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Abstract. We have examined the utility of retrieved column-
averaged, dry-air mole fractions of CO2 (XCO2) from the
Greenhouse Gases Observing Satellite (GOSAT) for quan-
tifying monthly, regional flux estimates of CO2, using the
GEOS-Chem four-dimensional variational (4D-Var) data as-
similation system. We focused on assessing the potential im-
pact of biases in the GOSAT CO2 data on the regional flux
estimates. Using different screening and bias correction ap-
proaches, we selected three different subsets of the GOSAT
XCO2 data for the 4D-Var inversion analyses, and found that
the inferred global fluxes were consistent across the three
XCO2 inversions. However, the GOSAT observational cov-
erage was a challenge for the regional flux estimates. In the
northern extratropics, the inversions were more sensitive to
North American fluxes than to European and Asian fluxes
due to the lack of observations over Eurasia in winter and
over eastern and southern Asia in summer. The regional flux

estimates were also sensitive to the treatment of the resid-
ual bias in the GOSAT XCO2 data. The largest differences
obtained were for temperate North America and temperate
South America, for which the largest spread between the in-
versions was 1.02 and 0.96 Pg C, respectively. In the case of
temperate North America, one inversion suggested a strong
source, whereas the second and third XCO2 inversions pro-
duced a weak and strong sink, respectively. Despite the dis-
crepancies in the regional flux estimates between the three
XCO2 inversions, the a posteriori CO2 distributions were in
good agreement (with a mean difference between the three
inversions of typically less than 0.5 ppm) with independent
data from the Total Carbon Column Observing Network (TC-
CON), the surface flask network, and from the HIAPER
Pole-to-Pole Observations (HIPPO) aircraft campaign. The
discrepancy in the regional flux estimates from the different
inversions, despite the agreement of the global flux estimates
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suggests the need for additional work to determine the min-
imum spatial scales at which we can reliably quantify the
fluxes using GOSAT XCO2. The fact that the a posteriori
CO2 from the different inversions were in good agreement
with the independent data although the regional flux esti-
mates differed significantly, suggests that innovative ways of
exploiting existing data sets, and possibly additional obser-
vations, are needed to better evaluate the inferred regional
flux estimates.

1 Introduction

The steady increase of atmospheric CO2 during the past 200
years is an important contributor to climate change. How-
ever, in the past half century only about 45 % of the anthro-
pogenic emissions have remained in the atmosphere (Jones et
al., 2005; Canadell et al., 2007), with the remainder absorbed
by the oceans and/or fixed by the terrestrial biosphere. Infor-
mation on the spatial and temporal distribution of the carbon
flux is critical to understanding the dominant processes gov-
erning the variability of the global carbon cycle, and hence
improves our ability to predict future global climate change.

The flask atmospheric CO2 concentration observations
have been one of the most important data sets in quantify-
ing and understanding the global carbon cycle. These data
have been intensively used in estimating global and regional
carbon sinks and sources via various kinds of atmospheric in-
versions (e.g., Enting et al., 1995; Fan et al., 1998; Rayner et
al., 1999; Gurney et al., 2002; Peylin et al., 2002; Rödenbeck
et al., 2003; Law et al., 2003; Patra et al., 2005; Michalak et
al., 2005; Baker et al., 2006b; Peters et al., 2007; Deng and
Chen, 2011; Bruhwiler et al., 2011). Though there is gen-
eral agreement in the estimates of hemispheric-scale fluxes,
large uncertainties still remain in the estimates of the fluxes
on smaller, regional scales, due partly to the limited spatial
scale of the observations, errors in the atmospheric models
(e.g., Stephens et al., 2007), and to the different configura-
tions of the atmospheric inversions.

Space-based observations of CO2 provide greater obser-
vational coverage than the surface observational network,
and several studies (e.g., Park and Prather, 2001; Rayner and
O’Brien, 2001; Houweling et al., 2004; Baker et al., 2006a;
Chevallier et al., 2007) have suggested that these data will
offer greater constraints on estimates of regional sources and
sinks of CO2. Chevallier et al. (2009) conducted an inver-
sion analysis of CO2 data from the Atmospheric Infrared
Sounder (AIRS) and found that it did not improve estimates
of the CO2 fluxes, beyond what they obtained from assim-
ilating data from the surface network. Nassar et al. (2011)
showed that observations from the Tropospheric Emission
Spectrometer (TES) provide useful additional information on
CO2 sources and sinks, particularly in the tropics, where the
density of the surface network is sparse. The additional re-

duction in uncertainty on estimates of the fluxes obtained
by Nassar et al. (2011) was more limited in the extratrop-
ics, which could be due to the fact that they used only ocean
data between 40◦ S and 40◦ N, so the observational coverage
was limited. A major challenge with use of the data from
space-based thermal infrared instruments such as TES and
AIRS is that these instruments were not designed for observ-
ing atmospheric CO2 near the surface, and hence the infor-
mation content of the CO2 abundances retrieved from their
measurements is limited. Although improved retrievals algo-
rithms may eventually provide better results for the middle
and upper troposphere, sensitivity to the lower troposphere
will remain elusive.

The Greenhouse Gases Observing Satellite (GOSAT)
(Kuze et al., 2009), launched on 23 January 2009, was de-
signed to monitor total atmospheric columns’ carbon diox-
ide (CO2) and methane (CH4) globally from space. Recent
inversion analyses (Takagi et al., 2011; Maksyutov et al.,
2013; Basu et al., 2013) have shown that the total column
CO2 abundances inferred from GOSAT measurements can
provide constraints on CO2 flux estimates that are comple-
mentary to those obtained from surface observations. We
present here an investigation of the impact of biases in the
GOSAT CO2 data on regional flux estimates of CO2. We
used retrievals of the column-averaged dry-air mole fractions
of CO2 (XCO2) produced by the NASA Atmospheric CO2
Observations from Space (ACOS) project for July 2009–
December 2010, together with the GEOS-Chem model, to
quantify monthly estimates of regional fluxes of CO2 for
2010. We also employed observations from the surface flask
network and compare the fluxes inferred from the flask data
with those obtained from the GOSAT XCO2 data product.
The results of the inversion analyses were evaluated using
independent data from the Total Carbon Column Observing
Network (TCCON) and the HIAPER Pole-to-Pole Observa-
tions (HIPPO) project. We also compared our inferred flux
estimates in the extratropics with a global flux data set de-
rived from eddy covariance measurements (Jung et al., 2011).

The rest of this article is organized as follows. Section 2
summarizes the retrieval algorithm and data sets used to con-
strain the model, and to evaluate our modeling results. Sec-
tion 3 presents the estimated carbon fluxes and the evaluation
of performance of the inverse modeling. Regional flux esti-
mates and their sensitivities are discussed in Sect. 4. Conclu-
sions are presented in Sect. 5.

2 Methods and data

2.1 Observations and their uncertainties

2.1.1 Satellite observations

The GOSAT spacecraft (Kuze et al., 2009), launched January
2009, is dedicated to measuring carbon dioxide (CO2) and
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methane (CH4), using the Thermal and Near-Infrared Sen-
sor for Carbon Observation Fourier Transform Spectrometer
(TANSO-FTS). The TANSO-FTS detects gas absorption in
the shortwave infrared (SWIR) and thermal infrared (TIR)
region of the spectrum. The SWIR consists mainly of re-
flected solar radiation and, therefore, provides sensitivity to
variations in the abundance of CO2 throughout the tropo-
sphere and down into the boundary layer. GOSAT is in a
Sun-synchronous polar orbit at an altitude of 666 km, with
a repeat cycle of 3 days.

We used here the NASA ACOS GOSAT XCO2 data prod-
uct, spanning July 2009 to December 2010. The ACOS re-
trievals employ an optimal estimation approach to infer at-
mospheric profile abundances of CO2, from which the total
column dry-air mole fraction (XCO2) is calculated. The de-
tails of the retrieval were described in O’Dell et al. (2012).
The retrieved CO2 profile is given by

ŷ = ya+ A(y − ya), (1)

wherey is the true CO2 profile (on a 20-level vertical grid),
ya is the a priori profile used in the retrieval, andA is the
averaging kernel matrix, which gives the sensitivity of the
retrieved CO2 to the true CO2. From Eq. (1) the XCO2 can
be calculated as

XCO2 =

Psurf∫
0

[ya+ A(y − ya)](1− q)dp

Psurf∫
0

(1− q)dp

, (2)

whereq is the water vapor mixing ratio andp is the air pres-
sure. Equation (2) can be written as (Connor et al., 2008)

XCO2 = XCOa
2 +

∑
j

hjaCO2,j (y − ya)j , (3)

where hj is the contribution of the normalized pressure
weighting function for retrieval layerj , aCO2,j is the
normalized column averaging kernel (defined asaCO2,j =

(hT A)j/hj ), and XCOa
2 is the a priori CO2 column assumed

by the retrieval (XCOa2 = hT ya). The pressure weighting
function corrects for the presence of water vapor, as de-
scribed in the denominator of Eq. (2), using the water vapor
inferred by the retrieval algorithm.

To assess the impact of residual bias in the XCO2 retrievals
on regional flux estimates, we used versions b2.9 and b2.10
of the ACOS product. ACOS b2.10 is similar to b2.9 ver-
sion described in O’Dell et al. (2012), with a few impor-
tant changes: the aerosol scheme was modified to allow more
flexibility to deviate from the aerosol prior, the gas absorp-
tion models were updated (Thompson et al., 2012), and the
prior CO2 profile was changed to agree with that of TCCON
(Wunch et al., 2010). In addition, the filtering and bias cor-
rection schemes were refined and updated for version b2.10,
and the ACOS b2.10 data used in this study have already

been filtered and bias-corrected. We used only the “high-
gain” (H-gain) data, which excludes data over bright sur-
faces, such as deserts, and we neglected the glint observa-
tions, that provide coverage over oceans since their biases
are not as well quantified. For the b2.9 data, we screened and
corrected the bias in the data in the following two ways: (a)
we screened out data with retrieved surface pressure (Psurf)
that differs from the European Centre for Medium Range
Weather Forecasting (ECMWF) surface pressure by more
than 5 hPa (Wunch et al., 2011); and (b) we corrected the
data using the four-parameter bias correction proposed by
Wunch et al. (2011), but with the four coefficients calcu-
lated based on the data used in this study. Other than the
surface pressure difference mentioned above, we used the
same filter criteria according to Wunch et al. (2011) in (a)
and (b). The filtered b2.9, filtered and bias-corrected b2.9
and the b2.10 data used here will be referred to as XCO2_A,
XCO2_B, and XCO2_C, respectively. Figure 1 shows the
zonal mean XCO2 of four XCO2 data sets based on differ-
ent filtering and bias correction approaches. Selecting data
with surface pressure errors that are less than 5 hPa reduced
the XCO2 values in the tropics and subtropics in between
spring and fall (April–November in the Northern Hemisphere
and November–May in the Southern Hemisphere). Applica-
tion of the Wunch et al. (2011) bias correction (in XCO2_B)
further reduced the XCO2 values in these regions. In con-
trast, the bias correction in XCO2_B resulted in increases in
extratropical XCO2 in the Northern Hemisphere in winter.
XCO2 values in XCO2_C in general are higher than those in
XCO2_A and XCO2_B.

2.1.2 Flask observations

We used here CO2 mixing ratios measured by a nondis-
persive infrared absorption technique in air samples col-
lected in glass flasks at NOAA ESRL Carbon Cycle Coop-
erative Global Air Sampling Network sites (Conway et al.,
2011) and Environment Canada (EC) sampling sites. The
72 NOAA sites and 6 EC sites are shown in Fig. 2. The
flask measurements are directly traceable to the World Me-
teorological Organization (WMO) CO2 mole fraction scale
(WMO X2007) (Zhao and Tans, 2006). Measurement ac-
curacy determined from repeated analyses of CO2 in stan-
dard gas cylinders using an absolute manometric technique is
∼0.2 ppm. Measurement precision determined from repeated
NDIR analysis of the same air is∼0.1 ppm. Average agree-
ment between pairs of flasks sampled in series throughout the
network is currently∼0.1 ppm. Therefore, the accuracy and
precision of flask measurements are undoubtedly high. When
the observations are compared with the model, the model–
data mismatches for the observations are larger, since repre-
sentativeness errors must be accounted for.

The uncertainties assigned to these data for inverse mod-
eling are calculated using the statistics of the differences
between the observations and the model simulations of the
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Fig. 1.Monthly mean, zonally averaged XCO2 data from GOSAT, binned in latitude ranges of 32–64◦ N, 0–32◦ N, 32◦ S–0◦, and 64–32◦ S.
Shown are the XCO2 data (version b2.9) before additional filtering and bias correction (blue lines), and XCO2_A, XCO2_B, and XCO2_C
(version b2.10) for the three different bias correction schemes employed.

Fig. 2. Global distribution of CO2 flask sample collection locations from 72 NOAA ESRL Carbon Cycle Cooperative Global Air Sampling
Network sites and 6 Environment Canada (EC) sampling sites (green solid symbols), 13 TCCON observatories (black cross symbols), and
aircraft sampling locations from the HIPPO-3 campaign (purple dot symbols).

observations using the a priori emissions (Palmer et al., 2003;
Heald et al., 2004). We calculated these uncertainties follow-
ing the procedures detailed by Nassar et al. (2011), and these
values were further scaled down to 68 % as the uncertainties
used in our inverse modeling.

2.1.3 TCCON observations

We used XCO2 data from TCCON observatories to evaluate
our inferred CO2 surface fluxes by examining whether the
a posteriori CO2 distribution is in better agreement with the
TCCON data. The TCCON sites use ground-based Fourier
transform spectrometers to measure high-resolution spectra

(0.02 cm−1) in the near infrared (3800–15 500 cm−1), from
which XCO2 is retrieved. A profile scaling retrieval approach
is used to calculate the column CO2 abundance. The column-
averaged dry-air mole fraction is then computed as (Wunch
et al., 2011)

XCO2 = 0.2095·
COcol

2

Ocol
2

, (4)

where Ocol
2 is the simultaneously retrieved atmospheric oxy-

gen column density, and 0.2095 is the nominal, globally
averaged (column-averaged) mole fraction of O2. TCCON
XCO2 have been rigorously calibrated against the integrated
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profiles of CO2 measured by WMO-standard instrumenta-
tion aboard aircraft (Wunch et al., 2010; Washenfelder et al.,
2006; Deutscher et al., 2010; Messerschmidt et al., 2011).
The TCCON precision and accuracy in the calibrated XCO2
data are both 0.8 ppm (Wunch et al., 2010).

2.1.4 HIPPO aircraft measurements

The HIAPER Pole-to-Pole Observations (HIPPO) project is
a sequence of five global aircraft measurement campaigns
that sample the atmosphere from near the North Pole to
the coastal waters of Antarctica, from the surface to 14 km
(Wofsy et al., 2011). The NCAR/NSF High-performance In-
strumented Airborne Platform for Environmental Research
(HIAPER), a modified Gulfstream V (GV) jet, hosted the
HIPPO campaigns. Major greenhouse gases (CO2, CH4,
N2O) and other important trace species were measured at
high frequency, with two (or more) independent measure-
ments for each to provide redundancy, check calibration and
assess sensor drift. We used the CO2 field based on 1 s data
averaged to 10 s (Wofsy et al., 2012), from two (harmonized)
sensors: CO2-QCLS and CO2-OMS. UTC (time), GGLAT
(latitude from GPS), GGLON (longitude from GPS), and
PSXC (Static pressure) are the fields that we used to match
observation with modeled CO2 mixing ratio. In Sect. 3.2.2,
we compared our results with data observed from campaign
3 (HIPPO-3) in March and April 2010, and the route of the
campaign is shown in Fig. 2.

2.1.5 Eddy-covariance-based observations

We compared to land–atmosphere CO2 fluxes from a so-
called “upscaled” eddy covariance global product (MPI-
BGC; Jung et al., 2009, 2011). This product derives a glob-
ally gridded, time-varying data set from in situ measurements
of net ecosystem exchange (NEE) at hundreds of flux tower
sites worldwide. The towers’ instruments (sonic anemome-
ter, infrared gas analyzer) measure fluxes on the order of
1 km, in addition to ancillary measurements (e.g., meteo-
rology) and other fluxes (Baldocchi et al., 2001; Baldoc-
chi, 2008). The MPI-BGC product is derived from a suite
of statistical model decision trees that link predictive vari-
ables (primarily air temperature, precipitation, and fraction
of absorbed photosynthetically active radiation) available at
the global scale to the NEE fluxes, and also derives gross
primary production (GPP) and total ecosystem respiration
(TER) products. The MPI-BGC product can be used only
for specific analyses as the world is treated somewhat un-
representatively like a flux site, e.g., undisturbed, growing,
flat, biased towards temperate regions; the mean annual flux,
for instance, is not appropriate to compare to. Nonetheless,
the MPI-BGC product is valuable for assessing relative spa-
tial distributions, seasonal variability, and timing of min/max
uptake, amplitude of the uptake, interannual variability, and
hotspots.

2.2 Forward modeling

The GEOS-Chem model (http://geos-chem.org) is used to
simulate global atmospheric CO2. The model is a global 3-
D chemical transport model driven by assimilated meteo-
rology from the Goddard Earth Observing System (GEOS-
5) of the NASA Global Modeling and Assimilation Office
(GMAO). Nassar et al. (2010) described the recent update
of the atmospheric CO2 simulation in GEOS-Chem. In this
study, we employed the model at a horizontal resolution of
4◦

× 5◦, with 47 vertical layers. Our model simulations in-
clude CO2 fluxes from fossil fuel combustion and cement
production, from ocean surface exchange, from terrestrial
biosphere assimilation and respiration, and from biomass
burning. Specifically, these include (i) monthly national fos-
sil fuel and cement manufacture CO2 emission from the Car-
bon Dioxide Information Analysis Center (CDIAC) (Andres
et al., 2011); (ii) monthly shipping emissions of CO2 from
the International Comprehensive Ocean–Atmosphere Data
Set (ICOADS) (Corbett and Koehler, 2003; Corbett, 2004;
Endresen et al., 2004, 2007); (iii) 3-D aviation CO2 emis-
sions (Kim et al., 2007; Wilkerson et al., 2010; Friedl 1997);
(iv) monthly mean biomass burning CO2 emissions from the
Global Fire Emissions Database version 3 (GFEDv3) (van
der Werf et al., 2010); (v) biofuel (heating/cooking) CO2
emission estimated by Yevich and Logan (2003); (vi) the flux
of CO2 across the air–water interface based on the climatol-
ogy of monthly ocean–atmosphere CO2 flux by Takahashi et
al. (2009); and (vii) 3-hourly terrestrial ecosystem exchange
produced by the Boreal Ecosystem Productivity Simulator
(BEPS) (Chen et al., 1999), which was driven by NCEP re-
analysis data (Kalnay et al., 1996) and remotely sensed leaf
area index (LAI) (Deng et al., 2006). The annual terrestrial
ecosystem exchange imposed in each grid box is neutral
(Deng and Chen, 2011). The emission inventories for 2010
used in our GEOS-Chem simulation are summarized in Ta-
ble 1.

2.3 Inverse problem and optimizing method

In the inversion analysis, the surface CO2 sources and sinks
(x) are related to the atmospheric observations (y) by the
following relationship

y = H(x) + ε, (5)

whereH is the forward atmospheric model (such as GEOS-
Chem) andε is the observation error, or model–data mis-
match, which reflects the difference between the observa-
tions and the model estimates, including errors associated
with observations (instrument errors) and model errors. Con-
sidering an a priori estimate of the CO2 flux xa, we can
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Table 1.Summary of emission inventories of 2010 used in our GEOS-Chem CO2 model simulation.

Flux type Inventory data description 2010 global annual
flux (Pg C)

Fuel and cement manufacture Carbon Dioxide Information Analysis Center
(CDIAC) 1◦

× 1◦ Monthly fossil fuel and cement
manufacture CO2 emissions

8.54

Shipping Monthly shipping emission of CO2 from Inter-
national Comprehensive Ocean–Atmosphere Data
Set (ICOADS)

0.19

Aviation 3-D aviation CO2 emissions based on 2◦
× 2.5◦

gridded flight track density.
0.16

Biomass burning Monthly biomass burning CO2 emissions avail-
able from the Global Fire Emissions Database ver-
sion 3 (GFEDv3)

1.84

Biofuel burning Biofuel (heating/cooking) CO2 emission esti-
mated by Yevich and Logan

0.86

Balanced biosphere The 3-hourly terrestrial ecosystem exchange pro-
duced by BEPS

0.00

Ocean exchange The climatology of monthly ocean–atmosphere
CO2 flux by Takahashi et al. (2009)

−1.41

construct a cost function

J (x) =
1

2
(H(x) − y)T S−1

o (H(x) − y) (6)

+
1

2
(x − xa)

T S−1
a (x − xa),

wherey is a vector of observations andSo and Sa are the
observational and a priori error covariance matrixes, respec-
tively. Minimization of the cost function, subject to the a
priori constraint, provides an optimal estimate of the fluxes,
based on the available observations.

In the version of GEOS-Chem employed here, we used a
4-dimensional variational (4D-Var) data assimilation system
in which we optimize a set of scaling factors to adjust the
fluxes in each model grid box to better reproduce the obser-
vations over a given time period. The 4D-Var cost function
that we minimize is given by

J (c) =
1

2

N∑
i=1

(fi(c) − yi)
T S−1

o,i (fi(c) − yi) (7)

+
1

2
(c − ca)

T (Sc
a)

−1(c − ca),

whereN is the number of observationsyi distributed in time
over the assimilation window,c is the state vector of scaling
factors, andca is the vector of a priori scaling factors, which
we typically assume are unity. The a posteriori flux estimate
for the j th grid cell is thus given byxj = cjxa,j . Here the
forward modelf includes the observation operator that maps
the modeled CO2 profile to the GOSAT XCO2 observation
space

XCOm
2 = f (x) = XCOa

2 +

∑
j

hjaCO2,j (H(x) − ya)j , (8)

which is analogous to Eq. (3), with the modeled CO2 pro-
file H (x) interpolated onto the GOSAT retrieval levels. Here
XCOm

2 is the modeled XCO2, aCO2 is the GOSAT column
averaging kernel, andh is the pressure weighting function
provided with each GOSAT XCO2 retrieval.

The cost function is minimized iteratively using the L-
BFGS algorithm (Liu and Nocedal, 1989) together with the
adjoint of GEOS-Chem (Henze et al., 2007). The adjoint
provides an efficient way to compute the sensitivity of the
model output to inputs and model parameters, and was origi-
nally developed and used to optimize aerosol and CO sources
(Henze et al., 2007, 2009; Kopacz et al., 2009, 2011; Jiang
et al., 2011). In this work, we apply the adjoint to optimize
global surface CO2 sinks and sources.

In constructing the observational error covarianceS0, we
used the XCO2 error estimates provided with the ACOS
GOSAT data set. However, these errors were uniformly in-
flated to ensure that the a posteriori reducedχ2

= 1 con-
straint (Tarantola, 2004) was approximately satisfied. This
scaling is justified since the observation errors (or the model–
data mismatches) incorporate errors associated with observa-
tions and the model, which is difficult to characterize. For in-
version of the XCO2_A, XCO2_B, and XCO2_C data sets,
we inflated the reported ACOS XCO2 errors by 1.7, 1.57 and
1.175, respectively.

The state vector in the inversion consists of the sum of
CO2 fluxes from fossil fuel combustion and cement manu-
facture, biofuel burning, biomass burning, exchange with the
terrestrial biosphere, and exchange with the ocean. As with
the observational error covariance matrix, the a priori uncer-
tainty estimates for these components ofSa were adjusted to
ensure that the a posteriori reducedχ2

= 1 constraint was
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satisfied and to balance the observational term in the cost
function. According to Marland et al. (2008), the uncertainty
for estimates of global fossil fuel emissions is about 6 %.
However, in constructingSa, we assigned 16 % for the un-
certainty of the fossil fuel emissions in each month and each
model grid box. For biomass burning, we started with an as-
sumed uncertainty of 20 %, a global annual uncertainty es-
timate (van der Werf et al., 2010), which was then inflated
to 38 % for emissions in each month and in each model grid
box. The annual GPP estimate for 2010 is−119.5 Pg C and
we assigned an uncertainty of 22 % of the GPP estimates in
each 3 h time step and in each model grid based on global an-
nual uncertainty estimates of 10 to 13 % (Chen et al., 2012).
TER, which is the sum of autotrophic and heterotrophic res-
piration, was specified to be 119.5 Pg C in 2010 since we as-
sumed an annual balanced biosphere. We also assigned 22 %
of the prior estimates in each 3 h time step and in each model
grid as the prior TER uncertainty. For the ocean flux we as-
sumed an a priori uncertainty of 44 %, to keep the relative
proportions for land and ocean in the range of those used in
previous studies (Deng and Chen, 2011).

2.4 A posteriori uncertainty estimation

The optimization algorithm requires calculating the gradient
of the cost function

∇J (c) =

N∑
i=1

KT
i S−1

o,i (K ici − yi) + (Sc
a)

−1(c − ca), (9)

whereK i is the Jacobian associated with the linearization
of the observation operator (forward atmospheric model)fi .
The second derivative of the cost function is the Hessian,

∇
2J (c) =

N∑
i=1

KT
i S−1

o,i K i + (Sc
a)

−1
, (10)

and for a linear system, such as CO2 transport, the a poste-
riori error covariance matrix is given by the inverse of the
Hessian,

Ŝ=

(
N∑

i=1

KT
i S−1

o,i K i + (Sc
a)

−1

)−1

. (11)

We approximated the inverse of the Hessian using the
Davidon–Fletcher–Powell (DFP) updating formula (Taran-
tola, 2004). This algorithm starts with an initial approxi-
mation of the inverse of the Hessian and combines it with
gradient information from recent iterations of the minimiza-
tion algorithm to updatêS. Since Eq. (7) optimizes the
scaling factors but we need̂S expressed in the flux space,
it is necessary to rescale Eq. (9) to express the gradient
of the cost function with respect to changes in the fluxes,
dJ
/
dx =

(
dJ
/
dc
)(

dc
/
dx
)
, which yields

∇J (x)j = ∇J (c)j/(xa)j (12)

for the gradient of thej th flux element. With this transforma-
tion, the update to estimate a posteriori covariance proceeds
as follows. Let

δxn = xn+1 − xn, (13)

δ∇J (x)n = ∇J (x)n+1 − ∇J (x)n, (14)

and then the inverse of the Hessian can be approximated by
DFP updating formula as

Ŝn+1 = Ŝn +
δxnδx

T
n

(δ∇J (x)n)T δxn

(15)

−
(Ŝnδ∇J (x)n)(Ŝnδ∇J (x)n)

T

(δ∇J (x)n)T (Ŝnδ∇J (x)n)
,

wheren is the iteration number. The approach used here to
estimate the inverse Hessian is similar to that of Muller and
Stavrakou (2005). We estimated here the uncertainty on the
monthly flux estimates. The large computer memory needed
for this approach prohibited us from applying it to estimate
annual uncertainties for the regional and global flux esti-
mates.

2.5 Initial condition and model run schemes

The initial fields of the atmospheric CO2 mixing ratio used
are based on the results from an inversion analysis of flask
observations from NOAA ESRL Carbon Cycle Cooperative
Global Air Sampling Network sites and EC sampling sites.
GEOS-Chem was run from 1996 to the end of 2007 with-
out assimilation to obtain a reasonable distribution of CO2
in the troposphere and stratosphere, and then the flask ob-
servations were assimilated from January 2008 to the end of
2009. Comparison of the a posteriori CO2 field in July 2009
with the GOSAT XCO2 revealed the assimilated CO2 fields
were biased high relative to the GOSAT v2.9 data. To ob-
tain initial conditions for the XCO2 inversions, we removed
the global mean bias from the a posteriori CO2 distribution
from the flask inversion (hereafter referred to as “the origi-
nal initial field”) at 00:00 GMT on 1 July 2009. We scaled
the original initial field by 0.99764 and 0.99734 to match
the overall global XCO2 values for XCO2_A and XCO2_B,
respectively, while we directly used the original initial field
for XCO2_C. We carried out separate inversions for each
of these GOSAT XCO2 data sets, which are referred to as
RUN_A, RUN_B, and RUN_C. For evaluation of the inver-
sion results with independent surface data, we start with the
original initial field, rather than the adjusted fields, to simu-
late the a posteriori atmospheric CO2. The XCO2 inversion
analyses were conducted from 1 July 2009 to 31 December
2009; however, we report here only the results for 2010 to
avoid possible discrepancies in the fluxes due to spin-up dur-
ing the first 6 months.
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3 Results

3.1 Optimized carbon fluxes and their uncertainties

Although our state vector includes emissions of CO2 from
fossil fuel combustion, when we report our a posteriori
flux estimates, we remove the a priori fossil fuel estimate
from the reported total land flux. Also, although we op-
timize the GPP and TER fluxes separately, we only re-
port the net ecosystem exchange since the inferred GPP
and TER fluxes are highly correlated. Shown in Fig. 3 are
annual fluxes for 2010 inferred from the ACOS GOSAT
XCO2 data with the three different screening and correc-
tion schemes discussed in Sect. 2.1.1. The global total
surface fluxes estimated from the three inversion analy-
ses were similar:−3.79 Pg C,−4.02 Pg C, and−4.35 Pg C
for RUN_A, RUN_B, and RUN_C, respectively. Consider-
ing the 2.41± 0.06 ppm annual mean global carbon diox-
ide growth rate for 2010 (Conway and Tans, 2012) and the
8.90 Pg C a priori carbon emission from fossil fuel burning
(including national fuel combustion and cement manufac-
turing (8.542 Pg C), international shipping (0.192 Pg C), and
aviation (0.162 Pg C)) used for 2010, the global total surface
flux should be−3.78± 0.13 Pg C (−3.65∼ −3.91 Pg C), us-
ing the conversion factor of 2.124 Pg C ppm−1 to convert
atmospheric CO2 mixing ratio to Pg C. The estimate from
RUN_A is in this range, whereas the estimates from RUN_B
and RUN_C exceed the 1-σ lower bound with greater sur-
face carbon uptake of 0.11 and 0.44 Pg C. In terms of the
land and ocean breakdown, we estimated that 2.16–2.77 Pg C
was fixed by the terrestrial biosphere and that 1.49–1.63 Pg C
was absorbed by the ocean in 2010, based on the three inver-
sions. The estimates for the oceanic uptake varied less be-
tween the three inversions, which may be due to the fact that
the oceanic flux estimates are dominated by the Takahashi et
al. (2009) a priori fluxes because we did not use any atmo-
spheric CO2 observations over the ocean in the three inver-
sions.

As can be seen in Fig. 3, the differences in the spa-
tial distribution of the terrestrial carbon fluxes were large.
Significant differences can be found between the inferred
CO2 fluxes from RUN_A and RUN_B, and between those
from RUN_A and RUN_C, while the distribution obtained
from RUN_B was relatively similar to that obtained from
RUN_C. There were large differences, for example, over
North America and South America (see Fig. 3). Carbon
sources were inferred for the eastern US and southern Mex-
ico from XCO2_A, whereas the eastern US region was found
to be a sink, and the source in southern Mexico was much
weaker with XCO2_B and XCO2_C data. In South Amer-
ica, the strong carbon source in the eastern region inferred
from the XCO2_A data became much weaker when we used
XCO2_B and XCO2_ C data sets. Although there were no
grid boxes that are strong sources of CO2 in RUN_C, the an-
nual CO2 source for tropical South America inferred from

Fig. 3. 2010 annual global surface fluxes of CO2 in g C m−2 from
inversion analyses RUN_A, RUN_B, and RUN_C.

XCO2_C data was significantly greater than that inferred
from XCO2_A, and XCO2_B data, as the number of inferred
source grid cells was greater in RUN_C than in RUN_A and
RUN_B.

To help interpret our results, the monthly land fluxes were
aggregated into the 11 TransCom land regions (Gurney et al.,
2002) that are widely used. The total annual flux and the sea-
sonal variations of the fluxes for each region are shown in
Figs. 4 and 5, respectively. We estimated a sink for all four
Eurasian regions (Europe, boreal Eurasia, temperate Eurasia,
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Fig. 4.2010 annual fluxes for 11 TransCom regions inferred from three XCO2 data sets, and flask observations. The a priori fluxes (the sum
of all prior fluxes excluding emissions from the fossil fuel burning) are also indicated.

Fig. 5. Monthly fluxes and their uncertainties of 2010 for 11 TransCom regions and global land surface inferred from three XCO2 data sets
(RUN_A (blue), RUN_B (red), and RUN_C (green)), and flask observations (FLASK, purple). The a priori fluxes (the sum of all prior fluxes
excluding emissions from the fossil fuel burning) are also indicated (a priori, orange).

and tropical Asia), as shown in Fig. 4, in all three inver-
sion analyses. The estimated aggregated uptake for these re-
gions was 3.69, 2.94, and 2.55 Pg C from RUN_A, RUN_B
and RUN_C, respectively. In the extratropics, the estimated
fluxes were most similar across the three XCO2 inversions

for boreal Eurasia and temperate Eurasia, for which we esti-
mated an annual CO2 uptake in the range of 0.49 to 0.68 Pg C
and 0.51 to 0.64 Pg C, respectively. Their seasonal variations
(Fig. 5) were also similar in the three inversions. We note
that the a posteriori fluxes in boreal Eurasia are close to the
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a priori used, reflecting, as discussed below, the lack of ob-
servational coverage in winter and with observations over the
boreal region only available during May through September.

For tropical Asia, the three XCO2 inversions suggested
a sink in the range of 0.69 to 1.32 Pg C. The differences
between inversions were manifested mainly in the region
around the Indonesian islands (see Fig. 3), and between May
to September (see Fig. 5). These differences amounted to an
increased uptake of about 0.63 Pg C in the annual regional
carbon budget (Fig. 4) in RUN_A compared to RUN_C.

The largest differences in the inferred fluxes for the three
XCO2 inversions were obtained for temperate North Amer-
ica and temperate South America. The differences in the
estimated fluxes between RUN_ A and RUN_C were 1.02
and 0.96 Pg C for temperate North American and temper-
ate South American, respectively. The differences in the es-
timated fluxes between RUN_B and RUN_C were smaller.
The fluxes inferred for boreal North America also varied sig-
nificantly between the three inversions, but the absolute mag-
nitude of the differences was small. We also conducted an in-
version analysis of the surface flask data, and the differences
between the fluxes inferred from the flask data and those
based on the XCO2 for temperate North American is strik-
ing. With XCO2_A we estimated a source of about 0.5 Pg C
for temperate North America, whereas with the flask data we
estimated a sink of about 0.7 Pg C (Fig. 4). Examination of
the seasonal variations in Fig. 5 shown that there were sig-
nificant differences among the three inversions in the timing
and extent of the uptake of CO2 in July, August, and Septem-
ber in boreal North America. In temperate North America the
monthly mean uptake in RUN_A was systematically smaller
from May through September than in the other two runs. In
temperate South America, CO2 uptake during the growing
season in RUN_A was much less than in the other two runs,
especially between January and April. Considering the spa-
tial distribution, these differences in temperate South Amer-
ica were mostly caused by the stronger uptake in RUN_C and
RUN_B than in RUN_A in the eastern part of this region.

The posterior errors derived from the 4D-Var inversion us-
ing Eq. (15) were aggregated to the TransCom regions. The
uncertainties of the land fluxes and the flux for each month
are given in Fig. 5. These uncertainties can be further used to
calculate the uncertainty reduction percentage (Deng et al.,
2007), given as

Ur =

(
1−

σ

σa

)
× 100%, (16)

whereσ andσa are the a posteriori and a priori uncertainties,
respectively. The uncertainty reduction obtained for RUN_A
is shown in Fig. 6. The uncertainty reduction on the regional
flux estimates varied significantly from region to region. The
minimum uncertainty reductions can be as small as less than
1 % for the three northern high-latitude regions (boreal North
America, Europe, and boreal Eurasia) during winter months,
which, as we will discuss below, is due to the scarcity of

XCO2 observations in these regions in winter. The largest
uncertainty reduction (exceeding 35 %) for the regional flux
estimates was obtained for the fluxes inferred for temper-
ate North America, the two South American regions, and
the two African regions. The largest uncertainty reduction
that we obtained was about 50 % for tropical South Amer-
ica. We note that these estimates of uncertainty reduction
depend largely on our assumed a priori uncertainty. Com-
parison of the monthly mean fluxes in Fig. 5 indicated that
the differences in the flux estimates inferred from the differ-
ent data sets is larger than the estimated a posteriori uncer-
tainties, suggesting that it is likely that we have underesti-
mated the observation errors. Neglect of spatial and tempo-
ral correlations in the a priori error covariance matrix would
also result in discrepancies in the predicted a posteriori errors
and, consequently, in errors in the estimated uncertainty re-
duction. Clearly, the estimated uncertainty reduction depends
strongly on the specification of the observation and a priori
error covariance matrix, which are difficult to characterize.
Therefore, in our interpretation of the uncertainty reduction
in Sect. 4 we will focus on the relative uncertainty reduction
between the different regions and not on the magnitude of the
error reduction.

3.2 Evaluation of the inversions

3.2.1 Comparison with GOSAT XCO2

The objective of the inversion analysis, as described by
Eq. (7), was to optimize the fluxes to minimize the mismatch
between the model and observations. One way of assessing
the success of the inversion is by the degree to which the
a posteriori CO2 matches the observations. Shown in Fig. 7
are the model and GOSAT XCO2 differences for RUN_A.
It shows that the distribution of the model and observation
differences was approximately Gaussian. As an indication
of the overall inversion performance, the mean global bias
was reduced from 2.72 to 0.04 ppm, while the 1-σ spread
was also reduced from 2.18 to 1.65 ppm. On the hemispheric
scale, the residual bias was smaller in the Northern Hemi-
sphere (NH) than in the Southern Hemisphere (SH). In the
NH, the mean bias was 0.01 ppm (reduced from 3.21 ppm in
the a priori, with a decrease in the standard deviation from
2.24 to 1.81 ppm), whereas in the SH the mean bias was
0.08 ppm (reduced from 2.02 ppm, with a decrease in the
standard deviation from 1.88 to 1.39 ppm). While the mean
biases had been reduced satisfactorily in both hemispheres,
the larger standard deviation obtained in the NH may re-
flect the difficulty of reliably capturing the greater biospheric
sources and sinks in the NH.

We also examined the seasonality of the residual bias,
focusing on April–September as the growing season and
October–March as the nongrowing season in the NH, and
vice versa for the SH, to broadly reflect the hemispheric bio-
sphere carbon cycle dynamics. During the growing season,

Atmos. Chem. Phys., 14, 3703–3727, 2014 www.atmos-chem-phys.net/14/3703/2014/



F. Deng et al.: Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO 2 data 3713

Fig. 6. The maximum and minimum uncertainty reduction on the monthly mean flux estimates aggregated to the TransCom regions. For a
given region, the maximum value represents the largest uncertainty reduction obtained for any month in 2010, whereas the minimum value
is the smallest uncertainty reduction obtained in any month in 2010.

the residual biases were 0.00± 1.89 and 0.03± 1.43 ppm for
the NH and SH, respectively. During the nongrowing sea-
son, the biases were 0.02± 1.74 and 0.09± 1.37 ppm for the
NH and SH, respectively. We believe that the relatively small
mean biases of 0.03 and 0.00 ppm obtained for the SH and
NH, respectively, during their growing season is due to the
fact that more XCO2 data are available to constrain the in-
version analysis during these periods. One common feature
among the four cases examined is that the standard devia-
tions of the a posteriori biases were greater during the grow-
ing season in both hemispheres than during the nongrowing
season, indicating that larger uncertainties may be related to
simulating the summertime drawdown of atmospheric CO2.

3.2.2 Comparison with independent observations

Flask observations

Flask observations provide the research community with
highly accurate and precise atmospheric CO2 measurements
that are often used to calibrate new atmospheric CO2 mea-
surements. We used here flask observations from the 78 ob-
serving sites shown in Fig. 2, corresponding to 3016 flask
observations in 2010, to evaluate the a posteriori CO2 fluxes.
We sampled the modeled CO2 distribution at the appropriate
measurement location and time (to within half an hour of the
measurement time). Using the a posteriori results from the
three GOSAT XCO2 inversions, we estimated a mean differ-
ence of−0.88,−0.99, and 0.01 ppm relative to the 3016 flask
observations in 2010. These mean differences for RUN_A
and RUN_B could be due to the overall systematic errors
transferred from the XCO2 data when we adjusted the initial
CO2 distribution in the inversion to remove the mean mis-
match with the GOSAT data. Therefore, it would be inappro-
priate to directly compare the modeled a posteriori mixing
ratios against real flask observations to evaluate our flux esti-
mates. Instead we simulated the a posteriori CO2 mixing ra-
tios, based on the optimal CO2 flux estimates, starting from

the original initial CO2 field (which, as discussed in Sect. 2.5,
was based on an assimilation of the surface data).

Figure 8 shows the observed and simulated CO2 time se-
ries at four flask sites: ALT (Alert, Nunavut, Canada), MLO
(Mauna Loa, Hawaii, USA), GMI (Mariana Islands, Guam),
and CGO (Cape Grim, Tasmania, Australia). Because we as-
sumed a balanced biosphere (with zero annual net uptake)
for our a priori fluxes, the a priori CO2 distribution signifi-
cantly overestimates the observations at the flask sites by the
end of 2010. The a priori overestimate largely reflects the
well-established secular increase in atmospheric CO2 due to
anthropogenic emissions, and the inversion successfully cor-
rects for it. In general, the seasonal variation of the observed
atmospheric CO2 time series has been satisfactorily simu-
lated using the a posteriori fluxes, optimized from ACOS
GOSAT XCO2 data, considering the spatial and temporal
resolution of the model. We started with a neutralized an-
nual a priori flux to better assess the ability of the observa-
tions to constrain the flux estimates. The mean, the standard
deviation (SD), and the mean absolute value (MAV) of the
mismatch between the a posteriori model and observations
are listed in Table 2. For ALT, MLO, and GMI, the mean dif-
ferences were small, much less than 1 ppm. For CGO, how-
ever, the a posteriori CO2 was biased low by slightly more
than 1 ppm for RUN_A and RUN_B, while the bias was
significantly reduced to−0.68 for RUN_C. For all 78 flask
sites, the mean of the model–observation mismatch was 0.02,
0.05, and 0.01 ppm for RUN_A, RUN_B, and RUN_C, re-
spectively, indicating that, on average, the observations had
been simulated well with the optimal fluxes. The underes-
timate at CGO is not unique to that station. We found that
the a posteriori fluxes underestimate CO2 at the surface sites
across the southern extratropics. However, the magnitude of
the underestimate was highly variable. At Palmer Station,
Antarctica (PSA), for example, the mean difference was only
−0.21 ppm and the MAV was 0.21 (not shown) in RUN_A,
compared to−1.18 ppm for the mean difference and 1.18 for
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Fig. 7. The distribution of the modeled minus observed XCO2
in ppm. The red bars are from the modeled a priori XCO2 minus
the observed XCO2, whereas the blue bars are from the modeled a
posteriori XCO2 minus the observed XCO2. The blue and red solid
lines show a normal distribution for the a priori and a posteriori
differences. The distribution means and the standard deviations are
indicated.

the MAV at CGO. Examination of the mean and MAV sug-
gests that RUN_C provides a relatively better overall simula-
tion compared with observations from all 78 sites.

TCCON observations

We evaluated the a posteriori flux estimates using TCCON by
comparing the observations with the a posteriori atmospheric
CO2 mixing ratios that were produced with the model simu-
lation initialized with the original initial CO2 field. As with
the flask data, the model was sampled at the observation lo-
cation and time (to within half an hour). To compare with
the TCCON XCO2, the modeled CO2 concentrations were
mapped to the TCCON 71 vertical layers and then trans-
formed using the a priori profile and averaging kernel ex-
tracted from the TCCON data set. Finally, the XCO2 values
were calculated using the approach of Wunch et al. (2011).
Fig. 9 shows the observed and modeled XCO2 time series
at four selected sites: (1) Lamont, USA; (2) Sodankylä, Fin-
land; (3) Izana, Tenerife; and (4) Wollongong, Australia. The
a posteriori CO2 field reproduced well the observed seasonal
variations at these four sites. However, the model underesti-
mated the XCO2 at Lamont and Izana in summer (between
days 150 and 250), and overestimated it at Sodankylä and
Wollongong throughout 2010. Using the scaled initial field,
our calculation shows that the means of the mismatches be-
tween the modeled a posteriori hourly atmospheric CO2 mix-
ing ratios and the observations at 13 TCCON sites in 2010
are−0.79,−1.27, and 0.06 ppm for all three inversions, re-
spectively.

The mean model and observation mismatch, the SD, and
the MAV of the differences for all 13 TCCON sites are given
in Table 3. The mean mismatch for all 13 sites was 0.16,
−0.23, and−0.06 ppm for RUN_A, RUN_B, and RUN_C,
respectively. On average, as indicated in Table 3, the XCO2
at Park Falls, Orleans, Karlsruhe, Bialystok, Darwin, and
Lauder were well simulated by the a posteriori fluxes from
all three inversions, with mean biases that are less than or
equal to 0.70 ppm. RUN_B produced the best a posteriori
CO2 compared to the TCCON observations in the Southern
Hemisphere (including Darwin, Wollongong, and Lauder) in
terms of both the mean and the MAV, while RUN_A pro-
duced the best a posteriori CO2 comparing with northern
subtropical (Lamont and Izana) observations. For the north-
ern sites, no single inversion consistently agreed well with
all the observations; however, RUN_B and RUN_C generally
produced better a posteriori CO2 fields relative to the obser-
vations. Considering all 13 sites, RUN_C had the least ab-
solute mean bias (0.06 ppm) and the least MAV (0.91 ppm).
It also had the strongest correlation (r2

= 0.80) with the ob-
served XCO2 at all 13 sites. It should be noted that the num-
ber of TCCON observations at each of the 13 sites affects the
statistics for all 13 sites, and therefore the statistics for all 13
sites should be interpreted with caution.
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Fig. 8.The a priori (blue diamonds) and a posteriori (red squares) model estimates, and real flask observations (green triangles) of 2010 for 4
selected sites for RUN_A, RUN_B, and RUN_C. These a priori and a posteriori simulations use the original initial field, which differs from
those used for the inverse modeling.

Table 2. The mean, standard deviation (SD), and the mean absolute value (MAV) of the a posteriori model–observation mismatch in 2010
for the four flask sites listed in Fig. 8, and for the global average of the 78 flask sites shown in Fig. 2. These a posteriori simulations use the
original initial field, which differs from those used for the inverse modeling in RUN_A and RUN_B.

Site code (lat/lon) RUN_A RUN_B RUN_C

mean SD MAV mean SD MAV mean SD MAV

ALT (82.5◦ N / 62.5◦ W) −0.52 1.08 0.91 -0.17 1.23 0.87 −0.42 1.14 0.83
MLO (19.5◦ N / 155.6◦ W)∗ −0.14 0.92 0.72 −0.16 1.12 0.85 −0.11 0.99 0.75
GMI (13.4◦ N / 144.8◦ E) −0.04 0.89 0.70 −0.07 0.88 0.69 0.11 0.91 0.70
CGO (40.7◦ S / 144.7◦ E) −1.18 0.51 1.18 −1.19 0.41 1.19 −0.68 0.35 0.69
78 sites 0.07 5.32 2.67 0.05 5.47 2.74 0.01 5.36 2.62

∗ MLO observatory is at an altitude of 3397 m and is probably not resolved well in our posterior simulations (Nassar et al., 2010).

HIPPO aircraft measurements

As discussed in Sect. 2.1.4, we compared our a posteriori
CO2 fields with the 10 s averaged HIPPO-3 data. At this tem-
poral resolution, the HIPPO data reflect CO2 on spatial scales
smaller than the model resolution. We did not average the
HIPPO data onto the model grid, so the differences between

the model and the observations also reflect representativeness
errors associated with the coarse model grid. Listed in Ta-
ble 4 are the mean differences, the standard deviation, and the
mean absolute value of model and observation mismatch for
all 24 303 HIPPO-3 observations. In general, the results from
the three inversions were not significantly different from each
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Fig. 9. The TCCON XCO2 (green) of 2010 for four selected sites and the a priori (blue) and a posteriori (red) XCO2 for RUN_A, RUN_B,
and RUN_C. The a priori and a posteriori simulations used the original initial CO2 field that was not scaled to remove the global offset
relative to the GOSAT XCO2.

other. We estimated mean differences of−0.07,−0.08, and
−0.17 ppm for RUN_A, RUN_B, and RUN_C, respectively.
In contrast, using the scaled initial field resulted in mean dif-
ferences between the a posteriori CO2 and the HIPPO data
of −1.01,−1.12, and−0.17 ppm, respectively, reflecting the
global mean bias in the initial conditions used for the XCO2
inversions.

To better evaluate the performance of the inversion anal-
yses, we also compared the a posteriori CO2 to the HIPPO
data only between 1000 m and 5000 m in altitude. Figure 10
shows three sets of plots comparing simulated HIPPO obser-
vations with optimal surface fluxes from our three inversions
with the HIPPO-3 observations. As our model was sampled
with a temporal resolution of one hour, and the spatial res-
olution of the model is coarse (4◦

× 5◦), the modeled CO2
did not reproduce much of the detailed structure seen in the
observations. The a posteriori simulations based on the op-
timal fluxes from RUN_B deviated from the observation the
most in the southern high latitudes. For example, the mean
differences in the southern high latitudes, 70◦ S–45◦ S, were
as large as−0.92 ppm. However, the simulations based on
a posteriori fluxes from RUN_B were less biased relative to

the observations in the tropics and the Northern Hemisphere.
The a posteriori simulation based on RUN_C had the small-
est bias in the Southern Hemisphere between 15◦ S to 70◦ S,
but the largest bias in the tropics (15◦ S to 15◦ N). The pos-
terior CO2 from RUN_A deviated from the observations the
most in the Northern Hemisphere (15◦ N to 80◦ N). Overall,
the simulations compared well to the HIPPO data. The cor-
relation between the a posteriori simulations and the obser-
vations werer2

= 0.96 for all three inversion runs.

Eddy covariance-derived product

In Fig. 11 we compared our inferred fluxes for temperate
North America and Europe with the MPI-BGC fluxes (Jung
et al., 2011), which are empirically derived from eddy co-
variance measurements. We focused on North America and
Europe for this comparison since the density of eddy covari-
ance towers is greatest in these regions. For temperate North
America, the MPI-BGC fluxes suggest weaker uptake in May
and June than inferred from RUN_B, whereas the June MPI-
BGC flux is in agreement with the estimates in RUN_A and
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Table 3. The mean difference, standard deviation (SD), and the mean absolute value (MAV) of the model–observation mismatch for 13
TCCON sites in 2010. Also listed are the averages and correlation for all 13 sites. These a posteriori simulations use the original initial field,
which differs from those used for the inverse modeling in RUN_A and RUN_B.

Site (lat/lon) RUN_A RUN_B RUN_C

mean SD MAV mean SD MAV mean SD MAV

Lamont (36.6◦ N, 97.5◦ W) −0.48 1.03 0.89 −1.05 1.15 1.24 −0.72 0.95 0.92
Park Falls (45.9◦ N, 90.3◦ W) −0.29 0.96 0.81 −0.31 0.92 0.77 −0.29 0.82 0.69
Eureka (80.1◦ N, 86.4◦ W) 1.10 1.05 1.25 0.93 0.89 1.04 0.94 0.95 1.08
Izana (28.3◦ N, 16.5◦ W)∗ −0.46 0.49 0.55 −1.12 0.61 1.15 −0.68 0.51 0.74
Orleans (47.97◦ N, 2.11◦ E) −0.41 0.88 0.79 −0.55 0.77 0.78 −0.26 0.84 0.70
Karlsruhe (49.1◦ N, 8.43◦ E) 0.62 1.25 1.04 −0.28 1.05 0.82 0.16 1.00 0.73
Bremen (53.1◦ N, 8.85◦ E) −0.82 1.02 1.08 −1.16 1.34 1.40 −0.97 1.29 1.27
Garmisch (47.5◦ N, 11.1◦ E) 1.16 1.47 1.47 0.48 1.02 0.88 0.67 1.02 0.96
Bialystok (53.2◦ N, 23.0◦ E) 0.66 1.27 1.08 0.20 1.39 1.03 0.60 1.18 1.02
Sodankylä (67.4◦ N, 26.6◦ E) 1.11 0.86 1.22 0.99 0.92 1.17 1.15 0.85 1.27
Darwin (12.4◦ S, 130.9◦ E) 0.11 0.52 0.41 0.07 0.50 0.39 0.65 0.43 0.69
Wollongong(34.4◦ S, 150.9◦ E) 0.81 0.65 0.91 0.61 0.68 0.79 1.09 0.65 1.15
Lauder (45.0◦ S, 169.7◦ E) 0.18 0.76 0.60 0.03 0.74 0.57 0.48 0.74 0.70
All 13 sites 0.16 1.22 0.95 −0.23 1.24 0.98 0.06 1.15 0.91

r2 0.77 0.76 0.80

∗ Izana is at an altitude of 2370 m and is probably not resolved well in our posterior simulations.

Table 4. The mean difference, standard deviation (SD), and the
mean absolute value (MAV) of the model–observation mismatch
for HIPPO-3 observations.

Mean SD MAV

RUN_A −0.07 1.37 1.02
RUN_B −0.08 1.39 1.05
RUN_C −0.17 1.33 0.97

RUN_C. However, for July–September the MPI-BGC data
product suggests greater uptake than the three XCO2 inver-
sions and the flask inversion. For Europe, the MPI-BGC data
are generally consistent with the results of the inversions. The
major discrepancy between the three XCO2 inversions and
the MPI-BGC data occurs in May, when all three inversions
suggested greater uptake of CO2. In contrast, the flask inver-
sion suggested slightly weaker uptake. Wintertime fluxes in
the inversions tend to be larger sources than that from MPI-
BGC in Europe.

4 Discussion

4.1 Regional flux estimates

Terrestrial ecosystem (biosphere) models often underesti-
mate the seasonal amplitude of CO2 in the Northern Hemi-
sphere (Randerson et al., 2009), and inversion analyses that
employ these terrestrial ecosystem models to provide a pri-
ori flux estimates underestimate the CO2 seasonal amplitude

by 1 to 2 ppm (Basu et al., 2011; Peters et al., 2010). In
this study, we used the annual balanced, 3-hourly terrestrial
ecosystem fluxes as described by Deng and Chen (2011),
which also produced a weak seasonal cycle in the a priori
CO2 fields. However, as shown in Figs. 8 and 9, the a posteri-
ori simulations reproduced well the amplitude of the seasonal
cycle measured at the flask and TCCON sites. This improve-
ment in the modeled seasonal cycle could be attributed to
the good spatial coverage of the GOSAT observations during
the growing season. This correction in the modeled seasonal
cycle is reflected in the significantly greater uptake of CO2
during the growing season obtained for the regions in the ex-
tratropical Northern Hemisphere (Fig. 5).

Using the ACOS XCO2 data screened and bias-corrected
by the three different approaches produced significantly dif-
ferent surface fluxes for regions such as boreal North Amer-
ica, temperate North America, and temperate South Amer-
ica. The sensitivity of the inferred flux estimates for boreal
North America is not surprising since the GOSAT observa-
tional coverage is limited at high latitudes over North Amer-
ica. The temperate North America region has been described
as a sink in previous inversions using flask observations of at-
mosphere CO2 (Deng and Chen, 2011; Gurney et al., 2004;
Peters et al., 2007; Rayner et al., 2008; Deng et al., 2007).
Here we estimated the region to be a significant source in
RUN_A, but a weak sink in RUN_B and a strong sink in
RUN_C. Our flask inversion suggested a stronger sink for the
region. The differences are mostly caused by the uptake in
the growing season. All three XCO2 inversions and the flask
inversion estimated peak uptake of CO2 in temperate North
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Fig. 10.Comparison of modeled a priori and a posteriori CO2 mix-
ing ratios with HIPPO observations from 70◦ S to 84◦ N and 1000
to 5000 m. Top panel is the HIPPO observations (grey) and their
moving average; modeled atmospheric CO2 based on prior fluxes
(purple), posterior fluxes from RUN_A (blue), posterior fluxes from
RUN_B (red), and posterior fluxes from RUN_C (green) deviated
from HIPPO observations, and their moving averages are plotted in
the remaining three panels. The a priori and a posteriori simulations
use the original initial CO2 field that was not adjusted to remove the
global bias relative to the GOSAT XCO2 data.

America in June, with the flask and RUN_A inversions pro-
ducing similar estimates of the June uptake. In contrast, in
RUN_B and RUN_C, we estimated stronger uptake in June.
Unlike the flask inversion, all the XCO2 inversions produced
much weaker uptake in July compared to June. Comparison

Fig. 11.Monthly fluxes and their uncertainties of 2010, as in Fig. 5,
for temperate North America and Europe. Shown are the fluxes
inferred from the three XCO2 data sets (RUN_A, RUN_B, and
RUN_C), and the flask observations (FLASK). Also plotted are the
flux estimates from the MPI-BGC flux data product. The a priori
fluxes (the sum of all prior fluxes excluding emissions from the fos-
sil fuel burning) are also indicated (a priori).

with the TCCON observations at Lamont from day 120 to
250 (Fig. 9) shows the strong negative bias for RUN_B and
RUN_C, which could indicate that the stronger uptake in-
ferred in these inversions for temperate North America rep-
resent an overestimate of the actual sink during the grow-
ing season (in the absence of compensatory changes in the
flux from other regions). Surface flask observations – for ex-
ample, at the KEY site and inland at NWR and SGP (not
shown) – also suggest that the summertime sinks estimated
in RUN_B and RUN_C for temperate North America were
overestimated. A weak sink for temperate North America
is possible for 2010 as a result of the cold spring and hot
and dry summer in the southeast US during 2010 (Blunden
et al., 2011). In addition, fire emissions in southern British
Columbia, Canada, in July would have further reduced the
net uptake of CO2 from temperate North America in 2010.
Indeed, these could be responsible for the strong decrease in
uptake in the three XCO2 inversions in July.
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For temperate South America, we estimated a strong
source in RUN_A, a weak source in RUN_B, and a strong
sink in RUN_C (Fig. 4). As shown in Fig. 5, these differ-
ences are largely due to the estimated uptake during Jan-
uary to May. For these months, RUN_B and RUN_C suggest
greater uptake than RUN_A, with sink estimates comparable
to those inferred from the flask data and similar to the a pri-
ori fluxes. Comparison with the flask data from the PSA flask
station at the South Pole (not shown) reveals that the a pos-
teriori CO2 concentrations from all three XCO2 inversions
underestimate the observed CO2 concentrations, with the un-
derestimate being greater for RUN_B during the first half of
2010. However, this is not the case for RUN_C though the
inferred fluxes from XCO2_C are almost identical to those
from XCO2_B for the same period. A possible explanation
is that lower uptake in Australia, inferred from XCO2_C,
could in part compensate for the inferred fluxes from temper-
ate South America. Comparison with the HIPPO-3 data (see
Fig. 10) shows that the a posteriori CO2 fields from RUN_B
are also more negatively biased relative to the independent
aircraft data than those from RUN_A and RUN_C, suggest-
ing the need for a weaker uptake or large emissions of CO2
in the southern extratropics in early 2010.

4.2 Regional sensitivity analysis

The uncertainty reductions on the regional flux estimates, as
shown in Fig. 6, vary considerably both in space (regions)
and time (seasons). The largest uncertainty reduction (about
50 %) was for the flux estimates from tropical South Amer-
ica. The other regions with large uncertainty reduction are
temperate South America, northern and southern Africa, and
temperate North America. The large uncertainty reduction on
the flux estimates in the tropics is not surprising given the ob-
servational coverage of GOSAT. We note here that interpre-
tation of the uncertainty reduction should be taken with care,
as it depends on the magnitude of the assumed a priori uncer-
tainty and observation errors. Furthermore, we used a scheme
in which the a priori uncertainties were proportional to the a
priori flux estimates, so regions with large absolute a priori
fluxes (such as tropical South America) would have large a
priori uncertainties and, consequently, large uncertainty re-
ductions, whereas regions with small absolute a priori fluxes
could have small uncertainty reductions. Therefore, the un-
certainty reductions should be used only as a metric to assess
the relative impact of the observation constraints on the re-
gional flux estimates.

In the northern extratropics, the largest uncertainty reduc-
tion obtained was for temperate North America. Examination
of the uncertainty reduction of the monthly mean fluxes in
2010 revealed that the uncertainty reduction in the flux esti-
mate for temperate North America was at a maximum (about
35 %) in April, with comparably large uncertainty reduction
in October. The smallest uncertainty reduction was for De-
cember 2010, due to the smaller number of observations used

for quantifying the December fluxes compared to previous
months (since the assimilation period ended on 31 December
2010). The other extratropical regions with large uncertainty
reduction are Europe and boreal Eurasia. For both regions
the uncertainty reduction on the flux estimates was small in
winter and peaked at about 20 and 25 % in May and July,
respectively.

To explain the relative differences in the uncertainty re-
duction for Europe and North America, for example, we con-
structed the regional Jacobians, which give the sensitivity of
the modeled XCO2 to the regional flux estimates. The Jaco-
bian is obtained by taking the derivative of the observation
operator Eq. (8) with respect to the emissions, which gives

dXCOm
2

dx
=

∑
j

hjaCO2,j

(
dH(x)

dx

)
j

. (17)

The derivativedH(x)/dx is available from the adjoint sen-
sitivities, but we choose here to estimate them using separate
tracers for each of the main continental regions in the north-
ern extratropics. With this construction of the sensitivities it
will be easier to interpret our results in the context of pre-
viously published TransCom inversions. We specify a 1 Pg C
source for North America, Europe, and Asia, using the distri-
bution of CO2 fluxes shown in Fig. 12. This 1 Pg C source of
CO2 was emitted over a period of one month for each region,
but the resulting tracer distribution was simulated for three
months. The sensitivities were calculated using Eq. (17),
by sampling the tracer distribution at the GOSAT observa-
tion locations and time (to within an hour) and applying the
GOSAT averaging kernels. The sensitivities for January 2010
XCO2 to fluxes in January are shown in Fig. 13. Over Europe
there is weak sensitivity to European fluxes due to the limited
observational coverage. In contrast, there is greater sensitiv-
ity to North American emissions due to the good coverage
over the United States. This accounts for the greater win-
tertime uncertainty reduction in flux estimates from North
America than from those from Europe. In April, there is sig-
nificantly greater observational coverage over Europe, and as
a result (Fig. 13) there is strong sensitivity of the April XCO2
over Eurasia to European fluxes in April. In May, as a result
of transport, the sensitivities of the modeled XCO2 to April
fluxes have been reduced relative to the sensitivities in April
(Fig. 14). We find that European and North American fluxes
in April most strongly influence XCO2 values across Eura-
sia in May. The sensitivity of the Eurasian XCO2 to North
American fluxes is due to the efficient transport of air from
the North American boundary layer across the Atlantic to Eu-
rope in the free troposphere and in the boundary layer (Li et
al., 2002).

To help interpret the regional sensitivities, we calculated
the transit times of air from the boundary layer of North
America, Europe, and Asia to the receptor regions shown in
Fig. 12. Instead of emitting the CO2 for the regional trac-
ers over a period of one month, we emitted the 1 Pg C from
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Fig. 12. Distribution of CO2 fluxes in North America, Europe, and Asia used for the pulse experiment to simulate the sensitivities of the
modeled XCO2 to the regional fluxes, using Eq. (17). The flux pattern represents the combined influence of the fluxes from the biosphere,
fossil fuel combustion, biomass burning, and biofuel combustion, all scaled to a total flux of 1 Pg C for each continental region. The black
boxes represent the receptor regions used for the transit time analysis shown in Fig. 15.

Fig. 13.Sensitivity of modeled XCO2-to-CO2 fluxes (ppm/Pg C per month) for North America (top row), Europe (middle row), and Asia
(bottom row). Shown are the sensitivities of XCO2 in January (left column) and April (right column) to fluxes in January and April, respec-
tively.
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Fig. 14. Sensitivity of modeled XCO2-to-CO2 fluxes (ppm/Pg C
per month) for North America (top row), Europe (middle row), and
Asia (bottom row). Shown are the sensitivities of XCO2 in May to
fluxes in April.

each region within one day to simulate the release of each
tracer that is a delta function in time, producing a tracer
distribution that is analogous to an age spectrum (Hall and
Plumb, 1994; Holzer and Hall, 2008). Fig. 15 shows the tran-
sit times to the middle troposphere over the receptor regions
in Fig. 12 for June 2010 conditions. To reduce the influence
of the changing synoptic conditions in June on the distribu-
tion of the transit times, we averaged the distribution of tran-
sit times obtained from pulse releases of the tracers on 1, 10,
and 20 June 2010. The distributions of transit times shown in
Fig. 15 are consistent with those shown by Holzer and Hall
(2008). As expected, over each continental region, transport
of CO2 from the boundary layer to the middle troposphere

peaks on the timescale of a few days. Fig. 15 shows the rapid
transport of North American air across the Atlantic. Within
10–20 days, North American CO2 is transported across to
Europe and Siberia. This suggests that, in the context of the
inversion, on timescales of one to two weeks, North Ameri-
can flux estimates can be influenced by XCO2 observations
across North America and Eurasia. In contrast, over eastern
Asia and the Pacific, the North American signal is well mixed
into the background.

Examination of Fig. 15 reveals that the transport of Eu-
ropean CO2 out of Europe and Siberia is sufficiently long
that outside of these regions the European signal is also well
mixed into the background. This suggests that European flux
estimates should be influenced mainly by observations over
Europe and Siberia, on timescales of about one or two weeks,
respectively. As a result, the European flux estimates should
be sensitive mainly to biases in the XCO2 data over Eurasia,
whereas North American flux estimates should be sensitive
to regional biases in the data over North America as well as
over Eurasia. This greater influence of long-range transport
on the North American fluxes suggests that North American
flux estimates should be more sensitive to model transport
errors than European flux estimates. However, the actual im-
pact on the estimated fluxes will depend on the relative mag-
nitudes of the North American and European fluxes.

The timescale for transport across the Pacific Ocean is
longer than for transport across the Atlantic Ocean; however,
Fig. 15 shows that the Asian signal remains above the back-
ground across the Pacific and over North America. Despite
this influence of long-range transport on the Asian fluxes,
our inversion exhibited low sensitivity to Asian CO2 fluxes
due to the absence of ocean observations and the limited
GOSAT observational coverage over eastern Asia, as a result
of cloud cover. This suggests that incorporating ocean ob-
servations over the midlatitude and northern Pacific should
produce greater constraints on the Asian fluxes.

5 Conclusions

We have conducted inversion analyses using three different
sets of the NASA ACOS GOSAT XCO2 b2.9 and b2.10 data
to quantify regional sources and sinks of atmospheric CO2.
We found that the seasonal variations of the inferred global
fluxes were consistent across the three XCO2 inversions. The
inversions significantly increased the uptake estimate in the
northern extratropics during growing season, suggesting that
the a priori fluxes may have underestimated the seasonal cy-
cle amplitude in the northern extratropics. The a posteriori
CO2 was in better agreement with independent TCCON, sur-
face flask, and HIPPO aircraft observations. On regional spa-
tial scales, we found that the flux estimates were sensitive to
the treatment of the residual bias in the GOSAT XCO2 data.
The largest differences obtained were for temperate North
America and temperate South America, for which the largest
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Fig. 15.Transit times (in days) of North American, European, and Asian CO2 to the middle troposphere of the receptor regions shown in
Fig. 12. The transit times were estimated based on three pulse releases of CO2 of 1 Pg C on 1, 10, and 20 June from each continental region.
The resulting tracer distributions were normalized such that the integral of the tracer abundance, averaged over the receptor region, for the
90-day period of the simulation is unity.

spread between the inversions was 1.02 and 0.96 Pg C, re-
spectively. In the case of temperate North America, one in-
version suggested a strong source (RUN_A), whereas the
second and third inversion produced a weak (RUN_B) and
strong sink (RUN_C), respectively. However, inversion of the
surface flask data produced an even stronger sink for tem-
perate North America than was inferred from the GOSAT
data. We found that the flux estimates from boreal Eura-
sia, temperate Eurasia, and Europe were generally consistent
across the three XCO2 inversions. Comparison of the a poste-
riori flux estimates with the MPI-BGC eddy-covariance-flux-
based product showed that the inferred European fluxes were
consistent with the eddy covariance flux product, whereas
the North American fluxes were offset by∼1 month and a
weaker sink.

The XCO2 inversions produced the largest uncertainty re-
duction on the flux estimates for South America and Africa,
with the greatest uncertainty reduction on the flux esti-
mates for tropical South America. In the northern extratrop-

ics, the largest uncertainty reduction was for the temperate
North American flux estimates, which our sensitivity anal-
ysis suggests could be due to the fact that North American
flux estimates are sensitive to observations over Eurasia on
timescales of one to two weeks as a result of the long-range
transport of CO2 from North America. In contrast, European
flux estimates are sensitive to observations on the Eurasian
continent on timescales of less than a week. We note that
the analysis presented here was an initial attempt at under-
standing the inversion results in the context of the transit
times. It suggests that the North American flux estimates are
more strongly influenced by long-range transport and should,
therefore, be more sensitive to regionally varying biases in
the observations and to model transport errors. In addition,
the low sensitivity of the European flux estimates to observa-
tions outside of Eurasia could explain why the inferred Eu-
ropean flux estimates are more robust across the three differ-
ent XCO2 data sets. However, there is clear need for more
detailed analyses to better characterize the sensitivity of the
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inferred regional flux estimates to the transport pathways and
transit times associated with long-range transport of the con-
tinental CO2 signals.

We found that the GOSAT observational coverage is a
challenge for the inversion. The greater sensitivity to North
American fluxes than European and Asia fluxes, for example,
is due to the lack of observations over Eurasia in winter and
over eastern and southern Asia in summer. Since the observa-
tions over Eurasia are restricted to summer, it is unclear how
reliable the European flux estimates are, despite the fact that
they are robust across the three XCO2 inversions. Increased
wintertime observational coverage in Eurasia is critical for
better quantifying the seasonal variation in the extratropical
sources and sinks of CO2. The use of M-gain GOSAT data
over North Africa would also provide additional constraints
on European flux estimates. A particular concern is the low
sensitivity to temperate Asian fluxes in the inversion. During
the growing season, the data density is low over temperate
Asia as a result of cloud cover from the Asian monsoon. The
use of ocean observations over the Pacific would help cap-
ture the Asian outflow and better quantify the Asian fluxes.
Similarly, observations over the North Atlantic would pro-
vide useful information on North American CO2 fluxes. The
ocean glint data from GOSAT could be useful in this con-
text, but these data are mainly in the tropics and subtrop-
ics. Incorporating the thermal infrared (TIR) GOSAT CO2
retrievals with the XCO2 data could better capture the conti-
nental outflow and provide greater constraints on the Asian,
North American, and tropical fluxes, from regions such as
the Amazon, where persistent cloud cover is a challenge for
the GOSAT retrievals.

Although the global flux estimates inferred in the differ-
ent inversion analyses presented here were robust, the re-
gional flux estimates were less reliable. In our analyses, we
focused on fixed regions, as defined by TransCom, to fa-
cilitate comparison with previous inversion analyses in the
literature. However, the actual regional scales on which the
inversion analyses can constrain the flux estimates will de-
pend on the observational coverage, the observational error,
the specified a priori flux errors, and the changing atmo-
spheric transport patterns. An objective approach is clearly
needed to determine the minimum spatial scales at which
the fluxes can be reliably quantified. There is also a critical
need for additional independent data to better evaluate the
inferred fluxes. Despite the large spread in the flux estimates
obtained for regions such as temperate North America, trop-
ical South America, and temperate South America, we found
that the different inversion analyses reproduced well the in-
dependent atmospheric CO2 data and were similar in their
agreement with the data (with mean differences typically less
than 0.5 ppm). This raises the issue as to how we should em-
ploy the existing data sets, and what additional observations
are needed, to provide a more stringent evaluation of the in-
ferred flux estimates.
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