807 7.2673 7.8255

of Φ0 greater than or equal to 294m.

Perturbations high in the stratosphere are imposed by adding a further weak

jet to the velocity field of strength -20ms−1 centred at 50◦N and 35km and having

the same shape as the weak jet added to the initial conditions described above (in

equations (3.2)–(3.4)). The perturbation is made 100 days into each model run (thus

giving time for the model to relax to January conditions before the perturbation is

applied). Taking the rms of the difference in U between perturbed and unperturbed

runs at 50◦N and 28km, averaged over the remaining 265 days of the runs, gives an

indication of the downward influence of the applied perturbation for each value of

Φ0. We call this the rms disturbance. The results are shown in table 3.1. A blank

space indicates a run that diverges for the resolution used here.

The rms disturbance to U can be seen to be independent of the initial conditions

used. As expected, this disturbance is an order of magnitude larger in runs using

values of Φ0 for which sensitivity to initial conditions is seen than it is for runs where

no sensitivity is seen. Note that the disturbance is very similar for Φ0 = 294, 305,

and 350m, confirming that its magnitude is due to a sensitivity being present rather

than an increasing value of Φ0.

3.6 Experiments with a troposphere

There is further interest in adding a troposphere to the model. The question then is

what effects the perturbations introduced in the stratosphere have on the flow in the

troposphere and how this depends on Φ0. The model containing a troposphere runs

in σ coordinates so the boundary condition is similar to the W -condition of section

2.9 (the stratosphere only version of the model has a lower boundary equivalent to

the Φ-condition of chapter 2). Φ0 is now specified on σ surfaces rather than pressure
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surfaces. It is important to emphasise this fact since most stratospheric modelling

has been done using stratosphere–mesosphere models with artificial lower boundary

conditions. Including a troposphere provides a good check that our results are not

dependent on running with an artificial lower boundary condition.

Following Taguchi et al. (2001) a troposphere is included in the model as follows.

The basic state temperature profile of the stratosphere is the same as before (calcu-

lated from gradient wind balance using the zonal wind profile of SH02). The basic

state temperature profile of the troposphere is included by using the formula given

in Akahori and Yoden (1997), and then the temperature profile is smoothed in the

transition region from troposphere to stratosphere.

The temperature profile of the troposphere as specified in Akahori and Yoden

(1997) is:

Te(z) = T0(z) +
∆T (z)

2
(cos(2φ) − 1/3) (3.5)

where T0(z) is the global mean temperature at height z and ∆T (z) is the pole to

equator temperature difference at height z.

Following Scott and Polvani (2004), baroclinic instability is suppressed by damp-

ing wavenumbers 2 and higher in the troposphere. The damping we use is exactly as

in Scott and Polvani (2004) except that, in the notation of Scott and Polvani (2004),

we damp at a rate kT = 3/day. More precisely, we damp at a rate kTZ(z) where

Z(z) = cos2(πz/2zT ) and zT is the tropopause height. We also, following Scott and

Polvani (2004), relax to a weak eastward profile in the troposphere to allow the

vertical propagation of planetary waves. The equatorial friction on U used by Gray

et al. is not now included. The shape of lower boundary wave forcing described in

section 3.3 now uses µ0 = 0 (following Taguchi et al 2001).

We run the model in σ-coordinates with a resolution of T42, and 41 vertical levels

going from 0km to 70km. The tropopause is at 12km. There are now 32 Gaussian

latitudes and 128 longitudes on the model grid. There is one model time step every

15 minutes. Again we run the model from August initial conditions relaxing to a

state of rest in the first 5 days and then allowing the model to continue relaxing to

the January basic state temperature profile.

Ensembles of 6 members are computed for Φ0 = 1200, 1350, 1500 and 1650m,

with sensitivity to initial conditions seen for values of Φ0 greater than about 1200m

(no sensitivity to initial conditions is seen for Φ0 = 1200m). Each run is for 600

days and U at 60◦N and 50km is shown for each run in figure 3.7 (the equivalent of

figure 3.4 for this model including a troposphere). We see that sensitivity to initial

conditions becomes noticeable after about 100 days (discounting the first 100 days

taken to relax to January conditions).
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As in section 3.5 we then redo each model run, allowing 200 days of spin up time

before perturbing the stratosphere (again at 50◦N and 35km from the lower bound-

ary) using the same form of perturbation as before. The rms difference between

perturbed and unperturbed runs, at 28km and 8km, is averaged over the remaining

400 days of the model run.

Table 3.2 gives the results of these experiments carried out with a model including

a troposphere (equivalent to those shown in table 3.1 for the stratosphere only

model). As before the downward influence caused by the applied perturbation is

greatly increased once we are in a regime where sensitivity to initial conditions is seen

in the ensemble runs (going from 0.5m s−1 when no sensitivity to initial conditions is

seen to 5m s−1 or more when sensitivity is seen. Even in the troposphere a difference

of 2m s−1 is observed (in the case where sensitivity is seen), which is significant).

Note (from table 3.2) that for two of the runs where Φ0 = 1500m there is an even

larger difference between the perturbed and unperturbed runs seen at 28km. This is

because a sudden warming occurred in the unperturbed run but not the perturbed

run. Note that here applying a perturbation has caused a change of state (as seen in

the 1D experiments). A change of state was not seen in any of the 3D stratosphere

only experiments that we performed, but it is likely to be possible given certain

initial conditions and model parameters (considering that it has been observed in

the 3D model running with a troposphere). Looking at the troposphere at a height

of 8km (where SSWs do not occur, and hence causing a change of state will not show

quite as significant a downward influence) the downward influence is still an order

of magnitude greater once sensitivity to initial conditions is observed (as mentioned

above). The downward influence that we observe in U is qualitatively the same as

that seen in the 1D model in the previous chapter (see figure 3.9 in the following

section).

The good qualitative agreement between the 1D runs of chapter 2 and the 3D

runs (with and without a troposphere) in this chapter shows that our results are

robust. The bifurcation structure mapped out by Yoden in the Holton Mass model

is shown to exist also in this more realistic 3D model, manifested by runs choosing

to undergo a stratospheric sudden warming during a winter when, in the absence of

a perturbation in the upper stratosphere, they would not have done.

3.7 Height of applied perturbation

Having established the persistence of a basic mechanism for the downward influence

of a perturbation in the upper stratosphere, it is of interest to investigate further
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Figure 3.7:
Zonal wind, U , at 60◦N and 50km. Figures show sensitivity to initial conditions
in ensemble runs for Φ0 = 1350, 1500 and 1650m. Equivalent to figure 3.4 but for
model including a troposphere.
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Table 3.2: rms disturbance to U (m s−1) at 50◦N averaged from days 200-600

Φ0Jet in initial conditions
1200 (at 28km) 1350 (at 28km) 1500 (at 28km) 1650 (at 28km)

45km, 50◦N 0.5139 4.4843 5.4320 24.6786
35km, 70◦N 0.5062 5.2798 6.0582 16.4325
35km, 10◦N 0.5167 0.7626 4.5857 10.5967
35km, 20◦N 0.5211 1.1498 4.4477 14.5468
45km, 10◦N 0.5021 1.8371 18.5238 15.0183
55km, 10◦N 0.5360 4.6922 17.5953 19.6301

Φ0Jet in initial conditions
1200 (at 8km) 1350 (at 8km) 1500 (at 8km) 1650 (at 8km)

45km, 50◦N 0.2056 1.8906 2.4463 2.3665
35km, 70◦N 0.2606 1.5073 3.0268 1.6241
35km, 10◦N 0.1151 0.1582 2.4156 1.6949
35km, 20◦N 0.1045 0.2025 1.6294 1.5864
45km, 10◦N 0.1136 0.3578 1.9591 2.4957
55km, 10◦N 0.1157 1.3658 3.1271 2.8578

the nature of this downward influence. We begin by carrying out, using the 3D

model containing a troposphere, an experiment similar to that of section 2.6. More

specifically we consider the effect of the height above which a perturbation is ap-

plied (zc) to its downward influence at a given reference height. The form of the

perturbation we use for these experiments is a triangular jet centred at 50◦N which

increases linearly from 0m s−1 at 45◦N to a strength of −20m s−1 at 50◦N and then

decreases linearly back to 0m s−1 at 55◦N. Similarly the jet speed increases linearly

from 0m s−1 at zckm to maximum (−20m s−1) at (zc + 2)km and back to 0m s−1

at (zc + 4)km. This profile was used rather than the profile described in previous

sections since a sech profile is not actually zero anywhere (although it does become

small exponentially with distance from the jet centre) and we wanted to ensure that

the perturbation applied here was exactly zero below the height zc. We refer to this

as a triangular perturbation.

To ensure the robustness of the results to be presented in this section, the exper-

iments were carried out at different values of Φ0. The experiments were also redone

using a different form of perturbation. Instead of perturbing the velocity field, an

additional forcing term was included in the U momentum equation (to simulate a

force due to planetary wave breaking). This additional forcing, applied continuously

from day 100 – day 101 of model runs, took the form h for 45◦N < φ < 55◦N and
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zc < z < zc + 5km, and zero elsewhere. h, the amplitude of the forcing, was set to

15m. We refer to this alternative method of forcing as zonal-force perturbation.

To get an indication of the downward influence of these applied perturbations two

things were looked at. One was the ‘immediate effect’ measured as the difference in

the velocity field 5 days after the applied perturbation (at a height of 28km, where

values of 30, 35, 40, 45, 50, 55 and 60km were used for zc). The other was the

rms difference in the velocity field taken from day 200 (when the perturbation was

applied) to day 600 (the end of the model run) as in section 3.6 above.

Similarly to the 1D case (section 2.6), for constant magnitude triangular per-

turbations applied to U at different heights zc, we would expect, from the analysis

of ‘switch on’ forcing given in Haynes et al. (1991), that the density at height zc

(where density ρ = ρ0exp(−z/H)) divided by the response, ∆U , at a constant

height of 28km, will be roughly constant.

Therefore, in figure 3.8 we plot log(∆U) against zc (where, as just mentioned,

zc is the height above which a perturbation is applied, and ∆U is the ‘immediate’

change in the zonal wind due to this perturbation (measured at 28km)), and expect

to find a gradient of -1/H , where H = 7km. Figure 3.8 shows examples of the results

obtained, looking at the cases of an extra forcing term (zonal-force perturbation)

with Φ0 = 1200m and perturbation to the velocity field (triangular perturbation)

with Φ0 = 1500m. Gradients of -1/6 and -1/6.5 are seen, sufficiently close to what

we would have expected.

Thus the results of section 2.6, namely that a perturbation, ∆U ∝ ρ−1, at high

altitudes in the stratosphere can have just as much effect on flow in the troposphere

as a perturbation at low altitudes in the stratosphere, as with the zonal mean re-

sponse detailed in Haynes et al. (1991), carry across to this 3D model. It is worth

making the point again that perturbations at all heights in the stratosphere must

be captured by a model in order to accurately predict the flow in the troposphere.

There are also points to note from looking at the rms values of the disturbance

to U at 28km (and 8km) (not shown). As noted in the previous section, the values

increase greatly once Φ0 is such that vacillations become the stable state. What is

of interest is that the rms values do not increase or decrease monotonically with zc

as we might have expected. See Gray et al. (2004) for another example where this

simple monotonic behaviour is not the case. (In that paper the equatorial winds

are altered in 10km height bands in different experiments, and large differences

are noticed when changes are made in the upper stratosphere). Indeed, we find the

greatest rms values when the perturbation is applied in the upper stratosphere (note

that, unlike the 1D experiments, where the height below which the disturbance is
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Figure 3.8:
Figures show log(∆U) verses zc, where zc is the height above which a perturbation
is applied, and ∆U the change in the zonal wind at a height of 28km due to this
perturbation. Since we expect ρ/∆U to be constant, we expect a gradient of -1/H
(H = 7km).
(a) shows the result where zonal-force perturbation is used (defined in text) at
Φ0 = 1200m and has a gradient of ∼ -1/6, and
(b) shows the result where triangular perturbation is used (defined in text) at
Φ0 = 1500m and has a gradient of ∼ -1/6.5.
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applied is found not to matter and is taken as the top boundary, in this case the

disturbance is applied over a height of 4 or 5km and not all the way to the top

boundary). This behaviour is unexpected, but consistent with the work of Gray et

al. (2004).

This point is demonstrated in figure 3.9 which shows 3 cases of the change seen

in the zonal mean zonal wind between perturbed and unperturbed runs (∆U) for

triangular perturbation. Figure 3.9 (a) shows a case where only weak downward

influence is observed since we are in a steady state regime (Φ0 = 1200m) and no

sensitivity to initial conditions is seen. Figure 3.9 (b) shows a case where sensitivity

to initial conditions is present and greater downward influence is observed, and figure

3.9 (c) shows a case where applying the upper stratospheric perturbation to the zonal

winds caused a considerable difference to the pattern of the sudden warming that

occurred, eventually leading to a cooling at day 400 (not shown) which was not

seen in the unperturbed run. Notice that the huge difference between figures 3.9

(b) and (c) is simply due to the height at which the perturbation is applied in the

stratosphere (Φ0 = 1500m in both cases). This highlights the need for a well resolved

stratosphere with a good gravity wave parametrisation scheme to accurately model

gravity wave breaking in the stratosphere and thus flow evolution in the troposphere

(since there is a large difference in figures 3.9 (b) and (c) even in the troposphere).

3.8 Period of vacillations revisited

At the end of chapter 2 we studied the downward phase speed of an anomaly in the

zonal mean zonal wind, and considered the effect of the values of Φ0 (amplitude of

lower boundary wave forcing) and α (radiative relaxation time) both on this phase

speed and on the period of the vacillations leading to a downward phase propagation

in U . It was noted that, whilst not directly relevant to the downward propagation of

information due to a disturbance in the upper stratosphere, it is still of importance

to understand this downward phase speed so that the stratosphere can be used as

an indicator for change in the troposphere (see Baldwin and Dunkerton (2001)).

We found the rather surprising results that the period of vacillations, T , was

almost independent of α (when we expected α ∝ 1/T ) and Φ0 ∝ 1/T (when we

expected Φ2
0 ∝ 1/T ). The suggestion was made that these results are due to the

artificial nature of a 1D model. In this section we re-run these experiments to see

how T depends on α and Φ0 in the 3D model (IGCM).

First consider the effect of the rate of radiative relaxation, α, on the period of

vacillations, T . Vacillations correspond to stratospheric sudden warmings and we
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Figure 3.9:
Figures show the difference in ∆U (the change to the zonal mean zonal wind) be-
tween the steady state response (a) (Φ0 = 1200m), and the response in a vacillating
regime (b) and (c). In figure (c) a sudden warming is dramatically changed by the
perturbation (and the stratosphere cools at day 400 (not shown) which was not seen
in the unperturbed run), hence a very large downward influence is seen. Compare
with figures from 1D case (figure 2.3). Triangular perturbation is used and ∆U is
shown at 48.8◦N. The same initial condition is used in each run.



72 CHAPTER 3. 3D MODEL EXPERIMENTS

1 2 3 4
0.005

0.01

0.015

0.02

0.025

0.03

0.035

α
R

1/
T

 (
s−

1 )

Figure 3.10:

Figure shows αR (rate of Newtonian cooling defined in text) against 1/T (T is the
period of vacillations in U). Φ0 = 2600m.

need to take a relatively large value of Φ0 to obtain a suitably short period (thus

enabling a large number of periods giving a good average value for T with the model

still running in a reasonable amount of time). We look at the zonal mean zonal

wind at 60◦N and a height of 11.5km to measure the period. Integrations are, as

before, run over 600 days. It should be noted that for some values of α the period of

vacillations became irregular, and in these cases an average was taken. We choose

Φ0 = 2600m which gives vacillations of a suitable period for this exercise. Write α =

αR(1.5+tanh((z−35)/7))×10−6s−1. We run with αR = 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4.

The results are shown in figure 3.10 and it can be seen that, as expected, α ∝ 1/T .

We therefore conclude that, in the 1D model, the lack of dependence of T on α is

artificial.

Next consider the effect of increasing the amplitude of lower boundary wave

forcing, Φ0, on the period of vacillations. Again we look at 60◦N and 11.5km to de-

termine the period of vacillations. We take α = (1.5+tanh((z−35)/7))×10−6s−1 as

usual and consider Φ0 = 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3600, and 3800m.

As shown in figure 3.11 we find that Φ0 ∝ 1/T . Fitting a straight line we find

Φ0 ≈ 117250/T + 1500 and 1500m is close to the transition (i.e. the bifurcation

point) between steady state and vacillations. We therefore conclude that the sur-

prising result Φ0 ∝ 1/T is not an artifact of the artificial nature of the 1D model,

and further work should be done to understand this result.
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Figure 3.11:
Figure shows Φ0(m) verses 1/T (s−1) where Φ0 is the amplitude of lower boundary
wave forcing, and T the period of vacillations found at this value of Φ0.

3.9 Truncated runs

It is suggested in Gray et al. (2003) that small scale features (travelling anticyclones)

might be important in causing the sensitivity to initial conditions that is seen in

their model runs. This is not easy to test with the model that they use, however

it is easy to test with the Reading IGCM model which can be truncated to keep,

for example, only wavenumbers 1–3 (and zonally symmetric dynamics). To this

end we run the model (containing a damped troposphere) with the different initial

conditions specified in section 3.5, keeping only wavenumbers 1–3. Figure 3.12 shows,

for Φ0 = 1350m, the sensitivity to initial conditions seen in the zonal wind at 60◦N

and 50km for the full runs (shown also in figure 3.7) and for the runs keeping only

wavenumbers 1–3. It can be seen that sensitivity to initial conditions is still present,

and therefore that small scale features are not necessary in causing this sensitivity.

(It should be noted that sensitivity is also seen for other values of Φ0 as before.

1350m is shown in figure 3.12 as an example.)

This result is true also in the stratosphere only version of the model (used in

section 3.5). We run this model with initial conditions differing in both the southern

and northern hemispheres and, in the same way as for the full model, retain only

wavenumbers 1–3. We see from figure 3.13, which shows an ensemble run for Φ0 =

250m, that although sensitivity is now seen for a slightly lower value of Φ0 (we do

not expect that truncated models will be quantitatively the same) it is still present.

If we severely truncate the model the results do change, with no sensitivity seen
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Figure 3.12:
U at 60◦N and 50km. Shows sensitivity to initial conditions seen in runs that only
keep wavenumbers 1–3 (figure(a)), as compared to that seen in full runs (figure(b)).
Φ0 = 1350m.
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Figure 3.13:
U at 58◦N and 59km. As for figure 3.4 but runs only keep wavenumbers 1–3.
Sensitivity to initial conditions is still seen. Φ0 = 250m.
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for the initial conditions used when only wave 1 is kept, and sensitivity to initial

conditions seen at greatly reduced values of Φ0 when only wave 2 is kept.

To try and understand the difference between these runs keeping only wave 2 and

runs keeping only wave 1 we can look at PV plots centred over the north pole. It

is the case that, in runs that undergo a sudden warming, the polar vortex is moved

off the pole and in some cases completely destroyed. One observation that seems

the same throughout the (not truncated) model runs is that the polar vortex breaks

up into a wave 2 pattern before being destroyed (see figure 3.14 which shows PV

on the 900K isentropic surface for days 250, 300, 350, and 400 of a run keeping all

wavenumbers). This is consistent with the idea that we need to keep wave 2 in the

model runs.

Previous studies have considered the wavenumbers required to generate realistic

model results. Haynes and McIntyre (1987) demonstrate the great success of trun-

cated models, keeping only wave 1, in qualitatively modelling behaviour in Rossby

wave critical layers. However, they use a β-plane approximation and mention that

such truncated models may not work as well on a sphere. Both Lordi et al. (1980)

and Hsu (1981) suggest that keeping a small number of higher zonal harmonics (up

to wavenumbers 4 and 2 respectively) and allowing some wave-wave interaction, as

well as wave-mean flow interaction between wave 1 and the zonal mean flow, is cru-

cial to modelling SSWs. They show that the inclusion of these wavenumbers leads to

more rapid and intense SSWs, and that wave 2 produced by wave-wave interactions

is about 60% as important as wave 1 forcing.

Certainly from our experiments above it seems that keeping a small number of

higher zonal harmonics is important. However, it should be mentioned that Scott

and Haynes (1998, 2000 and 2002) demonstrate realistic behaviour using only wave

1 and zonal mean dynamics in a spherical model.

In any case, we conclude from our brief experiments here that no disturbance

smaller than planetary scale is required to produce SSWs or sensitivity to initial

conditions in the model runs, despite what is suggested in Gray et al. (2003).

3.10 EP flux entering the stratosphere and baro-

clinic instability

We have seen that the influence of a perturbation in the upper stratosphere can reach

the troposphere, relaying to the troposphere the current state of the stratosphere

(whether no sensitivity is present, so that a small influence is felt, or sensitivity is

seen, when a large influence is felt). Further, Scott and Polvani (2004) made the
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Figure 3.14:
PV (10−6 K m−1 s−1) on the 900K isentropic surface at days 250, 300, 350, and
400 for a model run keeping all wavenumbers (Φ0 = 1350m). Notice that the polar
vortex breaks up into a wave 2 pattern. This seems to be a consistent behaviour
when the vortex warms.
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Figure 3.15:
Figures show U at 50km and 22.4km and vertical EP flux at 18km (all at 60◦N) for
Φ0 = 294m, stratosphere only model. Warm runs are shown in red and cool runs in
blue. The signal of an SSW occurring at 50km is clearly transmitted down to near
the tropopause.
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Figure 3.16:
Figures (a)-(c) show U at 50km and 16km and vertical EP flux at 16km (60◦N)
for Φ0 = 1350m, full atmosphere model. Warm runs are shown in red, in-
termediate runs in green and cool runs in blue. Figures show that the signal
of an SSW occurring at 50km is clearly transmitted down to the tropopause.
Figure (d) shows latitudinally averaged vertical EP flux in the northern hemisphere
at 2.6km. This shows that in warm runs greater EP flux is generated at the lower
boundary (in agreement with Scott and Polvani 2004).
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point that the EP flux entering the stratosphere is not simply a function of how

much EP flux is generated in the troposphere, but rather it is a function of how

much EP flux the stratosphere chooses to accept from the troposphere, and this

depends on the state of the stratosphere (this point was also made in Gray et al.

2003). It should be noted that the EP flux entering the stratosphere is equivalent to

the EP flux leaving the troposphere and thus has a direct effect on the tropospheric

flow.

Scott and Polvani (2004) run with a model that includes a troposphere. The

troposphere is relaxed to a thermal equilibrium that is baroclinically stable, and

contains a Rayleigh drag to ensure weak westerlies allowing waves to propagate

upward into the stratosphere. The IGCM model containing a troposphere that we

use (section 3.6) is similar to that of Scott and Polvani (2004) in that the troposphere

is damped to prevent baroclinic instability. In our model this is achieved by damping

wave numbers 2 and higher.

Considering the work of section 2.11.3 (which follows that of Yoden 1987(b)) we

might expect that, in the stratosphere only version of IGCM used earlier in this

chapter, the same behaviour would be observed (namely that the EP flux generated

at the lower boundary would be a function of the stratospheric flow). We would

expect warmer runs to show greater generation of EP flux at the lower boundary

even with Φ0 kept constant there. Figure 3.15 shows that this is indeed the case.

The same holds in the full atmosphere version of IGCM used earlier, with baro-

clinic instability damped in the troposphere. This is shown in figures 3.16(a)-(c)

which show U at 50km and 16km, and the vertical EP flux at 16km (all at 60◦N).

Thus the difference in runs already shown at 50km does persist all the way down

through the stratosphere to the tropopause. An interpretation of figure 3.16 is

that greater EP flux into the stratosphere means greater EP flux divergence at the

tropopause, thus stronger eastward flow there, and a greater EP flux convergence in

the upper stratosphere, thus more westward flow there.

However this is not the whole story since, in agreement with Scott and Polvani

(2004), warmer runs show greater EP flux generation at the lower boundary. This

is shown in figure 3.16(d) which shows latitudinally averaged vertical EP flux at

2.6km in the northern hemisphere. Hence the effect of the stratospheric flow seems

to be felt down to the lower boundary. (It is important to look at latitudinally

averaged vertical EP flux. In all runs the EP flux on the lower boundary is similar

at 60◦N, but it is greater towards the equator in warmer runs with a larger poleward

transport of EP flux at low altitudes and larger vertical transport of EP flux in

the extratropics. This agrees with Yoden et al. (1996) (their figure 9) who look
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at composite maps, over runs with cold, moderate and warm polar stratospheres,

of EP flux, and also mention that a composite map of the planetary waves in the

troposphere shows a wave train pattern at high latitudes in the warm case giving

evidence of a vertical link between the troposphere and the stratosphere in this case).

Scott and Polvani (2004) form their conclusions from a single model run looking at

several model years. Here we extend that by showing that their conclusions carry

over to the case of separate model runs, some with cool and some with warm polar

stratospheres, in the way that we would expect.

It should be emphasised again that baroclinic instability is damped in the tro-

posphere for these model runs, and it is worth considering the EP flux entering the

stratosphere in a model in which baroclinic instability is allowed to develop. In such

a run we would expect this to be governed by both the state of the stratosphere

(how much EP flux the stratosphere chooses to accept from the troposphere) and

also how much EP flux is produced in the troposphere due to baroclinicity.

Due to the latter, when baroclinic instability is allowed to develop a steady

state is no longer attained in any model run (no matter how small a value of Φ0 is

used). We can no longer distinguish between cool and warm runs – such a clear cut

difference no longer exists (see figure 3.17). Even when strong westerlies are observed

in a run, there is no obvious decrease in the EP flux entering the stratosphere. It is

no longer clear if there is any relation between the available EP flux and U in the

stratosphere. However, as we will demonstrate below in this section, there is indeed

still a link between the EP flux entering the stratosphere and U in the stratosphere.

The idea of Scott and Polvani (2004) that the flow in the stratosphere can influence

the EP flux entering the stratosphere will be shown still to apply.

We proceed as follows, asking the question as to how the amplitude of lower

boundary wave forcing, internal variability in the troposphere (sometimes generated

by baroclinic instability) and internal variability in the stratosphere (sometimes

concerning the dynamical state of the stratosphere (steady or vacillating)), affect

the total amount of (vertical) EP flux, Fztot, that enters the stratosphere during a

model run. To this end we evaluate (using the model with a troposphere included):

Fztot = 2πa

∫ π/2

−π/2

fz cosφ a dφ

where fz is vertical EP flux, φ is latitude, and a is the radius of the earth.

Running with a troposphere damped to prevent baroclinic instability (as in sec-

tion 3.6 but for a more extended range of Φ0) we consider Fztot at a height of 16.8km

averaged from days 200 to 600 of the model runs (we look also at 13.3km to check
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Figure 3.17:
When baroclinic instability is allowed to develop, we no longer see runs which are
definitely ‘cool’ or definitely ‘warm’. Here we look at U at 60◦N and 50km for
Φ0 = 1350m.
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Figure 3.18:
Figure (a) shows total upward EP flux through 16.8km as a function
of Φ0 for runs with baroclinic instability damped in the troposphere.
Figure (b) shows total upward EP flux through 4.4km (1020 kg m2 s−2), 16.8km
(1018 kg m2 s−2), 25.7km (1017 kg m2 s−2) and 43.4km (1015 kg m2 s−2) for runs
with baroclinic instability allowed to develop.
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Figure 3.19:
Figures show lag-correlation coefficients, in lag-height sections, for the vertical EP
flux using a reference point of 85◦N and 43.4km. (This follows Taguchi et al., 2001,
who show similar figures for T , U , and wave amplitude). Figure (a) shows run with
Φ0 = 800m where the influence in the vertical EP flux is largely upward and figure
(b) shows run with Φ0 = 2400m where the influence is largely downward.

that the same results are found at both heights – not shown). See figure 3.18(a). In

the absence of baroclinic instability the amount of EP flux entering the stratosphere

is found to be around 1018 kg m2 s−2 when the stratosphere is in a steady state and

around 1019 kg m2 s−2 when it is vacillating. In general there appears to be only

a small increase in Fztot with Φ0 – the largest difference is seen either side of the

bifurcation point from steady state to vacillations.

In the presence of baroclinic instability no steady state is ever achieved (as is

mentioned above). We run without damping in the troposphere and consider the

vertical EP flux crossing the 4.4km, 16.8km, 25.7km, and 43.4km surfaces as a

function of Φ0. The results are shown in figure 3.18(b). In what follows in this

section we consider carefully what is shown in figure 3.18(b).

Scinocca and Haynes (1998) show that, in the presence of baroclinic instability

and no other form of wave driving in the troposphere, the instability gives rise to

small scale disturbances which in turn give rise to planetary scale wave forcing which

propagates upwards into the stratosphere. We consider the largest wave number

components (from 1 to 7) of the zonal wind at 60◦N in our model runs and find that

the amplitudes of the wave 5–7 components decrease with height and the amplitudes

of the wave 1–4 components increase with height. This is true for all values of Φ0

even though for large values of Φ0 (greater than 1800m) wave 1 dominates the zonal
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wind even in the troposphere. It is worth remembering that the wave forcing we

impose is wave 1, so these results suggest that the mechanism discussed in Scinocca

and Haynes (1998) is relevant here. This mechanism may well be the cause of all

model runs being disturbed (even for small Φ0), and hence the distinction between

‘cool’ and ‘warm’ runs which we found with a damped troposphere being no longer

present.

Taguchi et al. (2001) run a spectral primitive equation model the set up for

which we follow closely in our model including a troposphere (allowing baroclinic

instability to develop) as was mentioned in section 3.6. They considered (as we do)

lower boundary forcing Φ0 with values from 0m to 3000m and discovered that the

dynamical behaviour, as Φ0 was increased, split into 4 different regimes. Considering

time series for T at 86◦N and 2.6hPa (43km), they found that in regime 1 (small

Φ0) the polar vortex is basically undisturbed, in regime 2 small undulations in T

were observed, in regime 3 SSWs occur intermittently and in regime 4 the vortex is

usually weak and warm.

Taguchi et al. (2001) used two further means of classifying these regimes the

first of which we follow to ensure that we are finding the same classification. For

each value of Φ0 they plot the values of T in the time series (mentioned above) as

a histogram and note qualitative differences between the regimes. For our runs we

don’t observe regime 1 (the runs are always slightly disturbed – our model is not

identical to theirs, and certainly Te will be slightly different (see section 3.12)) but

the transition from regime 2 to regime 3 (using the histograms just mentioned) is

found to occur at Φ0 = 1200m and the transition from regime 3 to regime 4 occurs

at Φ0 = 1800m.

The other means they use is to look at time lag correlations, correlating time

series for T at 86◦N and 43km to time series for T at 86◦N and all heights shifted

in time by up to ± 30 days. The upward propagating correlations that they find in

regime 2 (confined to the stratosphere) and the downward propagating correlations

in regimes 3 and 4 (over both stratosphere and troposphere) lead them to suggest

that vertical linkage between the stratosphere and troposphere in regimes 3 and 4

is two way (and that this is not the case in regimes 1 and 2).

We perform the same lag correlation analysis but using the vertical EP flux at

85◦N rather than T . It appears that in regime 2 the influence is largely upward – we

see the largest correlations below the reference point for negative lag times (figure

3.19(a)). In regime 3 these positive correlations still appear largely confined to the

stratosphere although they do not obviously show an effect that is mainly upward

or downward. There is a big change in regime 4 (Φ0 > 1800m) where the influence
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of wave driving appears to be downward – the largest correlations appearing above

the reference point for negative lag times and below the reference point for positive

lag times, and positive correlations extend also into the troposphere (figure 3.19(b)).

We can therefore interpret figure 3.18(b) in terms of these regimes. We can

see that the upward EP flux crossing the 4.4km and 16.8km surfaces is largely

independent of Φ0 (this suggests that the amount of EP flux in the troposphere and

the amount of EP flux entering the stratosphere is largely independent of Φ0 in the

presence of baroclinic instability). However, the EP flux crossing the 25.7km surface

increases with Φ0 suggesting that less wave breaking occurs in the lower stratosphere

as Φ0 increases, and the EP flux crossing the 43.4km surface increases through

regimes 2 and 3 and then decreases through regime 4 suggesting that significantly

more wave breaking occurs between 25.7km and 43.4km in regime 4 (which will lead

to a usually warm and disturbed polar vortex). Note that the vertical axis in figure

3.18(b) uses a different scale for each curve.

Further, if instead of looking at the time averaged EP flux entering the strato-

sphere we look at the amplitude of the vacillations in the time series of Fztot at

16.8km, we find that this amplitude is set by the regime. In regime 2 the amplitude

falls somewhere in the range of 6–8.5 × 1018 kg m2 s−2, in regime 3 it lies within

the range of 8.5–10 × 1018 kg m2 s−2, and in regime 4 is between 10–13 × 1018 kg

m2 s−2 (in no regime does the amplitude increase monotonically with Φ0 so it is

clearly different in the different regimes). Again this agrees with the idea of Scott

and Polvani (2004), namely that the flow in the stratosphere helps determine the

EP flux into it, since the vacillations in the mean flow also increase as the dynamics

move from regime 2 to 3 and 3 to 4 (as described in Taguchi et al. 2001 and above

in this section).

Thus, in the sense we have described, the results of Scott and Polvani (2004)

carry over to the case where baroclinic instability is allowed to develop, provided

we consider the different regimes detailed in Taguchi et al. (2001). It is worth

also carrying out the lag correlation analysis mentioned above for runs in which

the troposphere is damped to prevent baroclinic instability. Figure 3.20 shows the

results of doing so. We find that the influence in the vertical EP flux at 85◦N is

largely upward in the steady state regime for any value of Φ0 (an example is shown in

figure 3.20(a)) and is largely downward for any value of Φ0 in the vacillating regime

(an example is shown in figure 3.20(b)).
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Figure 3.20:
As for figure 3.19 but for runs with troposphere damped to prevent baroclinic insta-
bility. Figure (a) shows run with Φ0 = 1050m where the influence is largely upward
and figure (b) shows run with Φ0 = 1800m where the influence is largely downward.

3.11 A linear response?

In the last section we argued that the amount of EP flux entering the stratosphere is

not simply due to how much wave activity is generated in the troposphere, but it is

significantly affected by the state of the stratosphere. If linear theory holds then it

might be thought that the fact that the refractive index contains vertical derivatives

(see Chen and Robinson 1992) makes this obvious. The question is whether or not

linear theory does hold for values of Φ0 that we are interested in.

A way of testing whether it does is the following. Run the 3D model (both with

a troposphere (which we call a full atmosphere model), and in stratosphere only

mode) with a given value of Φ0. Then, in a separate run, impose the same zonal

wind (by reading in the zonally symmetric spectral coefficients from the original run)

whilst running with a smaller value of Φ0. From equation (2.4) we would expect

the vertical EP flux to scale with Φ2
0 if linear theory holds. So, for example, for an

initial run using Φ0 = 10m, and a following run using the same U but Φ0 = 1m, we

expect the EP flux of the first run to be 100 times that of the second.

The vertical EP flux at about 50km and 40◦N is shown for each model run

in figure 3.21. Figure 3.21(a) shows results for the full atmosphere model. The

black curves show EP flux for runs with U corresponding to Φ0 = 1m. The three

curves are for runs with Φ0 = 0.1m (multiplied by 102), Φ0 = 0.02m (multiplied by

502) and Φ0 = 0.01m (multiplied by 1002). The blue curves are for runs with U
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corresponding to Φ0 = 10m. They show the EP flux for Φ0 = 1m (multiplied by

102) and Φ0 = 0.1m (multiplied by 1002). The red curves are similarly scaled, U

corresponding to Φ0 = 100m, with Φ0 = 1m and 10m used. Notice that, although

the EP flux scales correctly between different runs for the same U , it does not

scale like Φ2
0 for runs with different U (i.e. the blue curves are not 100 times the

black curves). Also 100m is a value of Φ0 considerably smaller than that which we

are interested in. It can be seen in figure 3.21(c) that when realistic values of Φ0

are used (specifically Φ0 = 1000m) the response is certainly not linear. The two

curves in figure 3.21(c) show runs for Φ0 = 10m and 100m using U corresponding

to Φ0 = 1000m (not scaled).

The stratosphere only model, however, is essentially linear (though notice, from

figure 3.21(b), that the amount of vertical EP flux is significantly smaller than that

found in the full atmosphere model). Figure 3.21(b) is scaled in the same way as

figure 3.21(a) except that between different runs (i.e. different colours of curve)

the EP flux is scaled by 1/(Φ2
0). In other words, the curve for the run with lower

boundary wave forcing Φ0 = 10m using U corresponding to the Φ0 = 100m run has

the EP flux scaled by 102/1002 (whereas in figure 3.21(a) it would just be scaled by

102). Thus, EP flux scales as Φ2
0 for the same value of U and also for different values

of U .

In conclusion, linear theory holds with a stratosphere only model. However, it

cannot be used to claim that the stratosphere obviously significantly influences the

amount of EP flux it accepts from the troposphere (as was shown in Scott and

Polvani 2004 and extended in the previous section) since linear theory does not hold

in a full atmosphere model running with realistic values of Φ0.

3.12 Cold pole problem

It is well known that some GCMs suffer from a ‘cold pole problem’, the temperature

in high latitudes in the model stratosphere being colder than observations suggest

it should be. It is important, therefore, to know if the effect of the stratospheric

temperature profile on tropospheric flow can be large. By simulating a ‘cold pole’ in

our model (in other words changing the stratospheric temperature profile) we will

answer the question (raised in section 2.6) as to whether gravity wave breaking or so-

lar heating in the stratosphere, as well as Rossby wave forcing from the troposphere,

can alter what regime the stratosphere is in (steady or vacillating). Although the

bifurcation parameter is lower boundary Rossby wave forcing (Φ0) it is possible that

a different radiative state in the stratosphere will alter this bifurcation diagram and,
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Figure 3.21:
Vertical EP flux at 50km, 40◦N for full atmosphere model, and 54km, 40◦N for
stratosphere only model. Full details of scaling given in the text.
(a) Full atmosphere model. Black lines correspond to U for Φ0 = 1m, blue lines to
Φ0 = 10m, and red lines to Φ0 = 100m.
(b) Stratosphere only model. Blue lines correspond to U for Φ0 = 1m, red lines to
Φ0 = 10m, black lines to Φ0 = 100m, and green lines to Φ0 = 300m.
(c) Full atmosphere model. EP flux for runs corresponding to U for Φ0 = 1000m.
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Figure 3.22:

Change applied to radiative equilibrium temperature field (Te).

in particular, the value of Φ0 at which the bifurcation point lies. If this is the case,

then it follows from the work of this chapter that a cold pole problem could cause a

significant error in the simulated tropospheric dynamics.

Butchart and Austin (1998) compared UK Meteorological Office Unified Model

(UKMO UM) simulated temperatures with the 5 year mean temperature field from

UKMO stratospheric data assimilation for 1992–1996. The difference between these

temperature profiles showed the cold pole problem appearing in the UM (their figure

3(c)). We simulate a cold pole problem in our model by adding the following pertur-

bation (given in Kelvin, with z in km) to the radiative relaxation temperature profile

Te (the perturbation matches closely figure 3(c) of Butchart and Austin 1998):

C(z)[−26sech(0.046941(φ− 90◦))sech(0.093883(z − 45))

− 16sech(0.018814(φ+ 90◦))sech(0.0823(z − 38))]

where

C(z) =



















1 20 < z

(z − 12)/8 12 < z 6 20

0 z 6 12

Figure 3.22 shows this perturbation.

We run the model with troposphere included, using the same Te profile as in
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sections 3.6 to 3.8. The model is spun up from rest to simulate early winter, but

thereafter we maintain perpetual January conditions in order for multiple states to

be established (it is not clear whether the Yoden bifurcation diagram would persist

in the case of a seasonal cycle being applied). We also heavily damp baroclinic

instability in the troposphere (using kT = 9/day in the notation of section 3.6). The

model is run for 600 days.

Figure 3.23 shows U at 60◦N and 50km for Φ0 = 1050, 1100, 1175, and 1250m for

runs with both normal and cold pole relaxation temperature profiles. It can be seen

that without adding a cold pole to the radiative temperature profile, a cool winter

is seen for values of Φ0 above 1175m but when using a temperature profile with the

cold pole perturbation added a warm winter is already seen when Φ0 = 1100m. It

seems odd that the colder poles have caused a weaker value of wave forcing to be

necessary to produce a warming.

Looking at the zonal wind and EP flux divergence at days 400 (figure 3.24) and

500 (figure 3.25) of runs both with and without a cold pole (using Φ0 = 1175m) we

can see more clearly what is happening. At day 400 it can be seen that the cold

pole has caused the zonal jet (at a height of about 40km) to move poleward from

about 50◦N to 70◦N. By day 500 the change in EP flux divergence (a poleward shift

of EP flux convergence at high altitudes, and increased EP flux divergence at high

latitudes and low altitudes) has caused U to become more westward at high latitudes

(around 40–50km) and more eastward at low latitudes (at the same height).

The important point to note here is that altering the stratospheric temperature

profile can alter the tropospheric dynamics by shifting the bifurcation point marking

transition from cool to warm run and thus causing/preventing an SSW. From figure

3.26 we can see that Φ0 = 1175m is in the intermediate regime where both cool and

warm runs are stable when Te has a cold pole added, whereas it is in the cool regime

(with no sudden warmings observed) in the absence of a cold pole.

Investigating further, we apply the cold pole temperature perturbation to the

model stratosphere only in certain regions to try and understand which areas of

the change in Te applied in this section are important. We find that applying the

temperature perturbation just in the northern hemisphere (so set SH jet to 0, which

we refer to as ‘cp-nh’), or just above 20km (so alter C(z) above to increase linearly

from 0 to 1 between 20km and 30km, ‘cp-20’), makes little difference to the case of

applying the whole perturbation. U still becomes very strong and eastward and then

the stratosphere warms whereas with no temperature perturbation it does not warm

(see figure 3.27). Thus it is change to Te in the northern hemisphere stratosphere

that is found to be important.
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Figure 3.23:
U at 60◦N and 50km for Φ0 = 1050, 1100, 1175, 1250m for runs with both normal (or
‘no cold pole’ – ncp) and ‘cold pole’ (cp) radiative equilibrium temperature profiles.
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Figure 3.24:
Figures (a) and (b) show U (m s−1). Figures (c) and (d) show total EP flux di-
vergence (i.e. zonally averaged ∇ · F × 2πa, where a is the earth’s radius) (109 kg
s−2).
Figures (a) and (c) show run with no simulated cold pole, and figures (b) and (d)
show run including a simulated cold pole.
All figures show day 400 of model runs.
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Figure 3.25:

As for figure 3.24 but at day 500 of model runs.
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Figure 3.26:
Zonal wind, U , at 60◦N and 50km. As for figure 3.7 but for run with simulated cold
pole.

In conclusion, what we have shown is that altering Te in the stratosphere can

alter whether or not a stratospheric sudden warming will occur in a particular win-

ter. It will alter the underlying bifurcation structure mapped out by Yoden for 1D

models and shown in this chapter to persist in 3D models. Including a Te in the

stratosphere that is correct is therefore essential, given the ability of small perturba-

tions to move the stratosphere from a steady/cool state to a vacillating/warm state

detailed above, to correctly model flow evolution in the troposphere. It is worth

noting again that even a small change induced in the tropospheric flow could be

amplified by the internal dynamics of the troposphere thus causing a large change

(Song and Robinson, 2004).

3.13 Conclusions

The conclusions of chapter 2, where a 1D model was used to investigate a mechanism

for the downward propagation of dynamical signals in the upper stratosphere, have

been found to apply also to experiments performed using a more physically realistic

3D mechanistic circulation model. The fact that the mechanism described persists

in different models makes it more credible.

Sensitivity to initial conditions is found for suitably high values of lower boundary

wave forcing. This sensitivity is greatest when the difference in the initial condi-

tions occurs in low latitudes. A stratospheric perturbation at high altitudes will

have the greatest downward influence for conditions in which sensitivity to initial
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Figure 3.27:
U at 60◦N and 50km shown for runs using various radiative equilibrium temperature
profiles (described in text). Φ0 = 1175m.

conditions is possible and, in these cases, we see the largest downward influence

where the perturbation prevents an SSW from occurring (when one would otherwise

have done so) or causes an SSW (when, without a perturbation, a cold winter would

have been seen). This downward influence is shown to extend significantly into the

troposphere. (We draw a parallel between these conclusions and those for the 1D

model by suggesting that a steady state in a 1D model is equivalent to a cold winter

and a vacillating state in a 1D model is equivalent to a winter in which an SSW

occurs.)

It has been shown that the downward influence of a perturbation to the zonal

wind, ∆U ∝ ρ−1, is significant at whatever height the perturbation is applied (con-

sistent with the analysis of Haynes et al. 1991). Thus, to capture the effects of per-

turbations on the flow throughout the stratosphere, a model top boundary should

not lie below the top of the stratosphere. The sensitivity to initial conditions that

we see (which allows a perturbation, ∆U , to have a significant downward influence)

can be accounted for by dynamics on planetary scales without considering smaller

scales.

Scott and Polvani (2004) show that the amount of EP flux that enters the strato-

sphere is dependent on the state of the stratosphere (and thus can be time dependent

even for time independent external forcing). We have shown that this result carries

across to the case of multiple runs (rather than one long run) and (using the work

of Taguchi et al. 2001) to the case where baroclinic instability is allowed to develop
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in the troposphere. We have also demonstrated that this result is true in the case of

stratosphere only models (where the lower boundary on which Φ0 is kept constant

can be thought to be the tropopause).

It is not only Rossby and gravity waves that can affect the state of the strato-

sphere (by causing a transition from one branch of the equivalent Yoden bifurcation

diagram in this 3D model to another), but also the stratospheric radiative relaxation

temperature profile, Te (by altering the bifurcation diagram).

The implications of the last two chapters for climate modellers are that sufficient

resolution is required in model stratospheres to accurately resolve planetary wave

breaking throughout the stratosphere (since wave breaking at high altitudes can have

just as much effect on the model as wave breaking at lower altitudes, and indeed the

altitude at which a perturbation is made has been shown to significantly alter its

effect on the flow), an accurate radiative state needs to be maintained, and a good

gravity wave parametrisation scheme needs to be employed. Without these things it

is possible that a model will not, for the tropospheric wave driving available, correctly

simulate whether or not a sudden warming should occur in the winter hemisphere

(manifested in 1D models by a transition from steady to vacillating state) and thus

the model may predict the state of the troposphere completely incorrectly. It is

not only the case that the correct perturbation entering the troposphere from the

stratosphere must be simulated, but also that the correct vertical EP flux leaving

the troposphere must be simulated, and this is driven in part by the state of the

stratosphere. The sort of perturbations we have applied could equally be caused by

wave breaking or solar heating highlighting the need for a realistic ozone distribution

in model stratospheres.

Although it would be good to use ERA-40 data to show the mechanism explored

in the last two chapters at work in the real world, the complications of baroclinic

instability being present (discussed in section 3.10) are likely to make this very

difficult.



96 CHAPTER 3. 3D MODEL EXPERIMENTS



Chapter 4

Seasonal Cycle

4.1 Introduction

All investigations so far have been run in a state of perpetual winter. However, the

influence of the stratosphere on the troposphere in the real atmosphere occurs under

the influence of a seasonal cycle. It is therefore important to understand more about

the seasonal cycle seen in dynamical fields in the stratosphere and what causes it.

The interhemispheric differences seen in the winter stratosphere, and the seasonal

cycle in the mass upwelling in the tropical lower stratosphere are the aspects of this

seasonal cycle we will focus on in this chapter.

There are large interhemispheric differences in the winter stratosphere. In the

southern hemisphere the polar vortex almost never warms during winter, strong

eastward flow being observed throughout. In the northern hemisphere, however,

stratospheric sudden warmings in which the polar vortex can be severely distorted

during winter are common. Using the language of the previous chapters, it may

be that the northern hemisphere is close to the bifurcation point between a steady

state and vacillating state (in other words a cool or warm state), whilst the southern

hemisphere is within the regime where the steady state is stable. If this is the

case then the work of the previous chapter shows that only a small change in the

stratosphere would be required to cause or prevent a stratospheric sudden warming in

the northern hemisphere. Yoden (1989) showed that this interhemispheric difference

could be reproduced in a simple (Holton–Mass) 1D model simply by altering the

amount of lower boundary wave forcing applied (their work followed that of Plumb

1989). This is consistent with the hypothesis just suggested. For a lower boundary

condition, Yoden used the Φ-condition (described in section 2.9). We ensure that

the conclusions of Yoden (1989) persist when using the more physically realistic W -

condition lower boundary. We go on to show evidence that a resonance between the

97
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topographically forced waves and free travelling planetary waves could be the reason

for large disturbances being seen in the geopotential height field of some runs.

What causes the seasonal cycle in mass upwelling in the tropical lower strato-

sphere is largely an open question, and it is an important one since it is related to

the strength of the Brewer–Dobson circulation of the stratosphere (discussed further

in chapter 5) which is responsible for chemical transport within the stratosphere.

Yulaeva et al. (1994) suggested that extratropical wave driving is the cause of this

equatorial seasonal cycle. However, Kerr-Munslow and Norton (2006) suggest that

wave driving in the tropical troposphere may be important. We look further into the

causes of this seasonal cycle, investigating the effects of: the strength and location

of lower boundary wave forcing, the radiative relaxation time scale, α, adding a sea-

sonal cycle to the tropospheric part of the radiative relaxation temperature profile,

Te, and allowing baroclinic instability to develop. We consider how well downward

control appears to apply since showing that it works well would be consistent with

the findings of Yulaeva et al. (1994).

4.2 Interhemispheric differences in seasonal vari-

ation

There are notable differences in the seasonal variation between the Northern and

Southern hemispheres. In the Southern hemisphere winter an uninterrupted strong

eastward flow is observed, whereas in the middle of Northern hemisphere winter a

stratospheric sudden warming often occurs where the zonal flow becomes westward

for a short time. One factor contributing to these differences is the temperature of

the surface. The Antarctic is significantly colder because snow reflects much of the

sun’s radiation that falls on it. Another explanation for these differences is greater

land masses and greater land–sea temperature contrast in the Northern hemisphere

causing greater wave formation there, and consequent greater wave propagation into

the stratosphere. Yoden (1989) ran some experiments with a Holton–Mass model

(as used in chapter 2) to test the effect of this greater topography on seasonal

variation. A seasonal cycle was introduced into the radiative equilibrium profile

(defined below) and the Φ lower boundary condition (defined in section 2.9) was

used. Yoden found that a greater value of Φ0 gave behaviour typical of Northern

hemisphere winter (with a mid winter stratospheric warming), and a lesser value

of Φ0 gave behaviour typical of Southern hemisphere winter (with strong eastward

flow), as expected. This is an interesting result, but the Φ lower boundary condition

is unrealistic. The question addressed here is whether such behaviour found was
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dependent on the artificial nature of this Φ lower boundary condition or whether it

can also be found if the W lower boundary condition (defined in section 2.9) is used.

Experiments are run with the Holton–Mass model using the same parameters

as Yoden (1989), namely the radiative equilibrium profile Ue is specified by Ue(z =

0) = 20m s−1 with dUe/dz = 0.75 − 2.25cos(ωt)m s−1km−1 and ω = 2π year−1,

U(t = 0) = Ue (although the initial condition is found to be unimportant), α =

[1.5 + tanh((z − 25)/7)] × 10−6s−1, and resolution dt = 0.05 days, dz = 0.5km

(with a vertical range of 70km). However, as mentioned above, we use the W lower

boundary condition. We do find, just as for the Φ condition, that a greater value

of h0 (h0 = 1250m) gives behaviour typical of Northern hemisphere winter, and a

lesser value of h0 (h0 = 30m) gives behaviour typical of Southern hemisphere winter.

Figure 4.1 shows U and |Φ| for both values of h0.

4.2.1 The Lamb mode

The question then arises – what is it that causes this variation in the model runs?

With an imposed seasonal cycle in Ue it is not simply the difference between a

steady state and vacillating state since we are being forced away from these natural

states by the imposed time dependence in Ue. Something is producing large values

of geopotential height at certain times during model runs. One possibility is that

a resonance is occurring between the (stationary) topographical forcing and free

travelling planetary waves whose phase speed has very small real part. Whether

using the Φ-condition orW -condition lower boundary, free travelling planetary waves

exist. These are waves not maintained by travelling forcing effects. However, with

the W -condition lower boundary a free travelling mode called the Lamb mode exists

which is more realistic than any mode obtained for the Φ-condition lower boundary

in that a very similar looking mode is observed in the real atmosphere (see Andrews

et al. 1987). The Lamb mode is therefore of more interest than other modes.

In fact, the W -condition is not quite the right lower boundary to use. It assumes

that the material derivative of pressure vanishes on the boundary which neglects

mass redistribution. The correct condition is that the material derivative of the

geopotential vanishes on the boundary (see Haynes and Shepherd 1989). Following

Tung (1983) this yields

w = u · ∇h−
(

∂

∂t
+ u · ∇

)

Φtot

where recall we always use Φ for geopotential height rather than geopotential,

and in fact it is geopotential height without the zonal mean so that here Φtot = Φ̄+Φ
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Figure 4.1:
Holton–Mass model run with seasonal cycle imposed in Ue (detailed in section 4.2.
Figure shows interhemispheric differences in seasonal variation.
(a) Um s−1 for southern hemisphere (h0 = 30m),
(b) |Φ|km for southern hemisphere (h0 = 30m),
(c) Um s−1 for northern hemisphere (h0 = 1250m),
(d) |Φ|km for northern hemisphere (h0 = 1250m).
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(where overbar denotes zonal mean). The second term on the rhs is additional to

the W -condition used before, and is a consequence of mass redistribution on the

lower boundary. The calculation proceeds (still following Tung (1983)) by using the

thermodynamic equation

g

(

∂

∂t
+ u · ∇

)

Φtotz
+N2w = 0

along with the geostrophic approximation that

u =
g

f
k ×∇Φtot

where k is a unit vector in the vertical (in log-pressure coordinates). Thus

equation (2.16) becomes

− N2

g

∂Φ

∂t
+

(

∂

∂t
+ ikγU + α

)

∂Φ

∂z

− ikγΦ
∂U

∂z
+ ikγN2h0Ug

−1 −
(

k2 +
π2

L2

)

N2

f
DEΦ = 0

(4.1)

and equation (2.17) becomes

− N2

g

∂U

∂t
+
∂

∂t

∂U

∂z
+ ik

π2

4L2
γ
N2g

f 2
(Φh∗0 − Φ∗h0) −

π2

L2

N2

f
DE(U − Ue) =

− α
∂(U − Ue)

∂z
+ ik

π2

4L2
γ
g2

f 2

(

Φ
∂Φ∗

∂z
− Φ∗

∂Φ

∂z

) (4.2)

(It is found that the only real difference these extra terms (the N2

g
∂
∂t

terms) make

is to the vertical structure of the Lamb mode at lower levels).

To make analytic progress on the Lamb mode we must linearise about an atmo-

sphere at rest (see Andrews et al. 1987, p.169 for details). A transformation allows

a velocity field that is constant in height, but we would like to deal with a general

velocity field. Therefore we proceed computationally, solving equations (2.1) and

(2.3) as an eigenvalue problem at time t using the value of U at that time. In the

lower boundary condition 4.1 we set h0 = 0 else we have a forced problem and do

not find free modes (although the model runs that we take U from still use h0 6= 0

of course). This gives as many eigenvalues, and corresponding eigenmodes, as there

are vertical levels in the model (141 here). The mode corresponding to the velocity

at z = 0 is the Lamb mode. We find this mode by solving for it analytically in

the case where U is independent of z and then gradually altering U , and tracking

the small changes in the eigenvalue of the Lamb mode for such small changes in U ,
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until we are applying the value of U we require (taken from the Holton–Mass model

runs). In matrix form the equations we are solving are

cQΦi = PΦi

where

P = γUiQ +
g

f
K − igf

kN2
D

Q = −g
f

(

k2 +
π2

L2

)

I +
gf

N2
M

(4.3)

where I is the identity matrix, K is the matrix form of β + γQy, M is the matrix

form of (1/ρ)(∂/∂z)(ρ∂/∂z), and D is the matrix form of (1/ρ)(∂/∂z)(ρα∂/∂z).

Although the vertical structure of the Lamb mode seems to bear little resem-

blance to |Φ|, the important thing is where Re(c) (the real part of the phase speed

of the Lamb mode (i.e. the real part of the eigenvalue of the Lamb mode)) vanishes.

If it is small at times when the geopotential height and EP flux are large, then there

may be a resonance between the Lamb mode and stationary planetary wave forcing.

The model is run for 2000 days (allowing 1000 days spin up time, so considering

day 1000 of the model run to be day 0) for both h0 = 30m and h0 = 1250m. To

eliminate transient effects, we examine the EP flux both in the time evolving case

(using radiative equilibrium velocity profile Ue(t) defined above) and also by evolving

to a steady state. (In other words we take the values of Ue and U at several different

points of the time evolving run and, for each point, run with them constant at these

values until a steady state is achieved. Combining the values of a dynamical field at

each of these points gives a time evolution for that field without transient behaviour.

We refer to this as the steady state run.)

Consider first h0 = 1250m. Looking at figure 4.3(a) we see that the phase speed

of the Lamb mode is fairly constant throughout the run, and far from zero. So

no resonance is possible in this case. The (linear) case where h0 = 30m is more

interesting. Now from figure 4.3(a) we see that the real part of the phase speed

(Re(c)) gets small at two times during the run. This happens on days 479 and 667.

Looking at the EP flux through the lower boundary, F(z=0), (figure 4.2(a)) we see an

increase in F during these times – the first time being around day 450, when Re(c)

is fairly small. At the second of these times F appears to go large and negative

– behaviour that is not seen in the steady state run (figure 4.2(a)). As we plot

F further from the bottom boundary it becomes clear exactly which contributions

lead to greater |Φ| (figure 4.2(b)). It also becomes clear that the negative F is due

to topographical contributions from the lower boundary. The maxima in |Φ| are
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Figure 4.2:
a) Vertical EP flux on bottom boundary, F (z = 0) (103 kg m s−2) in time-evolving
and steady state runs (defined in text) for h0 = 30m.
b) Vertical EP flux (103 kg m s−2) at various altitudes (time-evolving case) for
h0 = 30m.

realised on days 461 and 692 (figure 4.1(b)). The fact that these times closely agree

with the times when the Lamb mode has negligible real phase speed suggests that

resonance may be occurring.

The question that then arises is what aspect of the flow causes such a difference

in the eigenvalues of the Lamb mode when h0 = 30m and h0 = 1250m leading to a

possible resonance at h0 = 30m when none is seen at h0 = 1250m. This is answered

by looking at U(z = 0), the velocity at the bottom boundary, for both values of

h0. We see (figure 4.3(b)) that Re(c) appears to be strongly influenced by the flow

near the surface. It remains to discover the reason for the large difference in the

flow near the surface between the linear and non-linear regimes (this is a point for

further work). Once understood this should help explain why a resonance might

occur in the linear regime (h0 = 30m) but not the non-linear one (h0 = 1250m).

4.3 Seasonal Cycle in Mass Upwelling in the trop-

ical lower stratosphere

In this section we consider what affects the seasonal cycle in the mass upwelling

in the tropical lower stratosphere. It was suggested by Yulaeva et al. (1994) that

the seasonal cycle at the equator is largely due to extratropical wave forcing in the

stratosphere. More recently Kerr-Munslow and Norton (2006) suggested that it may
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Figure 4.3:
a) Phase speed of Lamb mode (Re(c)) for h0 = 30m and h0 = 1250m.
b) U(z = 0) (velocity on lower boundary) for h0 = 30m and h0 = 1250m.
The curves showing strongly varying Lamb mode phase speed (Re(c)) and zonal
wind at the surface (U) correspond to the linear regime (h0 = 30m) and the curves
where these quantities are almost constant correspond to the non-linear regime
(h0 = 1250m)

be due, in some significant part, to wave propagation in the tropical troposphere.

We investigate the cause of this seasonal cycle and we will show that, consistent

with Yulaeva et al. (1994), wave forcing in the midlatitude lower stratosphere plays

a crucial role (via the downward control mechanism (Haynes et al. 1991)).

The model set up described below is similar to that used by Scott (2002). In

that paper a modified version of the downward control integral including transient

effects was used to investigate the mean tropical upwelling in the lower stratosphere.

The main result of the paper was that the transient effects of the seasonal cycle in

thermal and mechanical forcing contributed more to the mean upwelling than the

nonlinear redistribution of angular momentum contours by the forcing. The paper

uses forcing centred at different latitudes, and a zonal mean (2D) version of the

model (with EP flux prescribed) – ideas that we shall also use to further explore the

seasonal cycle in mass upwelling in the tropical lower stratosphere.

The model used is the 3D mechanistic circulation model (IGCM) used in chapter

3 above. We run with T42, 41 vertical levels, and one time step every 15 minutes.

The model is run in sigma-coordinates with lower boundary at the ground and top

boundary at 68km. The model is spun up from rest.

To achieve a reasonable seasonal cycle in model runs, a more realistic Te profile

than that used in chapter 3 was required. To achieve this new Te profile, the old
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Figure 4.4:

New version of Te (described in text)

profile was modified in the following ways:

The stratospheric profile (obtained from gradient wind balance as in SH02) was

altered in the summer hemisphere to take the temperature maximum (at the pole)

from 45km to 50km. The temperature in the troposphere was increased at the equa-

tor giving an enhanced pole to equator temperature gradient. The difference in

temperature between the two poles was increased, at the tropopause, from virtually

no difference to a difference of 30K. An increased pole to equator temperature gradi-

ent in the lower stratosphere in the summer hemisphere gives a lower zero wind line

there. A temperature low was included in the tropical lower stratosphere to produce

well defined tropospheric jets in the wind profile. The new Te profile is shown in

figure 4.4.

Everything else is set as described in section 3.3. In particular we set Φ =

Φ0E(t)G(φ) where Φ0 is a constant forcing amplitude, E(t) increases smoothly from

0 to 1 over the first 10 days of the model run, and G(φ) = 4µ̂2(1 − µ̂2) for µ > µ0

and 0 otherwise, where µ̂ = (µ − µ0)/(1 − µ0), µ = sin(φ), all as before (forcing is

wave 1). Initially baroclinic instability is damped in the troposphere (as in section

3.6, using kT = 9/day). We will investigate the effect of Φ0 (magnitude of lower

boundary wave forcing) and µ0 (location of lower boundary wave forcing) on the

seasonal cycle.

Each run has a year length of 360 days, and we run for 6 years (analysing only

the final 5 years of each run, so allowing 1 year of spin up time). The lower boundary
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wave forcing is constant (as given in section 3.3) with a seasonal cycle being imposed

by setting

Te = rTsummer + (1 − r)Twinter (4.4)

with

r =
1

2

(

1 + cos
2πt

360 days

)

(4.5)

as was done in Scott (2002). Tsummer is the same as Twinter (shown in figure 4.4)

with the poles reversed in the stratosphere and the (symmetric) troposphere remain-

ing constant. Thus all runs start in the middle of northern hemisphere summer.

We will also consider the effects of the radiative relaxation timescale, baroclinic

instability, and adding a seasonal cycle to the relaxation temperature profile in the

troposphere on the seasonal cycle of mass upwelling in the tropical lower strato-

sphere.

4.3.1 Dependence of seasonal cycle on Φ0 and µ0, and rele-

vance of downward control mechanism

First we try to determine the effect of Φ0 (magnitude of lower boundary wave forc-

ing) and µ0 (location of lower boundary wave forcing) on the annual average mass

upwelling in the tropical lower stratosphere, M , and the amplitude of the seasonal

cycle in M . Mass upwelling is calculated as

M =

∫ φ+

φ−

ρwda cosφ dφ (4.6)

where a is the radius of the earth, ρ the density at the height at which the

upwelling is measured (here 100hPa), φ is latitude, and we take φ− = 30◦S and

φ+ = 30◦N. wd (used also in Scott 2002) is a measure of the vertical velocity (due

to diabatic effects) and is given by

wd =
α(θ̄e − θ̄)

θ0z
=
αH(T̄e − T̄ )

κT0
(4.7)

where overbar represents a zonal average, and T0 is the basic state temperature

profile (here 250K at all heights). So it can be seen that wd is a zonal average,

and the units of M are kg m−1 s−1. We will use this definition of M throughout to

represent mass upwelling (since it is directly comparable to the downward control

streamfunction described below). However, it should be remembered that to give

an average upwelling mass flux (in kg s−1) all values given in this section should be
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multiplied by 2πa.

As just suggested, we also calculate the mass upwelling by using the downward

control streamfunction, ψ, as given in Haynes et al. (1991). M = ψ(φ+) − ψ(φ−).

Again φ− = 30◦S and φ+ = 30◦N. (All calculations are repeated using φ− = 20◦S

and φ+ = 20◦N to check the robustness of the relevance of the downward control

mechanism.) The downward control streamfunction is approximated by

ψ(φ, z) =

∫

∞

z

(

ρa2
F̄cos2(φ)

m̄φ

)

φ=const

dz′ (4.8)

where

F =
∇ · F
ρacosφ

and

m̄ = a cosφ(U + aΩ cosφ)

18 model runs are computed using the values Φ0 = 200, 400, 600, 800, 1000, 1200m

and µ0 = 0, 0.2, 0.5 (giving forcing centred at approximately 45◦N, 50◦N and 59◦N

(respectively) where forcing is zero south of 0◦N, 11.5◦N and 30◦N (respectively)).

Figure 4.5 shows latitude–time plots giving an example of wd(mm s−1) and the

vertical component of the EP flux, fz, at 100hPa, and also the mass streamfunctions

as calculated using wd and the downward control integral (using time averaged data)

for the run where Φ0 = 800m and µ0 = 0.

Figure 4.6 shows height–latitude plots for U and T from the same run averaged

over winter months (DJF) and summer months (JJA). (A 30 day lag behind Te is

used in all fields (i.e. U , T , . . . ) when dividing the data into seasons for reasons to

be explained in the next section).

The annual average value of M and magnitude of seasonal cycle in M for each

run is shown in table 4.1. Average upwelling was calculated (using both wd with

equation (4.6) and downward control (referred to as DC) using equation (4.8)) by

time averaging the upwelling calculated at each individual time, allowing 1 year of

spin up time. An alternative approach would be to time average the U , T , and

∇·F fields before calculating the upwelling, but this is found to be little different to

what is done here (indeed – one would only expect the downward control estimate

(which is nonlinear in U) to be any different). We remove the upwelling seen in the

absence of any lower boundary wave forcing, denoted wd
0, from our average upwelling

calculated using wd so that we just compare the wave driven part of the circulation

with the downward control calculation. The size of the seasonal cycle (again in kg

m−1 s−1) was calculated as the difference between mass upwelling averaged over DJF
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Figure 4.5:
All figures are for the run using Φ0 = 800m and µ0 = 0 and show the following at
100hPa:
a) wd, contours are [-0.2, -0.1, -0.08, -0.06, -0.04, -0.02, 0, 0.02, 0.04, 0.06, 0.08, 0.1,
0.2](mm s−1).
b) fz (105 kg s−2)
c) Average mass streamfunction calculated from wd (red) and the downward
control integral (blue) (kg m−1 s−1).
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Figure 4.6:

Figures show U and T averaged over DJF and JJA for run using Φ0 = 800m and
µ0 = 0.
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Table 4.1:
M (kg m−1 s−1)

µ0

0 0.2 0.5
Φ0 = 1200

Average upwelling (wd − wd
0) 70.7 62.9 52.8

Average upwelling (DC) 73.5 62.1 52.0
Size of SC 32.3 27.2 28.0
Φ0 = 1000

Average upwelling (wd − wd
0) 68.0 61.5 46.2

Average upwelling (DC) 70.4 62.4 45.4
Size of SC 29.6 23.6 17.2
Φ0 = 800

Average upwelling (wd − wd
0) 62.1 57.9 50.9

Average upwelling (DC) 64.3 58.1 50.4
Size of SC 34.6 26.7 17.1
Φ0 = 600

Average upwelling (wd − wd
0) 56.5 49.6 43.6

Average upwelling (DC) 56.0 48.7 41.5
Size of SC 33.3 18.0 -8.8
Φ0 = 400

Average upwelling (wd − wd
0) 50.9 45.6 37.4

Average upwelling (DC) 49.8 45.2 34.6
Size of SC 18.6 14.0 8.3
Φ0 = 200

Average upwelling (wd − wd
0) 43.4 37.4 38.5

Average upwelling (DC) 41.9 34.8 36.2
Size of SC 0.5 3.8 1.1

and mass upwelling averaged over JJA (where a 30 day lag was used in defining DJF

and JJA as mentioned above). (Note – in some cases where the seasonal cycle is

not well defined, the upwelling in JJA is stronger than in DJF leading to a negative

value for the size of the seasonal cycle.)

Looking at table 4.1 we see that upwelling increases with Φ0 roughly linearly.

Upwelling also appears to increase as µ0 decreases (i.e. as the forcing moves equator-

ward). However, consider the fact that, given the shape of forcing G(φ) described

above, the total (integrated) forcing applied will alter with µ0. We must adjust

the size of the upwelling accordingly by assuming a linear relationship of size of

upwelling with Φ0:

Suppose we are comparing two results, one for µ0 = a and one for µ0 = b.
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Assume a < b and we are scaling the result for µ0 = b. Using y = mx + c we have

(size of upwelling) = mΦ0 + c. Now, if Φ0 becomes rΦ0 where r is Ia/Ib given by

Iµ0
=

∫ 1

µ0

G(µ)dµ

then we must scale (size of upwelling) to become (size of upwelling) + mΦ0(r−1),

where m is the gradient of the (size of upwelling) vs Φ0 curve for µ0 = b calculated

from table 4.1. Scaling in this way, we find upwelling to be roughly independent of

µ0.

The size of the seasonal cycle in M appears not to depend on Φ0, as long as Φ0

is above a certain value required to see a reasonable seasonal cycle. Here that value

is found to be about 400m. However, the size of the seasonal cycle does depend on

µ0. That is the seasonal cycle becomes better defined as the forcing is centred closer

to the equator.

In conclusion mass upwelling increases with Φ0 but is independent of µ0 (after

appropriate scaling) and the magnitude of the seasonal cycle in M is independent

of Φ0 but increases with decreasing µ0.

As might be expected from table 4.1, if we look at the time averaged EP flux

entering the stratosphere (time averaged over years 2–6 of model run, allowing 1

year of spin up time as before), we find that it increases with increasing Φ0 (and

decreasing µ0 before scaling as above).

This is relevant to considering whether or not the downward control mechanism

is important to the mass upwelling. We have already seen from table 4.1 that it does

a very good job of calculating the annual average mass upwelling (the correlation

between the annual average mass upwelling as calculated from wd and by downward

control (i.e. the correlation of 18 pairs of points) is 0.9960). Since downward control

is valid in the steady state limit we might expect that it will more accurately calculate

the upwelling of annual averages than it will the seasonal cycle.

To demonstrate that downward control will also calculate the magnitude of the

seasonal cycle (and so provide a reasonable estimate of the upwelling even when not

in the steady state limit) we calculate the average mass upwelling (between 30◦S

and 30◦N), using both wd (considering only the wave driven part of the circulation)

and downward control, for DJF, MAM, JJA, and SON. This gives 72 values (from

the 18 model runs) which are plotted in figure 4.7. For reasons to be explained in

the next section, we use time lags when dividing the data up into seasons. A 30 day

lag behind Te is used when calculating M using downward control, and a 60 day

lag is used when calculating M from wd. The good correlation shown in this figure



112 CHAPTER 4. SEASONAL CYCLE

30 40 50 60 70 80 90
20

40

60

80

100

M calculated from wd (kg m−1 s−1)

M
 c

al
cu

la
te

d 
fr

om
 D

C
 (

kg
 m

−
1  s

−
1 )

Figure 4.7:
M at 100hPa calculated for each season in each model run using wd and downward
control. The good correlation shows that extratropical eddy forcing is a significant
cause of the seasonal cycle in M .

suggests that downward control is relevant to the seasonal cycle in M .

To get a more quantitative feel for how well the downward control principle

works, table 4.2 gives the correlations between different sets of points in the scatter

plot figure 4.7. The correlation is seen to improve for increasing Φ0, improve for

decreasing µ0, and it is best in DJF and worst in JJA. It is to be expected that

the correlation with downward control will improve as the wave driving increases

which is the case with all 3 points just made. Computing M between 20◦S and 20◦N

and redoing these correlations gives the same conclusions. Therefore we suggest

that the seasonal cycle seen in these runs is largely due to extratropical/subtropical

eddy forcing. In later sections we will try to pin down which points of the height–

latitude plane are responsible for the most important contributions of eddy forcing

to the seasonal cycle, and also consider the effects (on the conclusion that extratropi-

cal/subtropical eddy forcing dominates the seasonal cycle in M) of adding baroclinic

instability to the model and adding a seasonal cycle to the tropospheric relaxation

temperature profile.

4.3.2 Runs with constant α

We now explain the time lags, behind Te, of mass upwelling, M . As mentioned

above, the seasonal cycle in mass upwelling calculated from 30◦S to 30◦N is found

(by graphing M as a function of time) to lag Te by 60 days if calculated from wd

and by 30 days if calculated from downward control. Consider a simplified form of
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Table 4.2:
Correlations of M calculated using wd with M calculated using downward control

All Φ0 and µ0

All seasons 0.9468
DJF only 0.9898
MAM only 0.9816
JJA only 0.9421
SON only 0.9879
All seasons

Φ0=1200 or 1000, all µ0 0.9477
Φ0=800 or 600, all µ0 0.9319
Φ0=400 or 200, all µ0 0.8390

µ0 = 0, all Φ0 0.9685
µ0 = 0.2, all Φ0 0.9240
µ0 = 0.5, all Φ0 0.8950

the primitive equations similar to that used by Sankey (1998):

iωu− 2Ωsin(φ)v = F (4.9)

2Ωsin(φ)u = −1

a

∂Φ

∂φ
(4.10)

∂Φ

∂z
=
RT

H
(4.11)

iωT +
HN2

R
w = −αT (4.12)

1

acos(φ)

∂

∂φ
(vcos(φ)) +

1

ρ

∂(wρ)

∂z
= 0 (4.13)

where F denotes the EP flux divergence forcing term (see equation (4.8)), and

we have assumed an eiωt time dependence in all variables (ω = 2π/360 days). a is

the radius of the earth, Ω the angular velocity of the earth, R the ideal gas constant,

and N the buoyancy frequency. From equation (4.12) we expect that the phase of

T will lag that of w by

tan−1(
ω

α
) (4.14)

(Sankey 1998). Further, equations (4.13) and (4.9) suggest that w, v, and F will be

in phase. We know from equation (4.7) that wd is calculated from T , and we also

know that downward control is calculated from F, so, for the value of α that we

are using (given in section 3.3), this would seem to explain the difference in phase

between M calculated with wd and M calculated using downward control (a lag of
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about 25 days). However, after further investigation we don’t believe this to be the

case. The rest of this section explains why, and suggests an alternative explanation.

We run the model as before, taking Φ0 = 1000m and µ0 = 0, but with α in-

dependent of height. 6 runs were computed using α = 1/(10 days), 1/(15 days),

1/(20 days), 1/(25 days), 1/(30 days), and 1/(35 days). The lags behind Te of T ,

U , and ∇ ·F were considered for each run (by graphing them as a function of time,

at various heights and latitudes) and the following observations were made:

The differences in time lag behind Te of either T and ∇ · F or T and U do not

change as α changes. This rules out equation (4.14). Time lags in all variables

increase, roughly linearly, as 1/α is increased. For the value of α that we use in

the runs of the previous section, the time lag in all fields is approximately 30 days.

(This is approximate since the lag is dependent on height and latitude. Also no clear

seasonal cycle is seen in ∇ · F below the middle stratosphere.)

Thus all variables have, on average, a 30 day lag behind Te (and the lag appears

independent of Φ0 and µ0 provided that Φ0 is large enough for a seasonal cycle to

be observed). This explains the time lag of 30 days seen in M (from 30◦S to 30◦N)

when computed using the downward control integral. It now remains to suggest why

M is found to lag Te by 60 days when computed from wd.

Consider figure 4.8(a) showing U , T , and Te at 100hPa and 30◦N for the model

run using Φ0 = 800m and µ0 = 0. We see that, as already mentioned, U and T

lag Te by 30 days. From equation (4.7), wd = αH(T̄e − T̄ )/κT0. It can be seen

from figure 4.8(a) that this will lag Te by approximately 120 days. The lag would

be exactly 120 days were T a perfect sine wave (see figure 4.8(b), bearing in mind

that a maximum in T corresponds to a minimum in w).

It is also the case that Te has no seasonal cycle on the equator, thus wd will be

in phase with T here, lagging the seasonal cycle by approximately 30 days. Thus

averaging from 30◦S to 30◦N gives a lag in M of 60 days, since the lag in wd increases

from 30 days to 120 days as we go from the equator to 30◦N (or 30◦S).

Finally in this section, we consider the effect of α on the size of annual average

upwelling and the amplitude of the seasonal cycle in this upwelling. The results

are shown at the start of table 4.3 and are calculated in the same way as those

in table 4.1. We can see that upwelling appears to increase with 1/α, downward

control works well in all cases, and the seasonal cycle is destroyed for too large a

value of 1/α (but until that point its magnitude is independent of α). However, this

interpretation forgets the fact that altering α will alter ∇ · F. This turns out to be

important. Ideally we would like to change only the value of α (keeping ∇·F fixed).

We return to this in a later section.
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Figure 4.8:
(a) U , T , and Te at 100hPa and 30◦N for run with Φ0 = 800m and µ0 = 0.
(b) Example of lag in wd assuming T were a perfect sine wave.

4.3.3 Interannual variability

In all the above, we have only considered data averaged over all the years of a model

run. However, it is important when checking that downward control does apply to

make sure that it calculates the correct interannual variability in the upwelling. To

this end we calculate M between 30◦N and 30 ◦S, using both downward control and

wd, for each season for years 3–6 of the model runs (i.e. 16 values for each run).

Figure 4.9(a) shows this upwelling for the run using Φ0 = 800m and µ0 = 0. We

can see that there is good agreement between M calculated with wd and downward

control. (We have used a 30 day lag for downward control and a 60 day lag for wd, as

explained above). Thus downward control (although only valid in the steady state

limit) does a good job of predicting the interannual variability in the mass upwelling

in the tropical lower stratosphere. Notice (from figure 4.9(b)) that when baroclinic

instability is added to the troposphere (i.e. the damping of higher wave numbers

is removed) downward control does not work nearly as well, and the upwelling is

greatly increased. Both observations might be expected since baroclinic instability

allows wave driving other than that due to Φ0. This motivates looking more closely

at the effect of baroclinic instability on the seasonal cycle. We do this in the next

section.
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Figure 4.9:
M for the run with Φ0 = 800m and µ0 = 0 calculated from wd and using downward
control.
(a) shows a run without baroclinic instability and
(b) shows a run with the same external parameters but including baroclinic
instability.

4.3.4 Baroclinic instability

In the same way as the previous sections, but now allowing baroclinic instability to

develop, model runs are computed for six 360 day years. Six runs are performed,

using µ0 = 0, and Φ0 = 2, 400, 600, 800, 1000, and 1200m. The results are shown at

the start of table 4.4. (Note that the size of seasonal cycle found in the Φ0 = 600m

run is very small. There seems no good reason for this since a reasonable seasonal

cycle is found for all other values of Φ0 that were used.) The equivalent results for

3D runs with no instability (from table 4.1) are reproduced at the start of table 4.4.

Comparing these two sets of results (for runs with/without instability) there are a

few things to notice.

There is a large increase in the annual average upwelling. The strength of the

meridional circulation has been increased by extra forcing arising due to the insta-

bility. There is a decrease in the magnitude of the seasonal cycle. This could be

due to the fact that the extra forcing arising due to the instability is not restricted

to the northern hemisphere. Looking at the vertical component of the EP flux en-

tering the stratosphere (not shown), we find that it is now significantly non-zero

in the southern hemisphere (with maximum values (in SH winter) about 1/3 the

size of the maximum values in the northern hemisphere (in NH winter)). As in the

case with no instability, the magnitude of the seasonal cycle does not depend on
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Φ0 (except in the unusual case of Φ0 = 600m where the instability seemed to cause

as much vertical EP flux generation in the southern hemisphere as in the northern

hemisphere. Note that this did not happen in other runs including the run in which

Φ0 = 2m (see below)).

Running with Φ0 = 0m the dynamics stay zonally symmetric and there is nothing

to trigger the instability (thus we calculate wd−wd
0 in table 4.4 as before). However,

running with Φ0 = 2m we find the same annual average upwelling as we do with

any other value of Φ0 considered (although the magnitude of the seasonal cycle for

Φ0 = 2m is lower).

It seems odd that running with Φ0 = 2m can produce enough difference between

the hemispheres for any seasonal cycle to be seen in M . To investigate this we run

the model as above but with Φ0 = 400m in the northern hemisphere and 2m in

the southern hemisphere. We also run using Φ0 = 400m in both hemispheres. The

same shape of lower boundary wave forcing is used in both hemispheres. We find no

seasonal cycle in M in either run (more specifically, in the notation of table 4.4, we

find a seasonal cycle of 2.7 kg m−1 s−1 and 3.5 kg m−1 s−1 respectively). Looking

at the time series in M there is evidence of a semiannual cycle (not shown). This

suggests that a lower boundary wave forcing of 2m is, due to causing instability,

generating as much EP flux as a lower boundary wave forcing of 400m. What is

perhaps more surprising is that if we run with non-zero lower boundary wave forcing

(now non-zero only in the northern hemisphere) for only the first 20 days of a run

(so redefining E(t) given in section 3.3 such that now E(t) = 0.5(1− cos(0.1πt)) for

0 < t < 20 (t in days) and 0 otherwise) we find no seasonal cycle in M either (in the

notation of table 4.4, we find a seasonal cycle of 3.8 kg m−1 s−1 for Φ0 = 2m and -3.6

kg m−1 s−1 for Φ0 = 100m). Again a weak semiannual cycle is seen in both cases

(due to the time dependence in the stratospheric part of Te). Thus a small amount

of lower boundary wave forcing must be required to cause the instability to generate

larger amounts of EP flux when this is allowed by the stratospheric Te profile (we

know from section 3.10 that EP flux generation is influenced by the stratospheric Te

profile). Further work is required to properly understand this.

Considering again the original 6 runs described in this section, figure 4.10 shows

the change in wd due to baroclinic instability time averaged over the final 5 years of

each 6 year run. The Φ0 = 0m curve compares the Φ0 = 2m run with instability to

the Φ0 = 0m run without. Here we can clearly see the increase in circulation (greater

positive wd at the equator and negative wd at the pole) due to the instability, and

also the shift poleward in the northern hemisphere, as Φ0 increases, of the upwelling

(corresponding to a poleward shift in ∇·F). Also notice the double peak in wd (not
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Figure 4.10:
Change in wd due to baroclinic instability (time averaged). Line for Φ0 = 0m
compares Φ0 = 2m run with instability to Φ0 = 0m run without instability.

observed in the equivalent figures in Scott 2002) due to the non-zero vertical EP

flux in the southern hemisphere.

The suggestion (confirmed in the next section) that, although no longer domi-

nated by Φ0, the seasonal cycle is still driven by ∇·F, suggests that downward control

should still hold (although only approximately since this is not steady state). We see

from figure 4.11, calculated in the same way as figure 4.7, that there is still a reason-

able correlation between M calculated with wd and M calculated using downward

control. However, it is not as high as it was in the absence of instability. It is likely

that, with baroclinic instability included in the runs, the extratropical stratospheric

∇·F is not the only wave forcing contributing to the seasonal cycle (although forcing

is wave 1, instability will produce higher wavenumbers which will not propagate in

the vertical so much). Kerr-Munslow and Norton (2006) suggest that tropical tro-

pospheric forcing may be important. Although we suggest a dominant contribution

from extratropical stratospheric wave forcing (exactly where will be discussed in the

next section), tropospheric contributions could explain the lower correlation seen

in figure 4.11. (Here we use 30 day lags in M calculated from downward control,

and 60 day lags in M calculated from wd as before, since the addition of baroclinic

instability does not alter these time lags).
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Figure 4.11:
Same as figure 4.7 but for runs including baroclinic instability.

4.3.5 2D model

In order to analyse further the effect of wave forcing, baroclinic instability, the

seasonal cycle in the temperature field, and the radiative relaxation time, 1/α, on

the seasonal cycle in M , we need the ability to alter parameters in the model without

the indirect changes to ∇·F that such alterations will inevitably cause in a fully 3D

mechanistic circulation model. To this end the model is run in zonally symmetric

mode – in other words we truncate everything from wave 1 upwards, only keeping

the zonally symmetric dynamics. Thus the model cannot generate EP flux (and we

set the wave 1 forcing amplitude, Φ0 to 0). The EP flux divergence field from a 3D

model run is added to the rhs of the horizontal momentum equation for U . Thus

we can run this zonally symmetric model with the same ∇ ·F forcing as that in the

3D models and consider other effects, for example the value of α, on the seasonal

cycle in M . We refer to this zonally symmetric setup as the 2D model. Relaxation

to the same time varying Te profile as above is included in the model. Model runs

are, again, over six 360 day years. From now on we always use µ0 = 0 in the lower

boundary wave forcing.

There were a couple of technical points about applying ∇ · F to the 2D model

that needed to be dealt with. The 3D model was set to output diagnostic fields

every 10 days (although running with a time step of 15 minutes). Thus these fields

had to be interpolated (at 15 minute intervals between each 10 day time interval)

for use in the 2D runs. It is also the case that the vertical gradient of potential

temperature fluctuates close to 0 in the lower model levels causing sharp spikes in
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Figure 4.12:
The wave driven part of wd (given by wd − wd

0) (mm s−1) at 100hPa for both (a)
2D, and (b) 3D runs using Φ0 = 800m (2D run (a) uses EP flux from 3D run (b)).
Contours are [-0.2, -0.1, -0.04, -0.02, 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2]mm s−1

∇·F which had to be smoothed using time and space averaging. Even so, tests were

done comparing the wave driven part of the circulation in 2D model runs with that

of the corresponding 3D run, and the 2D model circulation was found to be close to

that of the 3D model (see figure 4.12).

A series of experiments were run with this 2D model. The first experiment

concerns discovering in which area, in a height–latitude plane, ∇ · F contributes

most importantly to the seasonal cycle in M . This involved running the 2D model

using the EP flux divergence of a 3D model, interpolated and smoothed as described

above, to carry out two sets of runs. In the first, the EP flux divergence was set

to zero poleward of a certain latitude, φc, and in the second it was set to zero
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Table 4.3:
M (kg m−1 s−1)

1/α(days)
5 10 15 20 25 30

3D runs
Average upwelling (wd − wd

0) 61.7 63.9 69.9 72.5 74.4
Average upwelling (DC) 62.2 64.4 70.6 77.2 82.1

Size of SC 47.3 42.5 48.5 21.8 0.3
2D runs

Φ0 = 1200m
Average upwelling (wd − wd

0) 87.2 77.9 75.6 74.8 73.3 72.0
Size of SC 39.9 41.9 37.8 36.1 34.3 30.4
Φ0 = 800m

Average upwelling (wd − wd
0) 78.7 69.2 66.3 64.4 62.7 60.9

Size of SC 30.6 32.7 35.1 35.2 35.3 34.6

above a certain height, zc. We used ∇ · F from 3D runs with Φ0 = 1200m and

Φ0 = 800m to check that the same results were obtained in both cases. We compute

the annual average upwelling and magnitude of the seasonal cycle, from the wd of the

2D model runs, in the same way as before. The results are shown in table 4.5. We

can quite clearly see that both the magnitude (and well defined cycle (pictures not

shown)) of the seasonal cycle and the size of mean upwelling increase dramatically

when including forcing between 20◦–40◦ in the first set of runs, and 15–30km in

the second set of runs. Thus we conclude that it is the EP flux divergence in the

subtropical lower stratosphere that has the most important influence on the seasonal

cycle of mass upwelling in the tropics (via the downward control mechanism, already

shown to apply).

Consider now the beginning of table 4.4 (comparing the results from the 3D runs

to those of the 2D runs using the EP flux divergence field of the 3D runs (the 2D

‘normal runs’)). We can see that all the conclusions about runs with baroclinic

instability made in the previous section carry over to the 2D case in which the only

difference in the model runs is the EP flux divergence field supplied. The average

upwelling increases, the magnitude of the seasonal cycle decreases, and both are

independent of Φ0 for runs including baroclinic instability. Thus the change seen in

the seasonal cycle is due to the contribution to the EP flux divergence arising from

the instability.

How large is the contribution of the seasonal cycle in the relaxation temperature

field, Te, to the seasonal cycle seen in M? To answer this question the 2D model
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Table 4.4:

M (kg m−1 s−1)

Φ0(m)
2 400 600 800 1000 1200

3D runs
No instability

Average upwelling (wd − wd
0) 50.9 56.5 62.1 68.0 70.7

Size of SC 18.6 33.3 34.6 29.6 32.3
Baroclinic instability

Average upwelling (wd − wd
0) 109.3 111.4 113.6 111.6 104.8 103.8

Size of SC 8.1 13.8 2.0 10.1 18.3 13.3
2D runs

Normal runs
No instability

Average upwelling (wd − wd
0) 51.0 55.4 63.4 70.9 73.8

Size of SC 15.7 24.7 36.3 38.2 34.4
Baroclinic instability

Average upwelling (wd − wd
0) 100.7 103.8 107.5 105.8 101.4 100.5

Size of SC 7.9 11.6 1.7 10.6 17.4 14.2
Global T

No instability
Average upwelling (wd − wd

0) 49.8 54.7 62.7 69.9 73.0
Size of SC 15.6 24.4 35.2 36.6 32.9

Baroclinic instability
Average upwelling (wd − wd

0) 102.9 105.9 104.7 100.3 99.1
Size of SC 11.6 1.1 10.1 14.8 13.2
No friction

No instability
Average upwelling (wd − wd

0) 52.2 57.5 65.3 72.5 75.9
Size of SC 15.4 25.4 36.4 38.7 35.3

Baroclinic instability
Average upwelling (wd − wd

0) 105.7 108.4 107.6 103.5 102.8
Size of SC 12.9 1.7 10.7 17.5 15.3

New α
No instability

Average upwelling (wd − wd
0) 40.4 44.2 50.8 57.0 60.2

Size of SC 8.6 19.0 27.6 26.4 22.7
Baroclinic instability

Average upwelling (wd − wd
0) 89.5 92.2 89.6 84.3 83.9

Size of SC 10.4 -0.5 6.7 12.3 9.4
New climate Te (direct)

No instability
Average upwelling (wd − wd

0) 50.9 55.6 63.3 70.6 74.1
Size of SC 14.4 24.0 36.2 35.9 34.2

New climate Te (indirect)
No instability

Average upwelling (wd − wd
0) 45.6 52.6 60.4 65.8 71.3

Size of SC 6.8 21.8 12.5 36.6 32.2
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Table 4.5:
M (kg m−1 s−1)

φc 20◦ 30◦ 40◦ 50◦ 60◦ 70◦

Φ0 = 1200m
Average upwelling (wd − wd

0) 12.9 39.2 65.6 72.0 73.3 74.1
Size of SC 0.6 5.6 25.2 32.4 34.3 34.2
Φ0 = 800m

Average upwelling (wd − wd
0) 11.2 34.3 56.7 60.4 62.8 63.3

Size of SC 2.2 8.7 22.4 31.7 35.6 36.4
zc 10km 15km 20km 30km 40km 50km

Φ0 = 1200m
Average upwelling (wd − wd

0) 2.5 3.5 47.8 66.1 71.2 73.8
Size of SC 1.8 0.9 14.3 27.4 33.5 34.7
Φ0 = 800m

Average upwelling (wd − wd
0) 1.9 2.3 40.2 56.2 60.5 63.3

Size of SC -1.1 1.7 13.9 27.1 35.0 36.3

is run using the same EP flux divergence fields as before, but now relaxing to a

time independent Te given by the annually averaged temperature field, Tglobal. By

computing

Tglobal =
1

π

∫ π

0

Tsummer
1 + cos2θ

2
+ Twinter

1 − cos2θ

2
dθ

(see equations (4.4) and (4.5)) we find that Tglobal = (Tsummer + Twinter)/2. The

results from running with Te = Tglobal are shown under the heading ‘Global T’ in

table 4.4. It can be seen from the results given (and is clear by looking at the time

series for M , not shown) that there is very little difference, either with instability

or not, in the upwelling or magnitude of the seasonal cycle caused by running with

time independent Te. This shows that, with the Te profile we are currently using,

the upwelling is driven almost completely by ∇ · F.

This is to be expected since, in both cases (Te(t) and Te = Tglobal), Te has no

seasonal cycle on the equator. A difference in T is seen between the runs off the

equator (which is considerable by a latitude of 30◦) but M is calculated from wd

with a cos(φ) weighting. Adding a realistic seasonal cycle to Te in the troposphere

would mean that Te did have a seasonal cycle on the equator and thus we would

expect to see a difference in the seasonal cycle of M in this case. We return to this

point later.

As mentioned in section 3.3 a Rayleigh friction is added to the model (acting

on both zonal mean and all higher wave numbers) above a height of 50km. It is
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possible that this may be affecting the circulation and, due to the seasonal cycle in

the stratospheric Te profile, adding to the seasonal cycle in the upwelling mass flux

in the tropical lower stratosphere. To determine what effect it is having we run the

2D model again, prescribing the same EP flux divergence as before, but with no

Rayleigh friction. The results are shown in table 4.4 under ‘No friction’. We can

see that setting the Rayleigh friction to zero has virtually no effect on the average

upwelling (which increases by about 2 kg m−1 s−1) or the magnitude of the seasonal

cycle in upwelling in the tropical lower stratosphere.

We return now to considering the effect of the radiative relaxation time scale, α,

on the seasonal cycle seen in M . Recall that, in section 4.3.2, increasing the value of

1/α appeared to increase the annual average upwelling but not affect the magnitude

of the seasonal cycle (until one was no longer seen). The point was made that these

experiments did not take into account the fact that changing 1/α was inevitably

changing ∇ · F also. Using the 2D model, 12 runs are computed using the EP flux

divergence taken from 3D runs in which Φ0 = 800m or 1200m with no baroclinic

instability. Values of 5, 10, 15, 20, 25, and 30 days are used for 1/α which is taken

to be constant (independent of height and latitude) as in section 4.3.2. This enables

us to look at the effect of the value of 1/α on M without altering ∇ ·F (2 values of

Φ0 are used to ensure that the conclusions are robust).

The results are shown in table 4.3. As 1/α increases the average upwelling

decreases. To explain this decrease in the upwelling we follow Haynes et al. 1991

(their equation (3.2)) and eliminate u, v, and Φ from equations (4.9) to (4.13) to

give

∂

∂φ

[

∂(N2w)

∂φ

cosφ

sin2φ

]

+4a2Ω2cosφ
∂

∂z

[

1

ρ

∂(wρ)

∂z

]

= 2aΩ
∂

∂φ

[

cosφ

sinφ

∂F

∂z

]

−R

H

∂

∂φ

[

cosφ

sin2φ

∂(αT )

∂φ

]

(4.15)

(this holds for general ∂/∂t without assuming eiωt time dependence.)

Hence we can view the forcing on w as split into two parts – one due to the

EP flux divergence, and one due to radiative cooling which is proportional to α.

This second contribution will become small as 1/α becomes large. Hence, as 1/α

increases, the size of upwelling will decrease like α, tending to a value due to the EP

flux divergence forcing term (for α independent of φ). This is indeed what we see.

(Note that in the limit of α = 0 the solution cannot be steady.)

Consider now a more realistic value for α. The value α = [1.5 + tanh((z −
35)/7)] × 0.0864 days−1 has been used in all the above (except cases of constant

α). Considering the profile for α shown in Randel et al. (2002) and Kiehl and
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Figure 4.13:
New, more realistic, profile for 1/α, allowing for the long radiative time scales ob-
served in the tropical lower stratosphere.

Solomon (1986), modify this so that now α = 1/(1/(0.0864[1.5+tanh((z−35)/7)])+

78sech(0.35(z−20))sech((0.035π/180)φ))days−1 (where units for z are km and units

for φ are radians). This new profile for α is shown in figure 4.13. It simulates an

increased relaxation time in the tropical lower stratosphere.

The 2D code is run with this value of α using EP flux divergence fields from 3D

runs, with and without instability, using Φ0 = 400, 600, 800, 1000, and 1200m (again

using the original 3D runs so that only α will change and not ∇ · F). The results

are shown in table 4.4 under the heading ‘New α’. In both cases where instability is

damped and allowed to develop we find the same behaviour. It can be seen that the

average upwelling is slightly reduced, but that the magnitude of the seasonal cycle

in M is greatly reduced (roughly from 35 kg m−1 s−1 to 25 kg m−1 s−1 in the case

of no instability, and 15 kg m−1 s−1 to 10 kg m−1 s−1 in the case of instability).

However, if we look at the seasonal cycle in the tropical temperature pertur-

bation we see an enhanced seasonal cycle. (The tropical temperature perturbation

is calculated by (using the final 5 years of a 6 year run) removing the time aver-

aged temperature from T at each height and latitude, to give T ′, and then calcu-

lating
∫ +30◦

−30◦
T ′cos(φ)dφ/

∫ +30◦

−30◦
cos(φ)dφ). Figure 4.14 shows this for the run using

Φ0 = 1200m and no baroclinic instability. Notice that the seasonal cycle in the trop-

ical temperature perturbation penetrates to lower altitudes with the new, increased,

value of 1/α (this is not true for the seasonal cycle in M). Averaging T ′ from -10◦

to 10◦ rather than -30◦ to 30◦ gives the same results.

The decrease in the seasonal cycle for wd even though the seasonal cycle in T
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Figure 4.14:
Seasonal cycle in tropical temperature perturbation (defined in text) with (a) original
value of α and, (b) increased value of α shown in figure (4.13).

is enhanced can be explained by the fact that wd = αH(T̄e − T̄ )/κT0 (equation

(4.7)). The new value of α is considerably smaller in the tropical lower stratosphere

(and is proportionally smaller than the new seasonal cycle in the temperature field

is larger). This is demonstrated in figure 4.15 where wd is shown (again using the

2D run in which the EP flux from the 3D code where Φ0 = 1200m and instability is

damped is used) for the last 5 years of a 6 year model run. We see that the seasonal

cycle in wd does have smaller amplitude for the new value of α (curves labelled ‘New

α’ and ‘Original α’) but if we calculate wd using the new temperature field (T from

the run with new α) and the original value of α (curve labelled ‘New α (weighted)’),

then the seasonal cycle is enhanced. (Figure 4.15 does not show M but, equivalently,

shows wd averaged from -30◦ to 30◦ in the same way as T ′ was above. The curve

for ‘New α (weighted)’ has had 1.5 × 10−4 m s−1 removed from all values so that

it overlies the other curves and the magnitude of the seasonal cycle can be easily

compared.)

Note that in the steady state limit we expect upwelling to be independent of α

(Haynes et al. 1991) thus it is reasonable to suppose that the decrease in the seasonal

cycle of upwelling which we see with this ‘New α’ is due to time dependent effects.

4.3.6 Tropospheric seasonal cycle in Te

In all work so far, there has been a seasonal cycle in Te only in the stratosphere.

However, in the real atmosphere there is a seasonal cycle in T in the troposphere.



4.3. SEASONAL CYCLE IN TROPICAL UPWELLING 127

500 1000 1500 2000

0.5

1

1.5

2

2.5

x 10
−4

time (days)

w
d  (

m
 s

−
1 )

 

 

New α
Original α
New α (weighted)

Figure 4.15:
Seasonal cycle in wd (averaged from 30◦S to 30◦N) at 100hPa. Run shown uses
Φ0 = 1200m and has no baroclinic instability. Figure shows why an increased value
of 1/α in the tropics will give an increased seasonal cycle in the tropical temperature,
but not in the mass upwelling. Full details given in the text.

Hence it is of interest to know what effect adding a seasonal cycle to Te in the

troposphere will have on the seasonal cycle in M .

We do this by modifying equation (3.5) in section 3.6, which specifies Te in the

troposphere, so that it now reads

Te = T0(z) +
∆T (z)

2
(cos(2(φ− φ0)) − cos(2φ0)/3) (4.16)

where

φ0 = 7.5(1 + cos(2πt/360))

t is time in days (recall that we use 360 day years), and φ is measured in degrees.

This profile gives a maximum temperature at the ground centred on the equator

at mid winter and at 15◦N at mid summer (this follows the figures given in Randel

1992). As before, T0 is the global mean temperature at height z.

It is the case that the magnitude of the seasonal cycle in M shown in the previous

sections is not as large as that seen in Scott (2002) or in observations. This is

largely because there is a very small interhemispheric difference in U and T in the

troposphere leading to smaller interhemispheric difference in U and T in the lower

stratosphere than is seen in Scott 2002. (Running with a stratosphere only version

of the model we do find a seasonal cycle in M comparable to that in Scott 2002).

We would expect a larger seasonal cycle in M using this new Te profile.
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Including this seasonal cycle in the tropospheric part of Te will have two separate

effects on the meridional circulation. One is the effect of time dependent heating

which we call the direct effect. The other is the effect of a time dependent pole to

equator temperature gradient which will alter the generation of EP flux, and thus

alter the EP flux divergence in the stratosphere. We call this the indirect effect.

In order to separate the direct effects from the indirect effects on the annual

average upwelling and the magnitude of the seasonal cycle in M we do the following

in both the case of no instability and the case where baroclinic instability is allowed

to develop. The full 3D code is run with the new Te for Φ0 = 400, 600, 800, 1000,

and 1200m. Then the 2D code is run twice for each value of Φ0. It is run with Te

having a tropospheric seasonal cycle (hereafter denoted tsc) using the EP flux from

3D runs with no tsc, and it is run with no tsc using the EP flux from 3D runs with

tsc.

We consider the direct effect to be the difference between results obtained by

running the 2D model with and without tsc, in both cases using the EP flux from

the 3D model with no tsc. Similarly the indirect effect is taken to be the difference

between results obtained by running the 2D model with no tsc using the EP flux

from the 3D model running with and without tsc. These two effects should add up

to give a total effect equal to the difference between results obtained using the 3D

model running with and without tsc.

The results are shown in table 4.6. Results of runs without any tsc are repeated

from table 4.4 to allow easy comparison with new results but note that we now

show upwelling as calculated from wd rather than wd−wd
0 (in other words the entire

upwelling rather than just the wave driven part of the upwelling). As explained

above we compare the original 2D runs (under the main heading of ‘Runs without

tsc’) to the 2D runs under the heading ‘Runs with tsc (3D no tsc)’ for the direct

effect and ’Runs with no tsc (3D tsc)’ for the indirect effect.

It can be seen that the direct effect of the tsc in Te in the absence of instability

is to increase the annual average upwelling by 10–15 kg m−1 s−1 (an amount which

increases with Φ0) and increase the magnitude of the seasonal cycle in M by about

13 kg m−1 s−1. The indirect effect is to increase the upwelling by about 15 kg m−1

s−1 and the magnitude of the seasonal cycle by about 20 kg m−1 s−1. These agree

with the total change seen (in the 3D runs) in the average upwelling which is an

increase of about 30 kg m−1 s−1 and slightly underestimate the increase of about 47

kg m−1 s−1 in the seasonal cycle.

With baroclinic instability allowed to develop the direct effect of the tsc in Te

is to increase the upwelling by about 10 kg m−1 s−1 and increase the magnitude of
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Table 4.6:
M (kg m−1 s−1)

Φ0(m)
400 600 800 1000 1200

Runs without tsc
3D runs

No instability
Average upwelling (wd) 52.8 58.4 64.0 69.9 72.6

Size of SC 18.6 33.3 34.6 29.6 32.3
Baroclinic instability

Average upwelling (wd) 113.3 115.5 113.5 106.7 105.7
Size of SC 13.8 2.0 10.1 18.3 13.3
2D runs

No instability
Average upwelling (wd) 52.9 57.3 65.3 72.8 75.7

Size of SC 15.7 24.7 36.3 38.2 34.4
Baroclinic instability

Average upwelling (wd) 105.7 109.4 107.7 103.3 102.4
Size of SC 11.6 1.7 10.6 17.4 14.2

Runs with tsc
3D runs

No instability
Average upwelling (wd) 86.9 90.9 96.1 100.8 100.6

Size of SC 84.6 76.9 83.8 75.6 65.7
Baroclinic instability

Average upwelling (wd) 111.8 112.8 112.7 114.6 110.3
Size of SC 19.2 21.7 33.4 23.1 36.0
2D runs

Runs with tsc (3D no tsc) No instability
Average upwelling (wd) 61.2 67.5 76.4 86.1 89.2

Size of SC 17.4 33.7 56.7 52.6 53.4
Baroclinic instability

Average upwelling (wd) 119.2 124.8 119.0 112.2 111.2
Size of SC 39.3 37.7 27.7 27.1 22.9

Runs with no tsc (3D tsc) No instability
Average upwelling (wd) 68.7 74.9 81.3 87.1 88.3

Size of SC 44.3 42.0 57.4 54.0 48.7
Baroclinic instability

Average upwelling (wd) 88.5 89.7 89.4 91.5 88.6
Size of SC 11.4 10.2 27.5 15.6 29.9
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the seasonal cycle in M by about 15 kg m−1 s−1. The indirect effect is to decrease

the upwelling by about 15 kg m−1 s−1 and increase the magnitude of the seasonal

cycle by about 8 kg m−1 s−1. These roughly agree with the total change seen (in

the 3D runs) in the average upwelling, which is no change, and slightly overestimate

the increase of about 15 kg m−1 s−1 in the seasonal cycle.

Thus whilst the average upwelling seems well accounted for by the separate direct

and indirect effects it may be that the magnitude of the seasonal cycle in M relies

on some interaction between the two effects. Further work is needed to understand

this.

It seems odd that the indirect effect of including a tsc should be to decrease

the upwelling in the presence of baroclinic instability. To try and understand this

we consider the streamfunctions of runs (using Φ0 = 800m) with and without tsc

and with and without baroclinic instability (shown in figure 4.16(a)). Key points to

note are as follows: In the absence of baroclinic instability, including a tsc greatly

increases the circulation in the southern hemisphere. When baroclinic instability is

present, this is already large even without a tsc. The effect of the tsc, in both cases, is

a northward shifting of the upwelling (also seen in ∇·F), and a decrease in upwelling

at the equator. This is possibly due to a northward shifting of the baroclinicity by

the inclusion of a tsc. Thus, looking at the difference in the mass streamfunctions

between runs with and without tsc in the case of baroclinic instability (figure 4.16(b))

there is a large decrease in upwelling seen between 30◦S and 30◦N although there is a

far smaller decrease in the overall circulation. It can be seen from figure 4.16(b) that

this effect is confined to the lower stratosphere in the case of baroclinic instability

(the tropopause height is 12km).

In conclusion, in the absence of instability the direct and indirect effects of in-

cluding a tsc both act to increase the annual average M and the magnitude of the

seasonal cycle in M . The indirect effect is slightly larger than the direct effect. In

the presence of baroclinic instability, the upwelling remains roughly constant. The

magnitude of the seasonal cycle does increase, largely due to the direct effect.

There is another change brought about by the tsc in Te and that is to the time lag

(behind Te) seen in M . This is because Te is now warmest on the equator in DJF and

warmest at 15◦N in JJA. We find that T is out of phase (by almost half a year) with

Te on the equator and that T lags Te by 50–60 days at 30◦N. There is a semiannual

cycle in T at about 20◦N (at the tropopause). (The semiannual cycle at ground level

is at 7.5◦N since it is imposed there. By the tropopause, the semiannual cycle in T

is found at 20◦N). This further complicates the lag in M (which is averaged from

the equator to 30◦N). ∇ · F is affected by the lags in U and T and thus also lags
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Figure 4.16:
(a) Streamfunctions at 100hPa for runs with Φ0 = 800m. Runs with baroclinic
instability are shown in blue and those without are shown in black. Dashed lines
are for runs with no tsc, solid lines are for runs with tsc.
(b) Difference between streamfunctions for runs with and without tsc (running
with baroclinic instability allowed). Units are kg m−1 s−1

Te by a different amount than it does when there is no tsc in Te. In the absence of

instability, we find the lag in M to be about −30 days when calculated from wd and

about −70 days when calculated from downward control. The results for ‘Runs with

tsc’ in table 4.6 were calculated using these lags. Further work needs to be done to

properly understand these time lags, but note that M calculated from wd still lags

M calculated using downward control by about the same amount.

It is suggested in Kerr-Munslow and Norton (2006) that the annual cycle in trop-

ical tropopause temperatures is driven by wave dissipation due in some significant

part to equatorial waves. It is therefore relevant to check whether or not downward

control (suggesting sub/extra tropical lower stratospheric wave driving) still predicts

upwelling correctly when Te has a seasonal cycle in the troposphere. Using the time

lags just described we compute the average upwelling in separate seasons (DJF,

MAM, JJA, SON) as before, for each of the 5 model runs not including instability.

The 20 pairs of values obtained are shown in figure 4.17. Only the wave driven part

of the circulation is considered in this figure. It can be seen that downward control

still does a good job at predicting both the correct magnitude of upwelling and the

correct magnitude of seasonal cycle in M despite our conclusion above that the di-

rect effect of adding a seasonal cycle to Te in the troposphere is significant. The fact

that downward control works so well is contrary to the suggestion of Kerr-Munslow
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Figure 4.17:
M at 100hPa calculated for each season in each model run using wd and downward
control (as in figure 4.7 but now runs include tsc).

and Norton (2006).

4.3.7 A changing climate

At the moment our climate is changing in such a way that the tropospheric tem-

peratures are likely to increase, and the stratospheric temperatures are likely to

decrease. It is of interest to know what effect this might have on the strength of

the stratospheric circulation. To this end we alter Te by everywhere adding to it

10.5e−z/18 − 5.5. This increases Te by an amount which is 5K at the ground, de-

creases to 0K at the tropopause and is -5K by a height of 55km. We run the 3D

code for Φ0 = 400, 600, 800, 1000, 1200m in the absence of baroclinic instability

(we run without instability throughout this section). Although the change to the

circulation that this alteration to Te has seems different for different values of Φ0

(with the exception of U always becoming more eastward in the tropical troposphere

and lower stratosphere), the annual average upwelling is always decreased by about

6 kg m−1 s−1, and the size of the seasonal cycle in M is unchanged. Thus it seems

that a warming troposphere and cooling stratosphere will act to weaken the strength

of the stratospheric circulation.

Cagnazzo et al. (2006) study stratospheric changes induced by ozone depletion

and find decreasing ozone leads to a decrease in the strength of the stratospheric

circulation. As they mention, this will lead to less ozone being transported to the

high latitude lower stratosphere and thus a further cooling there giving a positive
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feedback. Butchart et al. (2006) find an increase in the strength of the stratospheric

circulation in response to growing greenhouse gas concentrations. Thus the response

to climate change of the stratospheric circulation is complex. Here we run a dry,

mechanistic model and so do not account for changes in moisture, for example, which

will be brought about by a warming troposphere. We study only the effect of Te

being warmer in the troposphere and cooler in the stratosphere, in a way which is

independent of latitude, and find that this leads to a decrease in the strength of the

stratospheric circulation.

Using the 2D code (as in the previous two sections) we are able to separate this

effect, as before, into a direct effect (caused simply by a different Te profile, keeping

the EP flux divergence fixed) and an indirect effect (using the old Te profile in the

2D model so that only the EP flux divergence, now taken from 3D runs with the

new Te profile, is different). The results are shown at the bottom of table 4.4 under

‘New climate Te’ direct for runs with new Te and old EP flux divergence field, and

indirect for runs with old Te and using new EP flux divergence field (compare to 2D

‘Normal runs’ without instability in the same table). We find that the direct effect

makes no change to the annual average upwelling. The indirect effect causes the

upwelling to decrease by about 4 kg m−1 s−1. Both effects cause the magnitude of

the seasonal cycle in M to decrease slightly.

We conclude that a changing Te, simulating a warming troposphere and cooling

stratosphere, will decrease the strength of the stratospheric circulation due only to

the change in the EP flux that this new Te profile causes.

4.4 Conclusions

The influence of the stratosphere on the troposphere in the real atmosphere occurs

under the influence of a seasonal cycle. In this chapter we have looked at the seasonal

cycle of the extratropical stratosphere and also that of mass upwelling in the tropical

lower stratosphere.

In the extratropical stratosphere, Yoden (1989) showed that interhemispheric

differences to seasonal variability (the fact that SH winter is usually cool and undis-

turbed and NH winter is warmer and the polar vortex often undergoes a stratospheric

sudden warming) seem reproducible by using different amounts of wave driving in

the troposphere. We have shown that this remains true when using a more realistic

lower boundary condition (using waves produced by topography) than was used by

Yoden (1989). In the linear regime (small wave amplitude), the peaks in geopoten-

tial and EP flux seen at the beginning and end of winter could be due to a resonance
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between a free travelling mode (the Lamb mode) and wave forcing from topography

on the ground. In the non-linear regime it is not obvious what may be causing the

resonance that gives large peaks in the geopotential and EP flux.

The cause of a seasonal cycle in the upwelling mass flux in the tropical lower

stratosphere is not well understood. We have shown that the downward control

mechanism seems to predict this upwelling well (in agreement with Yulaeva et al.

1994), even when used to look at interannual variability that is far from the steady

state limit in which downward control is known to apply. Downward control con-

tinues to apply even when adding a seasonal cycle to the tropospheric radiative

temperature profile, Te. Further it seems that the EP flux divergence most impor-

tant to this seasonal cycle is that in the subtropical lower stratosphere.

The amplitude of the seasonal cycle in M appears independent of the magnitude

of lower boundary wave forcing (above a certain value of wave forcing found to be

about 400m). However, the amplitude of the seasonal cycle increases as the forcing

is located nearer to the equator. The annual average upwelling (an indication of

the strength of the stratospheric circulation) increases with greater lower boundary

wave forcing if we damp baroclinic instability. If we allow baroclinic instability to

develop then the EP flux divergence is dominated by this instability and no longer

depends on the amplitude of the lower boundary wave forcing.

There is a 60 day lag (behind Te) seen in the upwelling mass flux (calculated from

wd), even though all other dynamical fields lag Te by 30 days. The reason for this

is shown to be due to how wd is calculated. This becomes more complicated when

we add a seasonal cycle to Te in the troposphere (since this introduces semiannual

cycles in T ) and the lag becomes negative.

Increasing the radiative relaxation timescale (1/α) to a more realistic value in

the tropical lower stratosphere increases the seasonal cycle seen in T and the depth

to which this seasonal cycle penetrates the troposphere. However the same is not

true for the seasonal cycle in mass upwelling, and in fact the opposite is seen, due

to the fact that wd is proportional to α (where we expect this difference to be due

to time dependent effects). Rayleigh friction (above 50km) is found to have little

effect on the seasonal cycle in mass upwelling. The seasonal cycle in stratospheric

temperature is also found to have little effect. However adding a seasonal cycle to Te

in the troposphere enhances both the average upwelling (when baroclinic instability

is damped) and the magnitude of seasonal cycle seen.

A Te profile that is warmer in the troposphere and cooler in the stratosphere

causes a decrease in the annual average upwelling, and thus a decrease in the strength

of the stratospheric circulation, due only to the change in the EP flux that this new
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Te profile causes.

In the next chapter we consider the interannual variability of mass upwelling in

the tropical lower stratosphere, M , and demonstrate how that can be affected, again

due to remote wave forcing, by sea surface temperatures.
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Chapter 5

Links between sea surface

temperatures and tropical mass

upwelling

5.1 Introduction

There have been many studies on the idea that sea surface temperatures in the

tropics can affect climate. For example:

Braesicke and Pyle (2004) show that sea surface temperatures (SSTs) can have an

effect on the stratospheric circulation (in particular the amount of polar ozone that

is present). They demonstrate that SST interannual variability leads to weakening of

the winter stratospheric polar vortex, and show with simple correlations that SSTs

affect UT/LS heat fluxes and hence LS temperature and stratospheric circulation.

Scaife et al. (2003) show that ENSO affects the amount of water vapour entering

the stratosphere.

Manzini et al. (2006) suggests that ENSO produces persistent eddies in the tro-

posphere which induce stationary wave 1 forcing there. This propagates vertically

in the extratropics into the stratosphere, where it weakens the zonal wind and can

cause the final warming of the polar vortex to occur earlier.

In this chapter we consider an ensemble of runs, described in the next section,

each run differing only in the initial conditions used and, in particular, each run

having the same prescribed SSTs (which are the only time dependent forcing in the

model). It is discovered, by comparing runs in this ensemble, that the interannual

variability in mass upwelling in the tropical lower stratosphere is fairly predictable.

This raises the question as to whether the model is artificially lacking in internal

variability and, if not, why it should be predictable in the tropical lower stratosphere.

137
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This motivates looking more carefully at the variability we see in the model runs.

In other studies there has been strong evidence to suggest that the strato-

sphere and troposphere exhibit significant internal variability which would be present

even if all external forcings were time independent and which has long character-

istic time scales (and so cannot be averaged over in any single run of only a few

years length). For example Butchart et al. (2000) show that two integrations of

a troposphere–stratosphere general circulation model, identical except for initial

conditions, show significant differences in high-latitude wintertime temperatures on

decadal timescales. One method of overcoming this problem is to use ensembles of

runs to distinguish between forced and internal variability.

In this chapter we introduce a new diagnostic to quantify the importance of

forced versus internal variability and show how this depends on height, latitude,

and season. We present some features that are brought to light by this diagnostic

and then focus on the tropical lower stratosphere.

Mass upwelling in the tropics is important since it gives perhaps the best indica-

tion of the strength of the Brewer–Dobson Circulation (BDC) of the stratosphere (re-

sponsible for the distribution of chemicals within the stratosphere). Understanding

interannual and longer term variations in the BDC are important for understanding

changes in the stratosphere associated with increasing greenhouse gases, and as-

sessing the ‘recovery’ of the ozone layer as the concentration of chlorofluorocarbons

starts to decrease.

We make the point, in this chapter, that the predictability seen in the tropical

lower stratosphere is not simply a vertical extension of the predictability seen in the

tropical troposphere but rather is due to remote forcing effected by the prescribed

SSTs. We will show some diagnostics which, using the downward control principle,

demonstrate a dynamic link between SSTs and the strength of the BDC.

We also consider the effect of the QBO on both mass upwelling and the difference

between tropical and global temperatures in the lower stratosphere.

5.2 Model and simulations

Two five member ensembles were carried out by Reading University using the UK

Met Office Unified Model (UM). The 64 level version of the UM was used with

a top boundary at 0.01 hPa and horizontal resolution of 2.5◦ (latitude) by 3.75◦

(longitude). The simulations are used in Cagnazzo et al. (2006) and described in

detail in Hare et al. (2004).

As is explained in Cagnazzo et al. (2006) both ensembles use sea ice and sea sur-
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face temperature fields as given by the Atmospheric Model Intercomparison Project

(AMIP) (Gates 1992). The SSTs are the only time dependent external forcing in

the model (apart from imposed secular trends in ozone) and are the same in every

run. One ensemble (the control ensemble) uses AMIPII ozone climatology, the other

(the ozone ensemble) uses AMIPII ozone climatology with an imposed zonal mean

linear ozone trend. The model is run for the period 1980–1999. The data we use is

monthly averaged data. Usually we will annually average over the months.

Within the ensembles, the runs differ only in their initial conditions. We discard

the first 3 years of each model run to allow this as spin up time, and also discard

one of the control ensemble runs (leaving 4) due to an error in the data available to

us.

5.3 Diagnostics of variability

In this section we develop a diagnostic to distinguish between forced variability and

internal variability in any quantity. Consider a general quantity χ(t) say. We will

consider data that has, for any given year, one value for each height, latitude, and

quantity. This value may be averaged over a particular month, a particular season,

or the whole year. Therefore t is a discrete quantity that represents the year. We

denote an average over time (i.e. many time periods) by () and an average over all

ensemble runs by 〈()〉.
A natural measure of total variability in time, e.g. of interannual variability, for

a single realisation χ(t) is the variance (χ− χ)2.

We define forced variability to be that appearing in the ensemble mean 〈χ(t)〉 =

φ(t), say. (Thus care must be taken in interpreting the word forced, since any

imposed trends, or any fields which are initialised with the same value and take

time to decorrelate, will add to our definition of forced variability). Hence the forced

variability is measured by (φ− φ)2. A natural definition of the internal variability

is the ensemble average total variability minus the forced variability. It is useful to

note the identity

〈(χ− χ)2〉 = (φ− φ)2 + 〈(χ− φ− χ + φ)2〉

The left-hand side is the total variability and the first term on the right-hand side

is the forced variability. The second term on the right-hand side is what is defined

above to be the internal variability and the identity implies that this is equal to

the ensemble average variability of the difference between each realisation and the

ensemble mean.
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The ratio

µ = (φ− φ)2/〈(χ− χ)2〉

is used as an indicator of the proportional contribution of forced variability to

the total variability of χ. If there is no forced variability, i.e. if there is no variability

in the ensemble mean, then µ = 0. If there is no internal variability, i.e. if all

realisations are identical (and hence equal to the ensemble mean), then µ = 1.

5.4 Results of variability diagnostics

To get a clear picture of which parts of the atmosphere are dominated by inter-

nal variability and which are more predictable we now apply these diagnostics to

the zonally averaged temperature field over the height–latitude plane. We consider

annually averaged data.

Figure 5.1 (a), (b), and (c) show µ for both ensembles separately, and an ensem-

ble average (equal to (4/9) ×µ for control ensemble + (5/9) ×µ for ozone ensemble).

Notice the large difference in the ratio between the two ensembles at about 50km.

This is due to the fact that temperature trends (the same in all runs) will be consid-

ered (under the definitions of the previous section) as forced variability. By fitting

linear least squares lines at each height and latitude we can find the gradient (in

K/month) of the temperature trend in each ensemble. This is shown in figure 5.2

and we see that, as expected, it is greatest at a height of about 50km, and consid-

erably greater in the ozone trend ensemble. Detrending the data using these least

squares lines we find that the large value of the ratio at 50km in the ozone trend

ensemble no longer appears (figure 5.1 (d)). Using the detrended data, the essential

features in the ratio are the same in both ensembles (not shown).

Consider figure 5.1 (a) (µ for the ensemble average of the original (i.e. not de-

trended) data). There are a number of points that this ratio raises:

There is a local minimum in the tropics at a height of about 35km. This might be

expected due to the QBO. However when the detrended data is considered (figure

5.1 (d)), µ is fairly uniform in the tropical stratosphere. This observation may

seem surprising, but is explained by figure 5.3 (which shows the square root of total

variability for both the original and detrended ensemble averaged data). The total

variability is much larger around the equator and at a height of about 40km. This

is true of both the original and the detrended data. Thus the QBO does generate

more internal variability, but appears to generate more ‘forced’ variability also. The

reason for this ‘forced’ variability is that each run starts from very similar initial
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Figure 5.1:
µ, ratio of forced to total variability, showing which regions in the stratosphere are
dominated by internal variability (low values) and which are more predictable
(high values), applied to temperature.
(a) Ensemble averaged data
(b) Control ensemble
(c) Ozone ensemble
(d) Ensemble averaged, detrended data
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Figure 5.2:
Gradient of linear least squares fitting to temperature (K/month). Shows size of
secular trend in temperature as a function of height and latitude.
(a) Control ensemble
(b) Ozone ensemble

conditions and, as will be seen later in the chapter, the phase of the QBO remains

very predictable for the first 6 years of the runs (not counting spin up time) (i.e. it

takes this long for the ensemble members to diverge from one another).

Caution should be taken, then, when interpreting our definition for ‘forced’ vari-

ability since the QBO is certainly not forced in the normal sense. It is forced in the

sense that the equatorial zonal wind is set at time 0 (the same for every ensemble

member) and it takes time for the ensemble members to diverge from one another.

Care must also be taken, when considering ratios, for the following reason. The

signal from an imposed forcing in a given region may, for example, decay exponen-

tially across the whole height–latitude plane. Therefore it will appear important in

any region where there is very little total variability giving an unrealistically high

value of µ there. This is not an issue here, however, since from figure 5.3 it can be

seen that there are no regions in which the total variability is small.

Figures 5.4 and 5.5 show, respectively, µ and the square root of the total variabil-

ity (in Kelvin) as applied to seasonally averaged temperature data (both figures use

original data and show ensemble averaged quantities). The greatest value of total

variability is, as expected, in the NH extratropics in NH winter. In the northern

hemisphere, the seasonal cycle in both µ and the total variability shows that when

the total variability is large, the forced variability is small, and vice versa. In the

southern hemisphere things are more complicated.
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Figure 5.3:
Square root of total variability in temperature (K), ensemble averaged data.
(a) Original data
(b) Detrended data

Examining µ more closely (figure 5.1 (a)) in the lower stratosphere at a height of,

say 20km, it can be seen that within the tropics the local variability is the same as

the variability averaged between the turnaround latitudes (defined as the latitudes

where the residual vertical velocity changes sign). This is clearly not the case in

the extratropics (and the variability is less forced in the extratropics) although this

seems to contradict continuity (which states that mass upwelling in the tropics is

equal to mass downwelling in the extratropics). A possible explanation for this is

that there is little small scale structure to the tropical upwelling but there is lots

of small scale structure to the extratropical downwelling. If we integrated over the

extratropics then this small scale structure would be removed.

Finally, it is important to re-emphasise the idea that the high forced variability

in the tropical lower stratosphere is not simply a vertical continuation of the high

forced variability in the tropical troposphere. In the next section we go on to suggest

evidence that this is the case. It should be noted that this predictability is a real

feature – the low values of the ratio in the extratropics show that it is not the case

that the model is artificially lacking in internal variability.

5.5 Mass Upwelling

By comparing figures 5.1 (a) - (d) we can see that, focusing on the tropical lower

stratosphere (the area which we shall be interested in from this point onwards),
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Figure 5.4:
µ applied to seasonally averaged temperature data. (Uses original ensemble
averaged data).
(a) DJF
(b) MAM
(c) JJA
(d) SON
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Figure 5.5:
Square root of total variability in temperature (K) for seasonally averaged data.
(Uses original ensemble averaged data).
(a) DJF
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(c) JJA
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Figure 5.6:
Annual averages of area weighted temperature from 30◦S to 30◦N at 68hPa. Shown
for all runs (yellow) and the ensemble mean (blue).
(a) Original data
(b) Detrended data

there is little difference in µ between the different ensembles or between the original

and detrended data. This is made clear in figure 5.6 which shows the temperature

at 68hPa, area averaged from 30◦S to 30◦N, for every run (the ensemble mean, i.e.

‘forced’ part of the data, is shown in blue) for both the original data (figure 5.6

(a)) and the detrended data (figure 5.6 (b)). µ applied to this data is 0.5746 for the

original data and 0.5863 for the detrended data. Since there is such a small difference

here, both between individual runs and between the original and detrended data,

from this point onwards we deal with the ensemble averaged original data.

We consider the mass upwelling at the tropical tropopause. We are particularly

interested in what affects this mass upwelling since, as mentioned above, it is perhaps

the best indicator that we have of the strength of the BDC.

As already mentioned, by the BDC we mean the chemical transport circulation

of the stratosphere. (By the strength of the BDC we mean the strength of this dia-

batic circulation, neglecting the effects of two-way mixing occurring. This strength

is important to the distribution of, for example, ozone and methane within the

stratosphere). By mass continuity the upwelling in the tropics that is part of this

circulation will be balanced by downwelling in the extratropics, although there is

small scale structure in the extratropics which must be integrated over to properly

show this, as mentioned above. In particular, secondary circulations (e.g. during

SSWs) can cause this downwelling to be weaker in mid-latitudes and stronger in
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Figure 5.7:
Annual averages of total mass upwelling at the tropical tropopause shown for each
of the model runs (yellow), the ensemble mean (blue), and downward control calcu-
lation (black), at 68hPa.

high latitudes. We consider this as secondary to the strength of the main BDC (and

looking at seasonal means will average over this).

Mass upwelling, M , is defined (similarly to equation (4.6) in the previous chapter)

as

M =

∫

ρw∗a cos(φ) dφ (5.1)

Here, φ is latitude, ρ is density, a is the radius of the earth, and w∗ is the TEM

residual vertical velocity.

Annual averages of total mass upwelling (at the tropical tropopause) for each of

the model runs are shown (yellow) in figure 5.7 (similar to figure 5.6) along with

the ensemble mean mass upwelling (blue) and downward control calculation of mass

upwelling (black) at 68hPa.

The important thing to notice at this stage is that the mass upwelling is indeed

coherent (the value of µ applied to this data is 0.6193). The downward control curve,

and its similarity with the ensemble mean, will be explained in the next section.
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Figure 5.8:

QBO – equatorial zonal wind at 14.7hPa (individual runs shown in blue, ensemble
mean shown in black)

5.6 Effect of Sea Surface Temperatures and the

QBO

Having demonstrated the dominance of forced variability in the tropical lower strato-

sphere and the coherence of mass upwelling there, we now consider the causes of this

predictability. We have already hinted that the only time dependent external forc-

ing, the SSTs, play a role. We have also mentioned that another type of ‘forced’ (in

our sense) variability is possible – the case where fields are set at day 0 and ensemble

members take a long time to diverge. In the runs used here this is seen in the QBO.

It is well known that the QBO affects the upwelling in the tropics. This is

because the wave-induced changes in the vertical shear ∂U/∂z must be balanced,

in the thermal wind sense, by T anomalies. These in turn imply anomalies in

radiative heating rates and hence in upwelling rates (Baldwin et al. 2001). For

a warm temperature anomaly we get less upwelling than for a cold temperature

anomaly. Figure 5.8 shows the equatorial zonal wind, U , at 14.7hPa for each of the

model runs. Here the deseasoned monthly means of U are shown. Individual runs

are shown in blue and the ensemble mean is shown in black.

It can be seen (as mentioned earlier), that the phase of the QBO is the same in

all runs until about 6 years into the run. After that time the runs diverge although

it can be seen from the ensemble mean that the phase of the QBO never becomes



5.6. EFFECT OF SEA SURFACE TEMPERATURES AND THE QBO 149

completely unpredictable. (The qualitative behaviour shown in figure 5.8 persists

over different model heights down to 70hPa).

It may thought to be the case that the coherence in mass upwelling at the

tropical tropopause is in part due to effects of this predictability in the QBO. After

6 years, however, the phase of the QBO is less predictable so we would expect the

interannual variability in the mass upwelling to become more dominated by internal

variability after that time, and this is not observed. We conclude that the QBO has

a negligible effect on the upwelling. (It should be mentioned that in other studies

(Hamilton 1993, Baldwin and O’Sullivan 1995) the QBO was thought to have an

effect, although this effect could not be separated from that of ENSO. Although we

find no obvious influence due to the QBO here it should not necessarily be discounted

as unimportant.)

To be more sure that the QBO has little effect on the predictability of the mass

upwelling we should compute longer runs and start all our diagnostics at year 6 once

the QBO has become unpredictable. With long enough runs it is likely that any

mode of low frequency variability will become unpredictable and hence have no net

effect on results. This is a point for further work.

Improvements in gravity wave parametrisation schemes will also mean the need

for further runs. Models without a QBO show no interannual variability in the

tropics, whereas the real atmosphere has comparable interannual variability in the

tropics as it does at the poles. It is believed that the gravity wave parametrisation

scheme accounts for more of the QBO (and hence also the tropical internal variabil-

ity) than is due to resolved wave driving (e.g. EP fluxes). It is therefore possible

that the QBO may be less predictable in the real atmosphere than is suggested here

(where it is predictable for 6 years). On the other hand, if gravity waves are largely

driven by SSTs, which we will claim to cause a predictable response in the strato-

sphere, then the QBO may be more predictable than we suggest here. Again this is

a point for further work.

Having ruled out the effect of the QBO in these runs, this leaves SSTs as the

likely cause of coherent mass upwelling in the tropical lower stratosphere. We now

suggest a mechanism by which the SSTs affect this mass upwelling. It is shown by

Manzini et al. (2006) that during ENSO events, increased wave activity is seen in

the extratropical stratosphere. The vertical EP flux entering the stratosphere in the

extratropics is increased.

Via the downward control mechanism (Haynes et al. 1991) an increase in EP flux

divergence means an increase in the meridional circulation at that latitude. Thus

greater EP flux divergence will lead to a stronger circulation in the stratosphere, and
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Figure 5.9:
Annually averaged multivariate ENSO index from 1983–2000

stronger mass upwelling in the tropics. We have already shown, in figure 5.7, that

downward control approximates mass upwelling in the tropical lower stratosphere

very well.

Evidence of the good correlation between ENSO and mass upwelling can be seen

by comparing the ensemble mean mass upwelling (blue curve in figure 5.7) to figure

5.9 which shows the annually averaged multivariate ENSO index (data from the

NOAA Climate Diagnostics Center website). The correlation between these two

curves is 0.6350.

Since we have shown the extratropical EP flux to be crucial to mass upwelling

in the tropics (via the downward control mechanism), it is of interest to know up

to what altitude we must integrate the EP flux in our models to correctly calculate

this mass upwelling. One way of discovering this is to look at the downward control

streamfunction produced by integrating up to different altitudes and ask below what

altitude the streamfunction starts to significantly change.

Working with annually averaged data we calculate the downward control stream-

function (integrated up to various heights zc) for each year of each run, and then, for

each height zc, average over all of the streamfunctions for each year. The resulting

averages for each value of zc are shown in figure 5.10 which suggests that the EP

flux up to a height of about 50km is important.



5.7. THE GLOBAL TEMPERATURE 151

−80 −60 −40 −20 0  20 40 60 80 
−80

−60

−40

−20

0

20

40

60

Latitude

S
tr

ea
m

 F
un

ct
io

n 
(k

g 
m

−
1 s−

1 )

24.5km

29.5km

37.6km
43km
51km64.5km and top boundary (75km)

Figure 5.10:
Ensemble averaged downward control mass streamfunction (at 70hPa) calculated
by integrating to different heights. The streamfunction significantly changes if we
integrate only to a height below about 50km.

5.7 The global temperature

The imposed SSTs not only affect the mass upwelling, but also the global temper-

ature at 100hPa. The global temperature is not linked to the strength of the BDC

since mass continuity implies that a stronger upwelling (hence cooling) at one lati-

tude will lead to an equally increased downwelling (hence warming) at another. This

is therefore a separate effect.

We can show that the SSTs affect the global temperature since one of the ensem-

ble runs we are using was actually run for 40 years, the SSTs prescribed in the first

20 years being identical to the SSTs prescribed in the second 20 years and taken

from data for 1980–1999. Figure 5.11 shows the global temperature at 100hPa for

both the first and second 20 years of this run. It is clear that SSTs are affecting the

global temperature since there is good agreement between this temperature in the

first and second 20 years of the model run, and it is reiterated that the only time

dependent external forcing in these runs is the imposed SSTs.

We claim that the difference between global temperature which we will write as

T[-90◦,90◦], and tropical temperature (i.e. between 10◦N and 10◦S) here written as

T[-10◦,10◦], can be attributed to a combination of the phase of the equatorial zonal

wind and the mean mass upwelling, M (or equivalently the residual vertical velocity

w∗).

The difference between the global and tropical temperatures is split into two
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Figure 5.11:
Global temperature at 100hPa for first and last 20 years of the 40 year run. It can
be clearly seen that the SSTs are affecting the 100hPa temperature field.

parts: T[-10◦,10◦]-T[-30◦,30◦], and T[-30◦,30◦]-T[-90◦,90◦]. We suggest that the

phase of the equatorial zonal wind is partly responsible for the T[-10◦,10◦]-T[-30◦,30◦]

temperature difference, and that the T[-30◦,30◦]-T[-90◦,90◦] temperature difference

can be partly explained by the size of w∗.

Here we look at temperatures, the equatorial zonal wind, and w∗ all at 100hPa.

We are, again, only concerned with ensemble averages (to try to eliminate internal

variability).

The annual averages of T[-30◦,30◦]-T[-90◦,90◦] and w∗ are shown in figure 5.12(a).

There is a clear link between the two fields. From the thermodynamic equation,

assuming a steady state and Newtonian cooling, it can be seen that

wN2H

R
∼ −α(T − TR) (5.2)

explaining the negative correlation seen.

Figure 5.12(b) shows the equatorial zonal wind at 100hPa, and T[-10◦,10◦]-T[-

30◦,30◦]. Removing the seasonal cycle from both these fields leaves just the interan-

nual signature. This is shown in figure 5.12(c). It can be seen that there is definite

agreement in the interannual variation of both fields.
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Figure 5.12:
Using ensemble and annually averaged data, figures show:
(a) Comparison of extratropical temperature difference with w∗

(b) Comparison of tropical temperature difference with equatorial zonal mean
zonal wind
(c) As in (b) but with seasonal cycle removed
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5.8 Conclusions and Discussion

In this chapter we have considered a ratio of forced variability to total variability

to show which parts of the height–latitude plane can be considered in some sense

predictable, and which are dominated by internal variability. Large total variabil-

ity is seen on the equator, due to the QBO, and also in the extratropical winter

hemispheres. In the NH extratropics large total variability suggests small forced

variability, and vice versa. Where a temperature trend was present this showed

high predictability. The most noticeable feature, which we focused on, was the high

predictability of the tropical troposphere and lower stratosphere. This implied a

high predictability in the interannual variation of tropical upwelling and hence the

strength of the stratospheric circulation.

We here make the important point that the predictability of the tropical lower

stratosphere is not simply a vertical extension of the predictability of the tropical

troposphere but is largely due to remote forcing. It has been shown (Manzini et al.

2006) that, during El Niño events, there is more wave activity in the extratropical

stratosphere (greater vertical EP flux entering from the extratropical troposphere).

We have provided evidence to suggest that this increase in extratropical vertical

EP flux drives a stronger mass upwelling in the tropics via the downward control

principle. Hence we suggest that, in this way, ENSO affects the strength of the BDC

of the stratosphere.

We have also suggested that the globally averaged temperature is affected by

SSTs and that the difference between this globally averaged temperature and tropical

temperature is related to a combination of the strength of mass upwelling and the

strength of the equatorial zonal wind.

As mentioned above, further work is needed to fully understand the influence of

the QBO. For the purposes of this study, however, we have shown that the QBO

is predictable for the first 6 years of the model runs and thereafter is less so. No

difference is seen in the predictability of the mass upwelling just above the tropical

tropopause if we look only at the first 6 years of model runs, or only at the final 6

years. Therefore we conclude that the QBO has no noticeable influence here although

make the comment that further runs will be necessary (perhaps over longer times

and with more precise gravity wave parametrisation) before we can be certain about

this.

Downward control is only exact in the steady state limit (although we have

further approximated in this chapter by integrating at constant latitude). Further

work could be done to check that an even better correlation between mass upwelling

in the tropics and stratospheric EP flux divergence is given, for each individual
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run, when using a time dependent wave solver rather than the downward control

approximation.
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Chapter 6

Summary and discussion

There is now plenty of evidence to suggest that the stratosphere is not passive,

being driven by the troposphere, but that the stratosphere and troposphere are

dynamically coupled, each influencing the other.

This leads to the need to better understand the coupled nature of the stratosphere

and troposphere. In this thesis we have attempted to look at some aspects of this by

considering the following questions. What are the mechanisms whereby a dynamical

perturbation in the stratosphere can influence surface weather and climate? When

and how would we expect to see a stratospheric perturbation have a large downward

influence? What are the causes of the interhemispheric differences in the seasonal

cycle, the seasonal cycle in tropical upwelling, and the interannual variability in the

strength of the stratospheric circulation?

In chapters 2 and 3 we focused on the downward propagation of information

through the stratosphere due to a dynamical perturbation introduced there. We

suggested and investigated a new mechanism whereby dynamical perturbations in-

troduced in the stratosphere can influence the flow lower down in the stratosphere,

and thus affect the troposphere.

A perturbation, ∆U , was introduced to the zonal wind field in experiments.

Using a simple 1D model it was found that the amount of downward influence

from the perturbation depended on the state of the stratosphere, being greater in a

vacillating than in a steady regime. The greatest downward influence was seen when

the perturbation caused a transition from steady to vacillating stable states. The

change, ∆U , to the mean flow required to cause such a transition scales inversely

with density over the range of altitudes, zc, at which the perturbation is applied.

Non-locality of the zonal mean flow (non-zero C in equation 2.5) was found to be

essential to this downward influence, and this was investigated further using a model

of the QBO (in which a “group speed” was found proportional to the square root

157
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of vertical viscosity, and a “phase speed” dependent on the buoyancy frequency ×
thermal dissipation rate). The results were found not to depend qualitatively on the

lower boundary or wave generation mechanism used in the 1D model.

Multiple stable states (and hence an underlying bifurcation diagram) were found

to persist in a, more realistic, 3D mechanistic circulation model. Multiple states were

noticeable due to a large sensitivity to initial conditions (most sensitive when initial

conditions differed in the tropics) and the mechanism whereby perturbations caused

a transition between stable states was manifested by their causing or preventing a

stratospheric sudden warming. In agreement with the findings of Scott and Polvani

(2004) it was also found that the vertical EP flux accepted by the stratosphere (and

hence leaving the troposphere) depended largely on the state of the stratosphere

(disturbed or undisturbed) in any particular run (true with baroclinic instability

both damped and allowed to develop).

In general the experiments brought to light the sensitivity of the models and

hence the need to be more precise in modelling stratospheric flow. For example:

increasing the lower boundary wave forcing by 1m could cause the stable state to be

vacillating rather than steady, or sensitivity to initial conditions to be seen. Increas-

ing the magnitude of the imposed stratospheric disturbance by 1m s−1, or altering

the height at which this disturbance is applied, could cause a transition between

states, or cause a stratospheric sudden warming when one would not otherwise have

occurred. Altering the stratospheric Te profile was shown to change the underlying

bifurcation diagram. Thus the Rossby wave generation, gravity wave parametrisa-

tion scheme, and radiative equilibrium profile all have to be accurate to correctly

simulate the flow in the stratosphere and hence its affect on the troposphere.

Chapters 2 and 3 consider runs under perpetual January radiative conditions. In

chapters 4 and 5 we go on to consider how the stratosphere and troposphere affect

each other under the influence of a seasonal cycle.

The observed interhemispheric difference in the seasonal cycle (of, for example,

the evolution of the zonal wind during winter) has already been shown to be largely

attributable to the difference in lower boundary wave forcing in the two hemispheres

(Plumb 1989, Yoden 1989). In chapter 4 we showed that the large build up in the

geopotential height anomaly which leads to SSWs (often in midwinter in the northern

hemisphere) could be due to resonance between the topographically forced and the

free travelling planetary waves, at least for low wave amplitudes. There appeared

not to be this kind of resonance for larger wave amplitudes.

The downward control mechanism was shown to work well in predicting the sea-

sonal cycle in tropical upwelling and, further, wave forcing between 20◦ and 40◦ at
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a height of 15–30km was shown to be the most important in driving this seasonal

cycle. The strength of lower boundary wave forcing was shown to be unimportant to

the seasonal cycle in tropical upwelling. A larger seasonal cycle was seen for forcing

centred nearer the equator. The time lag in the upwelling behind Te (the radiative

equilibrium temperature profile) was attributed to the phase difference between Te

and the tropical temperature. A more realistic radiative time scale in the tropics

showed an increased seasonal cycle in the temperature, but not in the upwelling. A

seasonal cycle imposed in the tropospheric radiative equilibrium temperature profile

did increase both the annual average upwelling and the seasonal cycle in the up-

welling. This was shown to be due both to a direct, time dependent, heating effect

and to the indirect effect of altering wave generation in the troposphere. The de-

crease in the strength of the stratospheric circulation due to altering Te to simulate

a warming troposphere and cooling stratosphere was found to be due mainly to the

indirect effect of altering wave generation in the troposphere.

The interannual variability in tropical upwelling was considered in chapter 5.

A new ratio was constructed to show which parts of the height–latitude plane can

be considered in some sense predictable, and which are dominated by internal vari-

ability. High internal variability was seen in the extratropics, and also in the low

latitude stratosphere due to the effects of the QBO. Where a temperature trend was

present this showed high predictability. The most striking feature, though, was the

high predictability of the tropical troposphere and lower stratosphere. This implied

a high predictability in the interannual variation of tropical upwelling and hence

the strength of the stratospheric circulation. This predictability was confirmed and

shown to be due to imposed sea surface temperatures, with warm temperatures

causing greater planetary wave forcing in the extratropics and this, via the down-

ward control mechanism, driving a stronger circulation. The difference between the

tropical temperature and global average temperature was shown to be in part due

to both the equatorial zonal wind and the strength of tropical upwelling.

The QBO appeared not to have any direct effect on the strength of tropical

upwelling that we could determine. It would be useful to be able to confirm this

lack of influence of the QBO on tropical upwelling with the aid of longer model runs

and perhaps improved gravity wave parametrisation schemes.

The consideration of the effects of the stratosphere and troposphere on each

other, and in particular how stratospheric perturbations affect flow in the tropo-

sphere once they have crossed the tropopause, especially in a world where the climate

is changing, is something that merits a great deal of further attention.
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