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On Postglacial Geoid Subsidence Over the Equatorial Oceans

J.X. Mitrovica' AND W.R. PELTIER
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We develop two new spectral formalisms for the gravitationally self-consistent solution of the "sea level
equation” which govemns the redistribution of glacial meltwater on a visco-elastic Earth. The first is a purely
spectral technique based on an extension of theory outlined by Dahlen (1976) for determining the equilibrium
oceanic tide on an elastic planet. Using this technique, with a feasible spherical harmonic truncation level (¢ €
30), we can obtain convergence in the computed sea level variations within the degree range 2= 10. We also
develop a second, "pseudospectral’ technique, however, which permits the construction of gravitationally
self-consistent solutions to much higher degree and order (2 >> 100). The pseudospectral formalism is employed
here to develop a comprehensive physical explanation for the global pattem of present-day sea level variations
due 1o ongoing glacial isostatic adjustment. In particular, we focus upon a mechanism, which we term "equatorial
ocean syphoning,” that acts to draw water toward the oceanic portion of the collapsing peripheral bulge that
encircles previously glaciated regions. The collapse of the forebulge induces a flow of water which is required
to maintain hydrostatic equilibrium. The syphoning mechanism dominates the relative sea level (RSL) variation
in oceans in the far field of the ice sheets (that is, beyond the peripheral bulge) during periods, such as the
interglacial of the past 4000 years, during which the volume of the ice sheets has not (apparently) changed
appreciably, while, at the same time, isostatic adjustment persists. The RSL change in the near field is, in contrast,
dominated by the (local) vertical displacement of the solid surface. Finally, comparison of gravitationally
self-consistent predictions of RSL change in the far field, with the observational data at small Pacific island sites,
has provided an upper bound of 1 to 2 m for the eustatic sea level rise produced by any recent (last 3000 years)

melting of the Antarctic ice sheel.

1. INTRODUCTION

Raised and submerged strandlines caused by relative sea level
(RSL) change during the last 18,000 C years are a manifestation
of glacial isostatic adjustment during, and following, the last major
deglaciation event of the current ice age. These observations
constitute a rather voluminous, globally distributed data set
(Tushingham and Peltier, Constraints on visco-elastic Earth
structure from a global data base of late Pleistocene relative sea
level histeries, submitted to Journal of Geophysical Research,
1991) that has had application in a variety of geophysical contexts,
A comparison of such data with synthetic RSL curves computed
using realistic Earth models has provided, and will continue to
provide, important constraints upon inferences of mantle viscosity
[Peltier, 1974; Cathles, 1975; Peltier and Andrews, 1976; Wu and
Peltier, 1983; Mitrovica and Peltier, 1991]. Furthermore, these
comparisons have also been used to construct global models of the
late Pleistocene deglaciation history which are significantly better
resolved than those based solely on geological constraints [Wu and
Peltier, 1983; Tushingham and Peltier, 1991a].

These applications also extend to present-day RSL variations,
which have recently received considerable attention in the context
of the global warming hypothesis [Peltier and Tushingham, 1989].
Scientists seeking evidence for global climate change have tumned
their attention to the issue of global sea level rise, anticipating that
atmospheric warming trends should be manifested in a systematic
rise in ocean bathymetry [Etkins and Epstein, 1982; Gornitz et al.,
1982] caused by the melting of both large and small ice sheets and
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alpine glaciers. Tide gauge records support the existence of such
a trend and this becomes significantly more coherent, globally,
when the data are filtered to remove the influence of ongoing
glacial isostatic adjustment [Peltier and Tushingham, 1989].

Computing the redistribution of ocean water in response to the
growth and decay of ice sheets on a realistic Earth is a nontrivial
problem. Variations in the ice mass and ocean bathymetry force
mass Tedistributions in the planetary interior which, together with
the direct attraction of the surface load (ice plus water), perturb the
gravitational field of the planet. It is clear that these perturbations
must, in turn, affect the sea level variation since the ocean surface
is constrained to remain an equipotential. In mathematical terms
this interrelation gives rise to an integral equation, known as the
sea level equation [e.g., Farrell and Clark, 1976; Clark et al.
1978; Peltier et al. 1978].

In the past the only gravitationally self-consistent solutions of the
equation, for the case of a visco-elastic planet, have been based on
a "finite element" formulation described by Peltier et al. [1978].
An approximate spectral technique has also been presented [e.g.,
Nakiboglu et al., 1983]; however, the latter authors assumed that
both the potential perturbation due to internal mass redistributions
and the deflection of the Earth’s solid surface are adequately
computed using an ocean load (meltwater) forcing that is
independent of geography. In this paper we will present two new
techniques for obtaining gravitationally self-consistent solutions of
the sea level equation. The first is a "full spectral” formulation
based on an extension of theory outlined by Dahlen [1976] for the
computation of equilibrium tidal heights on an elastic Earth. The
procedure is particularly useful for accurately determining the low
degree (£ < 10) signal of the sea level variation, and we will
outline an important application of it that will be pursued in a later
publication (section 3.1). The second technique, which we label
“pseudospectral,” in analogy with similar technology that is
employed in modern atmospheric general circulation models, will
permit gravitationally self-consistent solutions of the sea level
equation to much higher degree and order.
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To demonstrate the utility of the pseudospectral technique we
will examine, in some detail, present-day sea level changes due to
glacial isostatic adjustment. A primary goal in the analysis is to
provide a comprehensive physical theory which can explain the
detailed nature of the global pattern of present-day sea level
change. As an example, while the fall in sea level near the center
of previously glaciated areas, in the last 18,000 years, is obviously
a result of the postglacial uplift of the Earth’s solid surface in
these regions, the physical origin of the present-day sea level fall
in oceans in the far ficld of the ice sheets deduced by Clark et al.
[1978], Peltier [1988] and Peltier and Tushingham [1989] may be
seen by some as puzzling and in any event deserves a more
complete discussion than has been provided to date. Since these
authors presented results for only a single Earth model in their
analyses, it is not even clear whether the far field sea level fall
deduced by them is a feature common to all such models. We will
show that it is and that the redistribution of ocean water from the
far field is a consequence of the subsidence of the peripheral bulge
encircling previously glaciated regions (especially Canada and the
Antarctic). We have termed this phenomenon "equatorial ocean
syphoning,” and its detailed description constitutes, we contend, a
useful further contribution to our understanding of the postglacial
rebound process.

A second result of the analyses to be presented here lies in the
detailed verification of the global signal of the present-day rate of
sea level rise computed by Peltier [1988] and Peltier and
Tushingham [1989]. By providing such verification, we provide
independent confirmation of the validity and accuracy of the
previously employed finite element formulation for the solution of
the sea level equation [Peltier et al. 1978] and, by implication,
strengthen the many important conclusions that have been based
upon its application.

2. THE SBEA LEVEL EQUATION

The accumulation and ablation of Pleistocene ice sheets, together
with the complimentary variation in ocean bathymetry, constitute
the surface load which drives the glacial isostatic adjustment
process. For a fixed ice load history and visco-elastic Earth model
a gravitationally self-consistent calculation of the space and time
dependent changes in ocean bathymetry requires the solution of the
sea level equation. In this section we will outline its derivation for
the case of a spherically symmetric (in its unperturbed state)
visco-elastic planet [after Farrell and Clark, 1976; Clark et al.,
1978; Peltier et al., 1978] with the intent of illustrating the basic
physical principles which govern the redistribution of ocean water.

The gravitational potential perturbation ®(8, v, t) on the Earth’s
original unperturbed surface, produced by a general surface load
L(8, v, 1), can be computed via the space-time convolution

o@y.0 = [ [[LEv. oG t-ryaar,
- {3

where € represents the entire surface area of the Earth, y is the
angular distance from (8, ) to (8’, ¥’), and ¢ is the potential
perturbation Green function [Peltier and Andrews, 1976). The
geoid anomaly, that is the change in position of the sea level
surface relative to the reference ellipsoid, is related to @ by

G(0,y,1) = (®(6,y,1) + AD(1))/g, )

where g is the surface gravitational acceleration. The inclusion of
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the term labelled A® reflects the fact that the particular
equipotential upon which the sea level lies will not in general be
constant in time.

In analogy with equation (1) the radial displacement of the solid
surface produced by the surface load is

R(8,y,1) = J'f L(®, W, ) T(y,t -t dVdt',  (3)
- {}

where T'(y, t) is the radial displacement Green function [Peltier,
1974]. The sea level change is simply the difference between the
geoidal and solid surface perturbations at geographic positions
coincident with the oceans. Accordingly,

5(0.y.1)=C(0,y) {G(8,y,1) - R(8,y.1)}

- [ Fia il of ¢'(T“_"’)
cce.w)[igue.w.r Ltilad

m(z)]
3

—F(y,:—r’}} dQdt + (4)

where S(B, y, t) is the sea level variation, and C(8, y) is the ocean
function defined as [Munk and MacDonald, 1960]

i

C(8,y) =1 in the oceans

C(8,y) = 0 clsewhere

(5)

The value of the constant A® is chosen in order to ensure that
the sea level change conserves mass. Its value (via equation (2))
is chosen to force the total volume between the three dimensional
geoidal and solid Earth surfaces to be equal to the volume of water
exchanged between the ice sheets and the oceans. Using equation
(4) we have

50 { [

,{¢ ot iyt —r’)} dQ’df’) ®)
&

where M, is the mass loss history of the ice sheets, p,, is the
density of water, A, is the area of the oceans (which is assumed
constant, though C(8, y) will actually depend slightly on sea
level), and angle brackets denote integration over the oceans. The
first term on the R.H.S of equation (6) is referred to as the eustatic
sea level change. It represents the variation in bathymetry that
would be measured if the distribution of water added to, or
removed from, the oceans was independent of geographic location
(and the original ocean mass was fixed to the spatial distribution
that obtained prior to the onset of melting). The second term on
the right-hand side is an integrated measure of the distance
between the equipotential which originally coincided with sea level
and the Earth’s solid surface.

The Green functions (Y, t) and I'(y, t) can be expressed in terms
of the surface load Love numbers defined by Peltier [1974], for
the surface loading of a visco-elastic planet. In the time domain
the h and k Love numbers have the following forms [Peltier,
1976]:
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K
h(t) = hF3(t) + Y riexp(-sit)

k=1

K
k(1) = ke 8(t) + Y ' exp(-sy1).

k=]

)

These numbers represent the (nondimensional) spherical harmonic
(degree ) coefficients in the Legendre polynomial expansion of
the Green functions for radial displacement (h,) and the potential
perturbation due to mass redistribution in the planetary interior
(kg). We have employed the method developed by Peltier [1985]
for their computation.

Using equation (7), restored to dimensional form, we have

OMR(y, 1) = k5 E [k, 5{:)+E r'exp(- sk:)} P,(cosy)

¢ =0

Ty, 1) = .Ea.z {h, 8(e) + E ry exp(- s,‘r)} P, (cosy){ i

e t=0

where the P, are Legendre polynomials, and the superscript MR
refers to the internal mass redistribution contribution to the total
potential perturbation. M_ and "a" are the Earth’s mass and radius,
respectively. The potential perturbation Green function ¢ in
equation (1) also has a contribution from the direct attraction of
the load, and we can write [e.g., Farrell, 1972]

O (7.8) = oM (v,1) + 6 (v, 1) (9a)
where
o8 (v, 1) = %52 P, (cosy) 8(1). (9b)
e =0

Using equations (8) and (9), the time dependent constant A®(t)/g
can then be expressed as the combination

_Ad)(l) C(:)— A(DL(I}-_AWR(I)+ A(br{:) (10)
g 8 g
where
M (1
c;(:)=—_’{_l

%mﬂ-(rh (f fL(ef v, :’}__tp"('y: :’)dQ’d:)

1 y 1
_ADMR()=__ L(®& , wh') _oMR (y,t-1")dQ dt’

g o-mﬁ

lA‘I’r(:) =

oozl

We will see that the different time dependent terms in equation
(10) constitute important diagnostics in the investigation of the
physical cause of meltwater redistribution over the ocean basins
subsequent to deglaciation.

Returning to equation (4), the surface load L can be separated

(L@ T (e-ta@ar). o)

0
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into contributions from the ice sheets and from the associated sea
level variations, and as a consequence a computation of S(8, y, t)
must involve the solution of an integral equation. If we denote by
I the thickness of ice, then

L(0,y,t)=p,1(0,y,1) +p S(0,y,1), (12)

where p, is the density of ice. Using equation (12) in equation (4)
we then have

S©O.y.1) =C(e.w)[] J)[(CA"RORTINCARTE
~= 1

-{_1.45{7,:—:’) —F(y,z—:’)}dﬂ’a‘:’ +ﬂ} .
4 g
(13)
Equation (13) is the general sea level equation for the case of a
visco-elastic planet. To solve it generally requires a discretization
in time, and it has been common [Farrell and Clark, 1976; Peltier
and Andrews, 1976; Clark et al., 1978; Wu and Peltier, 1983] to
model the ice load (and subsequent sea level change) as a series
of step load increments. Accordingly, we can write

N
I(8,y,1) =Y 8I"(0,y) H(1-1)

A=0

N
S(0,y.1) =Y 85*(0,vy) H(t-t,)

LT

(14)

in which H(t) is the Heaviside step function. The special form of
equation (14) permits an analytic solution for the time convolution
in equation (13). Using equations (8), (9), (13), and (14), one can
show that

Z 35"(8,y) H(t-1)=C(8, q;)[“’“)
2

n=g

[[loio v+, 5000 w.00} %y acy
0

+ Y H(i- ;)_U[p,ax (O, +p, 85" (8, y)} -

-s"S(y,:)mf] s
in which
SE(y) = E E,P (cosY)
=0
S"E{'y.r)=i: ; B(L,1,,t) P,(cosy) (16)
t=c .
where
E,=1+k' -h'
K Mmoot
Bt )=y u 1-exp(-st(t-£)].

k=1 -5}
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The second and third terms on the right-hand side of equation
(15) represent the elastic and nonelastic responses, respectively, in
the convolution of the full surface load with the Green function
o(Y, U/g-T (v, 1). The Green functions S® and S™, since they
incorporate a convolution with the time history (14), have come to
be known as Heaviside Green functions [Peltier and Andrews,
1976]. In equation (15) the partition of Ad(t), as defined in
equations (10) and (11), follows directly from a simple division of
E, into contributions from the load (1.0), internal mass
redistribution (k) and solid Earth deformation (- h§).

The sea level variation S(6, v, 1) is computed, using equation
(15), by solving for successive increments 8S® (8, y). To date the
only gravitationally self-consistent solutions of the equation have
been based on the finite element formulation described by Peltier
and Andrews [1976], Peltier et al. [1978)], and Wu and Peltier
[1983]. In this technique the ice and ocean surfaces were
discretized using circular discs of varying radius (the resolution is
generally maximized at continental shorelines), and the convolution
over the Earth’s surface is performed, in the space domain, using
a large set of precomputed interaction coefficients (the finite
element classification adopted by the authors is somewhat
unconventional since the methodology incorporates elements of
both Green function and finite element techniques). For each sea
level increment the solution is obtained iteratively, and the first
guess is given by the eustatic sea level change,

an

n i=l o _ n C(O.w)
[35~(8,y)]" = -p, {JJM ‘9"'”““}—,;—'

w o

The process continues until convergence, defined by the level of
consistency obtained in equation (15), is established.

In the following sections we shall outline two new approaches
for generating solutions to the sea level equation (15). Both
techniques are based upon a spectral formulation of the required
surface convolution integrals. As a consequence, and in contrast to
the finite element approach described above, the resolution will be
more uniform around the globe, and dependent upon the truncation
level of the various spherical harmonic expansions. In this respect,
the methodology we have developed will feasibly allow for
gravitationally self-consistent solutions to very large (>> 100)
spherical harmonic degree and order.

3. SOLVING THE SEA LEVEL EQUATION:
SPECTRAL APPROACHES

Any field (6, ), defined on the surface of the sphere, can be
represented in terms of a spherical harmonic expansion of the form

- ]
PACRTOED JUD A ANCRIR

I=¢ m=-1

(18)

where the Y, are surface spherical harmonics normalized (in our
calculations) such that

J]‘ Y, (0,9) Y, (6,y) sin® dOdy = 4nd,,, 5__, .

SPHERE

(19)

'

The asterisk denotes complex conjugation. In this case one can
show that
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4na?
[[x@.w)P(cospyagy =253~ 5 v, (0.y).
o (2""1) m=={ (20}

Therefore if we denote the spherical harmonic coefficients of the
ocean function (equation (5)), the total ice load and sea level
variation (equation (12)), and the ice and sea level increments
(equation (14)) by C,, I, S, O8I}, and 8S},. respectively,
the sea level equation (15) can be written as

- [ oo r
IDIRMOPMCADE DYDY

=0 m=-1 r=o g=-=r

C.Y, (6,y)

rsors

™ [}
AN L3 3 E Ty (Pl (1) + 9,50 (1)) Vo (0.W)

g =0 m=-1

‘ N
YTy (P;M!:: P, 851:.) '

=0 mu-i n=c

M

Bl OH(E-1)Y, (8,y)

(21)
where
4na’®
o A
Y NGTESY 22)

Using this formalism we can derive a particularly simple relation
between the degree zero component of the ice and ocean load.
Conservation of mass requires that

fﬁfue,w,z)dﬂ - 0. 23)

Using equations (12), (14), (18) and (19), it is easy to show that
equation (23) implies

Pl (t) +p,S (1) =0

P81, +p,855 = 0. 24)

We will consider two different approaches to the solution of the
integral equation (21). In the first we derive a purely spectral
formalism based on an extension, to the visco-elastic case, of
theory outlined by Dahlen [1976] for determining the equilibrium
oceanic tide of an elastic planet.

3.1. A "Full Spectral” Approach

Let us seck a solution for the sea level variation at a time t = L,
coinciding with the application of the (j+1)* ice load increment.
Using the spectral form of equation (14) we can write

BSim = Spn (1) =S (£,_,) - (25)

If we assume that §,, (1) has been solved for in a previous time
step, then our problem reduces to computing 8S.,. Applying
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equation (25) to equation (21) yields

Y 38LY, ==Y S, (1. )Y, * {E C..,Y,,}'

[AT?.(:J.) + 2:“: ET(p 10, (5) + P, (Sunt,0) * P, 8Sin) Y,

(26)

n=g

j-1
+E TIE B(!"l'tj)(p.fa[:n + pwasl:l)yb]
Lm

where

E =3 f) » Y =Y,.(8,).

=0 m=-i

Dahlen [1976], in an analysis of the response of an elastic Earth
lo a static tidal potential, derived an equation similar in form to
equation (26). As is standard in any Galerkin procedure we
proceed by multiplying both sides of the equation by Y, (6, W)
and then integrating over the Earth’s surface. The result, using
equation (19), is the system of algebraic equations:

: 1 " A Ad(t)
s, _H.E M1 ET,p 88.=-S, (1, )+C, — 1+

1 m
* 'Ei':r?.z: MG E TP Ly, (1) + P, Sy (1))}

]. m = n L
+H§ MITT, Y B(l,rﬁ.r}.){pfﬁl,,, +pw58h} @n

n=o
in which

M1p=3C, ﬂ Y, Y, Y, sin8dody.

s SPHERE

(28)

The surface integral in equation (28) can be expressed in terms of
a product of Wigner 3-j symbols. If we define the inner product

If

SPHERE

Y;‘F Yn Yln

sin@d0 dy EA:::‘ (29)

then [Cohen-Tannoudji et al., 1977]

Afr = (-1y4n ((2p +1)(2r + 1) (20+1))" -

aallze

where the square brackets represent the Wigner 3-j symbol. It
follows from the properties of these symbols that AXY vanishes
unless all of the following conditions are met:

(30)

g=s5s+m
p +r +Qiseven

lp-tlsr<p+1 (31)
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Applying these conditions to equation (28) yields

pt

Y. CoonA 0

r=lp=11
rzig=-ml

M1y =
7 (32)

where the subscript on the summation indicates that only every
second term is included. Equation (32) ensures that only a finite
number of terms are required to compute M1 for a given p, q, §,
and m. In this respect the relation (30) is important given the
recent derivation of general, and very efficient, recursion formulae
for the computation of the 3-j symbols [Le Blanc, 1987].

Equation (27) represents an infinite set of coupled linear
equations, and therefore any practical scheme for its solution
requires that a specific truncation level be chosen. If we assume
that the harmonic coefficients of the ice load and sea level vanish
for spherical harmonic degree above the value Dy,y, then the
number of equations in the system is

o,

Y (2D +1) =D (D, +2) +1.

D=0

(33)

This is also the number of unknowns (8S;, for p = 1, since 8S}, is
constrained by equation (24), and A®(t)), and therefore there is a
single unique solution to the equation.

To generate the solution, let us first note that the summations
over degree { in equation (27) will, in fact, begin at # = 1 since
the degree zero terms cancel as a consequence of the conservation
of mass constraint (24). To proceed, we partition the set of
equations into those for p=0 (a single equation) and p>0. For the
sake of brevity we will write the equations in vector notation,
using the convention that any set of coefficients y, for p>0, will
be denoted as . The vector ) has elements (), 1, %10 X11> K22 9+-)-
Furthermore, we define the matrix [M1], the vector M0, and the
diagonal matrices [E], [T], and [B]] to have the following
elements:

MIT S MIT MITY; -
M13 MIS ) ML -

M1 M1 My ML -

[M1]= J . &
MIZS M1, MITZE -

L” ’ ’ : Y Ul (34)

MO=\MIg}, MISS, MI oY, MIJE, |,
[El=diag[E,E,, E, E,, ],

[T =diag[T,,T,, T,, T,, ],

(B =diag [B(1,1,,2),B (1,2,.1,), B(1,1,,1,),B(2,2,,1),].

Using this notation, the case p>( in equation (27) becomes
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A¢'(IJ,)

+

88i = [1]—_;’%[1»41] [E][T) l:—S(fj_l) +C
1
2= MBI 1) +p,5 )+

Jj=1

5 tilpsr .59

n=g

(35)

where [1] denotes the identity matrix. Furthermore, the case p=0
yields (using equation (24))

Coa AdD e p.i' pw 1
i (r_‘.)——_fw(fj)—_MO[E][T]ﬁS’-
g P an

MO (p, 1) +p,5.,))+

5 (811 (p,517+p, 55

AEg

(36)

By substituting equation (35) into the right-hand side of equation
(36), one can solve for AD(t). Using this value in equation (35)
yields the vector 88’ containing the spherical harmonic coefficients
of the (j+1)" sea level increment; that is, the required solution of
the sea level equation,

The inversion in equation (35) can be performed extremely
efficiently by taking advantage of the diagonally dominant nature
of the matrix [e.g., Dahlen, 1976]. As a consequence, the main
computational effort in the solution for 8§’ is focussed on the
generation of the matrix [M1]. This effort can be reduced
substantially by using the recursion algorithm for the Wigner 3-j
symbols derived by Le Blanc [1987], and by recognizing the
inherent symmetries in the matrix [M1]. For example,

M1 = M1%”

37
et

MITY = 3, Clon(-ly=aAll™7. (38)
ruip=1l
rzlg=-ml

Nevertheless, since the operation count required to compute [M1]
(see equations (30) and (32)) approximately doubles every three
degrees, we have found that truncation levels beyond about degree
30 rapidly become unfeasible. Unfortunately, although asymptotic
expressions for the 3-j symbols at large and unequal degrees have
been sought, there is reason to believe that they do not exist
[Brussaard and Tolhoek, 1957].

A truncation level of 30 is not sufficient to accurately compute
most RSL curves, especially near irregular ice sheet perimeters and
continental margins. However, glacial isostatic disequilibrium is
also manifested in the global gravity field, and, in particular,
attention has been recently focussed on the low-degree zonal
components in the present-day secular variation of the Earth’s
geoid (the so-called ],, for £ < 4; Peltier [1983, 1985] (for £=2),
Mitrovica and Peltier, [1989]). In section 4.1 we will show that
calculations of 8S,,, for £ < 10, using the methodology outlined
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in this section, will have converged for truncation levels at degree
30. Hence a gravitationally self-consistent prediction of the J, at
these low degrees can be obtained using the surface load generated
from the "full spectral" approach outlined here (see section 4.1).

A major goal of the present study, however, is to examine the
nature and cause of present day RSL variations in the global
oceans. We are obliged therefore to seek a technique which
permits a much higher truncation level, and in the next section we
introduce a pseudospectral formalism for the solution of the sea
level equation which satisfies this requirement.

3.2. A Pseudospectral Approach

Let us return once more to a consideration of equation (26). If
we define

Rm (rj) = Ep TF ( p-JP‘F (‘j} * pwqu( :.H) *Py SS;.? ) *

-1
1,3 B(p.t,t) (p,80,+p,85,)

(39)
then we can rewrite equation (26) in the form
3 850t ==X Sunlh )Yy
AD
C YLD R ()Y +__(t)|.
[r.: }[g""' 8 '] (40)

A comparison with equation (25) indicates that the second term on
the right-hand side of equation (40) represents the sea level change
up to time  (that is, S(8, , t)). This term represents a projection
of the field measuring the distance between the sea level
equipotential and the solid surface onto the ocean function,

In the last section this projection was performed spectrally. The
inner product which was then applied to solve for 8Si, (equation
(27)) produced elements of the form (28) whose generation
ultimately limited the truncation level. This suggests that it may be
more efficient to perform the projection in the space domain, and
in this section we outline a simple, iterative, technique based on
this idea.

Let us consider that an approximation to the spherical harmonic
coefficients of the sea level increment 8$' (equation (14)) exists.
If we denote this approximation as [8Si Ji, then equation (40)
provides an algorithm for its (iterative) improvement. In particular,
if we denote the "improved" estimate as [8S},]""', then we may
write, using equation (40),

Y BSLYY,, =Y 8, ()Y, +
Lm

Lm

s AD(t) i
{E C!JYIS}' Zq [R.Pf{!f)] YPY+|: g - ] (41)

where, using equation (39),
(R, )V =E,T,(p,1,,() +p,5,, () +p, [5S},1)

j-1
+T, 3 B(pt,t) (P81, +p,85,,).

(42)
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It will be instructive to define the function,

ROV.4)= [R, (1T, )
P
If we furthermore define the projection
RO(8,y,1) = {E c"yu} [ Y [Rn{fjj]"l’w} ,
rs Pa (44)
then, using equation (43), we have
RO'(8,v, ) = C(6,y) Ri(ﬁ“lf“j)- (45)

The spherical harmonic expansion of RO‘(B,q!,tj} can be
tepresented by

[RO‘0.v.1) = ¥ [RO,, (1)]'Y,,. 46)
iIm

‘H\\_‘-"‘\\.
Using equations (45) and (46) in (41) yields the spectral equation
- . | AD() j
(801" = =8,,0,.) + [RO,, (1)1 { : } Cone (1)

The term [A.tb(tj}!g]i can be derived by enforcing conservation of
mass on the terms in equation (40). This yields, using equations
(14), (45), and (46),

-
g P,

- 2r @) - RO [y

(48)

Equations (42)-(48) provide the basis for the iterative
pseudo-spectral solution to the sea level equation to be described
in this section (and implemented in section 4.2). In this respect, the
parameter i represents the iteration counter.

The algorithm for the pseudospectral technique is summarized in
Figure 1. To begin, the ocean function is specified at N latitude
and M longitude points (a total of N x M nodes). Furthermore, a
first guess to the spherical harmonic coefficients of the sea level
increment, [8S}.]'""!, is also specified, and, using equation (42),
the coefficients [R,(t)]™" are generated. From these coefficients
the field R™(, v, t;) can be synthesized at the same N x M nodes
(as expressed in equation 43), and the product (or projection) of
R='(®, v, t) and the ocean function C(8, ) (as required in
equation 45) computed at each. The result, RO™'(, , 1), is then
decomposed to generate the coefficients [RO,, (Ij)]i", Using
[RO,,(1)I™" in equation (48) yields the term [AD(t)/g]™". The entire
RHS of equation (47) is thus established, and the next sea level
increment [8S},]" can be computed. The procedure is repeated
(compute [RN(Ij)]i'z, etc...) until convergence is obtained.

The first guess to the sea level increment is the eustatic change.
Using equations (17), (19), and (24) we have

(881 = - 120 2 5

w o

tm* (49)
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Fig. 1. A pseudospectral solution to the sea level equation.

i=i+l

Furthermore, the level of convergence may be assessed by
computing
_ I[8SL 1M1 = I[8SL, )1
gl'l =E

, (50)
tn I[85 11

where the vertical bars represent the modulus of the complex
variable. We have found that three of four iterations are sufficient
to assure that & < 10,

We have labelled the technique pseudo-spectral because all
computations are performed in the spectral domain, with the
exception of the projection of R(8, v, t) onto the ocean function.
The procedure of transforming to the space domain, calculating the
projection, and then returning to the spectral domain, can be
performed extremely efficiently (the technique is common in
general circulation models of the Earth’s atmosphere; [e.g.,
Laprise, 1981]). The spherical harmonic coefficients are computed
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by first applying a Fast Fourier Transform to the longitudinal nodal
values along a fixed latitude circle, and then integrating, using
Gaussian quadrature, over colatitude. Resynthesizing a field from
the coefficients involves a simple summation over degree, for fixed
order, followed by an inverse Fourier transform. The number of
nodes used is, of course, dependent on the spherical harmonic
truncation level.

This technique represents a fundamentally different approach to
generaling gravitationally self-consistent solutions of the sea level
equation than that embodied in previous finite element models. It
avoids, for example, complicated spatial convolutions (see equation
(16)) and gridding schemes. Furthermore, it extends the possible
spherical harmonic truncation level well beyond the degree 30
range of the "full spectral” formalism introduced in section 3.1. In
section 4.2 we present results for calculations of present-day RSL
variations based upon truncation at spherical harmonic degree 128.
We must stress, however, that higher truncation levels are certainly
feasible.

3.3. Other Spectral Approaches

The full spectral and pseudospectral formalisms described above
yield gravitationally self-consistent solutions of the sea level
equation (13). The necessity of solving an integral equation can,
however, be avoided by applying certain approximations. As an
example, Nakiboglu et al. [1983] describe a technique which
assumes that the meltwater loads the oceans eustatically. Using this
approximation on the right-hand side of our equation (21) yields

EROAT A [W“’ .
ILm

4

ST, (P 10 + 0, SEW) ¥,

):T Z (P800 +p, (85 )E) B, 1, .0 H 1) Y, ,

A=o

(1)

where, following equation (11),

ADE ACKES
- o _ _p_;q.:_A_o<§ ET(p 1, +p,SEW)Y, >

—_<E TE( P80 +p, (850 )E) Blb,t,0)Y, >

A=o

(52)

Furthermore, the total and incremental eustatic ocean loads
(denoted by the supercript E) are given by (following equation
(49)

LT T L) T (o
53
{SS':‘}E:__ p; 4?1:(1 51 ( }

Since all parameters on the right-hand side of equation (51) are
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known, the solution of the equation, for the harmonics of the sea
level change S;, (which represent an approximation to the
gravitationally self-consistent harmonics S,,) is straightforward.
The approximation has, for example, been adopted by Nakada and
Lambeck [1987, 1989]; however, these authors generalized the time
dependence of the ice loading history by incorporating a linear
deglaciation history between each time interval (rather than an
instantaneous increment as described by equation (14)).

A second, even less accurate approximation, is the so-called
"eustatic approximation" [Wu and Peltier, 1983]. Once again, the
technique assumes that meltwater loads the ocean eustatically;
however, it also assumes that changes in sea level are only
produced by the radial displacement of the solid surface and
variations in the eustatic ocean bathymetry produced by the
deglaciation. In this case the governing equation is

Y 5.0, =(X., C.Y, [ﬂ»«
ILm

4

Y ET (o) +p, SE®)Y,, +
Im

> E P800+ p, (8S)E] B (Lt ) H(t -1 Y, ]

A=0

(54)
where
Ad (1) __ M)
g P.A,
(55)
E=- hIE

K —r: .
Bt =Y _t[1-exp(-st-1))].
k=1 8,

In section 4.2 we consider, in detail, RSL variations in the far field
of the Pleistocene ice sheets computed using the pseudo-spectral
formalism. Within this context the accuracy of the two
gravitationally self-consistent techniques described in this section
will also be assessed.

4. RESULTS

A solution of the sea level equation requires, as input, both the
radial visco-elastic structure of the planet and the history of the
surface ice load. In the analysis below we will assume, as in
previous studies [e.g., Wu and Peltier, 1983], that the last
glaciation phase of the current ice age was of sufficient duration
that a condition of isostatic equilibrium prevailed at the onset of
the deglaciation phase 18 kyrs before present (B.P.) on the "C
time scale. Some justification for this assumption was provided by
Wu and Peltier [1983]. Results to be described in a companion
paper (1.X. Mitrovica and W.R. Peltier, manuscript in preparation,
1991) indicate that the assumption is valid for the relatively recent
RSL changes with which we will be concemed in this study.

In recent years models of late Pleistocene deglaciation,
constructed using constraints imposed by steady state ice
mechanics and geological end moraine data [Peltier and Andrews,
1976], have been refined on the basis of their ability to predict
observed RSL changes [Wu and Peltier, 1983; Tushingham and
Peltier, 1991]. In our analysis the spherical harmonic coefficients
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of the ice load (deglaciation) increments, &8I}, (see equations
(14a) and (21)), will be computed using the ICE-3G model of
Tushingham and Peltier [1991], in which the deglaciation phase,
modelled with a 1-kyr discretization (which we adopt), is assumed
to have ended about 4 kyr B.P.

The Earth models employed in this study all have the elastic
structure of the seismic model PREM [Dziewonski and Anderson,
1981]. They also have a 120-km elastic lithosphere, isoviscous
upper and lower mantle regions, and an inviscid core. There is
general agreement from previous rebound studies [Haskell, 1936;
Peltier, 1974; Cathles, 1975] as well as from investigations of the
geoid signal due to convective circulation in the Earth’s mantle
[Forte and Peltier, 1987], that the upper mantle viscosity (Vyy,) is
very near 10” Pa s, and we therefore adopt this value. The
viscosity in the lower mantle region (v,,,) is, however, a point of
some contention, so we will consider a range of values extending
from the isoviscous mantle case (Vi = Vyy = 10% Pa s) to an
extreme value of 10 Pas.

As described in the introduction, the results outlined in this
section will be concerned, primarily, with the present-day rate of
RSL change. We have computed this rate, for a particular Earth
model, by solving for the sea level increment 83 over a very small
interval At in time (At = 10 yrs) straddling the present. We then
have

as| .
'aT =t

&, (56)
At

We note here that a useful, and successful, check on the
numerical schemes consisted of comparing results generated using
the two independent formalisms described in sections 3.1 and 3.2
at a consistent truncation level. We have also found that we were
able to accurately reproduce the global map of present-day RSL
change published by Peltier and Tushingham [1989, Fig. 3] (which
was computed using the finite element formulation mentioned in
section 2) by using the pseudospectral formulation up to degree
128. The validity and accuracy of this previous finite element
formulation is thus also confirmed.

4.1. Computing Low-Degree Sea Level Changes Using the
"Full Spectral” Formalism

The output of the formalisms outlined in section 3, for the
solution of the sea level equation, are the spherical harmonic
coefficients of the sea level increment at each time interval
(88%,). Combining these with the ice load increments &[5,
generates the total surface load (see equations (12) and (14)). The
degree £ and order m component of the total load will excite an
Earth response which is limited to the same degree and order, and
this suggests that the full spectral formalism might be a
particularly useful technique for determining the gravitationally
self-consistent low-degree signal of the Earth response. An obvious
example would be the low degree zonal harmonics in the
expansion of the present-day secular variation of the Earth’s geoid
(J, J, and J,), which represent an important data set in inferences
of mantle viscosity [Peltier, 1983, 1985; Mitrovica and Peltier,
1989].

An accurate determination of the harmonics J, (£ < 4) requires
that the truncation level Dy, used in the calculations (equations
(33)) is sufficiently high to ensure convergence of the computed
sea level harmonics in this low-degree range. To investigate this
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convergence, consider Figure 2 which shows the percentage error
in the computation of various zonal harmonics of the present-day
rate of sea level change as a function of the truncation level. One
should note, in this context, that the specified truncation leyel is
used in all previous time steps, not just the last. The Earth model
used in the computations has a factor of 4.5 jump in viscosity
across the boundary between the upper and lower mantle although
this is somewhat high according to analyses of the sea level record
[Tushingham and Peltier, 1991, also submitted manuscript,

The results shown indicate that the zonal harmonics for degrees
£ < 4 have essentially converged for truncation levels near 30.
Indeed, the error in the computation of these harmonics is less than
0.25% for Dyx = 30. The error in the non-zonal harmonics (not
shown), at the same degrees, is comparable. We have found that
for Dy,x = 30, the error does not exceed 5% in the degree range
€< 13 . At £ = 10, for example, it is only 2%. We can conclude
therefore that the "full spectral” formulation for the solution of the
sea level equation can be used to accurately compute the low-order
signal in the redistribution of ocean water since the onset of the
late Pleistocene deglaciation event. The application of the
technique to a gravitationally self-consistent calculation of I, for
£ < 4, will be described in a subsequent publication.

4.2. Pleistocene Deglaciation and the Present-Day Rate
of Sea Level Change: The Pseudospectral Approach

A global map of the present-day rate of sea level change,
computed using the pseudospectral formalism with truncation at
degree and order 128, and an Earth model with v;,, = 4.5 x 10%
Pa s (as in Figure 2), is shown in PLATE la. The map is not
projected onto the ocean function, and therefore it represents the
difference between the present-day rate of change of the ocean
equipotential surface (the geoid) and the Earth's solid surface.
Global maps of each of these contributing fields are shown in
Plates 1b and lec.

Let us consider, first, the present-day rate of displacement of the
Earth’s solid surface (Plate 1b). Regions once covered by ice
sheets (Canada, Greenland, Scandinavia, the Antarctic, etc.) are
now characterized by substantial rebound, and for the solution
shown in Plate 15 the peak uplift rate is 22 mm/yr near the center
of Hudson’s Bay (this is somewhat in excess of the observed rate
in this region). In contrast, the maximum subsidence occurs at the
periphery of the deglaciation centers, over the crest of the glacial
forebulge [e.g., Peltier, 1982]. Indeed, there are several regions on
the Earth’s surface where the computed subsidence of the
forebulge reaches 4mm/yr in Plate 15,

The late Pleistocene deglaciation event, as modelled by the
ICE-3G chronology [Tushingham and Peltier, 1991a], produced a
net eustatic sea level rise which exceeded 100m. The effect of this
ocean loading is evident in the far field of the Pleistocene ice
sheets (that is, beyond the glacial forebulge), where the solid
surface displacement is characterized by a weak subsidence in the
ocean basins (a response to the additional ocean mass), and a
comparably weak uplift of the continents. The uplift is a
consequence of the “levering" mechanism supported by the
subsidence. That is, in the far field, the continent bearing
lithosphere (which is not subjected to a surface load) is flexing
upwards due to the downward motion of the surrounding oceanic
regions and the transfer of material from the region below the
oceanic lithosphere to beneath the continents. The same process
has been modelled and discussed by Clark et al. [1978] and Peltier
et al. [1978], who were the first to recognize its global
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Fig. 2. The percentage error in the calculation of various zonal (m=0)
hammonics in the expansion of the present-day rate of sea level change, as
a function of the spherical harmonic truncation level, using the full spectral
approach outlined in section 3.1. As labelled, the profiles reflect results for
degrees 2, 3, 4 and 10. The percentage error is computed using (8S§ -
85})/8S} where the superscript ¢ denotes the computed value and A the
value generated using the pseudospectral formulation up to £ =128 (which
is assumed 1o be exact for these low degrees). The Earth model has vy =
4.5 x 10" Pa s (see section 4).

30

implications. Nakada and Lambeck [1989] have noted the impact
of this process in the coastal regions off Australia. Notice that,
consistent with the mechanism, the maximum subsidence rate in
the far field oceans occurs at the periphery of the continents.
Beyond this periphery the subsidence is less than 0.5 mm/yr, and
generally much smaller than this in the equatorial oceans.

The global map for the present-day rate of change in the
computed geoid (Plate 1¢) exhibits an uplift in previously glaciated
regions and a subsidence elsewhere. In the near field of the ancient
ice sheets (including the periphery) the amplitude of the change is
only a small fraction of the rate at which the solid surface is
deforming. As a consequence, the sea level change in these regions
is govemned, to a dominant degree, by the latter. This leads to a
fall in sea level roughly within the perimeter of the ice sheets and
a rise in sea level within the glacial forebulge (notice, given the
reversal in sign of the color map, the strong similarity between
Plate 1a and 15 in the near field).

The amplitude of the computed rate of change in the geoid and
solid surface is comparable only in the far field. Indeed, the far-
field ocean surface is seen to be subsiding, in Plate ¢, at a rate
near 0.5 mm/yr; which is larger than the rate of subsidence of the
ocean floor in this region. The net effect, evident in Plate 1q, is a
drop in sea level (ocean bathymetry). The fall in sea level over the
continents is even larger since the geoid subsidence is met,
simultaneously, with an uplift of the land.

We can conclude from these results that the time dependent
deformation of the solid surface is the dominant contributor to the
near-field present-day sea level changes due to glacial isostatic
adjustment. In contrast, the subsidence of the ocean surface (geoid)
in the far field is an important factor in the present-day sea level
variations in these regions; indeed, the phenomenon governs the
sign of the bathymetry change in the bulk of the equatorial ocean.
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While the physical cause of the solid surface adjustment is clear,
the origin of the computed fall in the geoid in the far field is not.
What is causing water to leave the equatorial ocean? Furthermore,
is the phenomenon a function of the Earth model used in the sea
level equation?

To address the latter question we show, in Plate 2, global maps
of the present-day rate of sea level change for three different Earth
models, distinguished by the value of lower mantle viscosity. We
consider in Plates 2a, 2b, and 2c the cases v, = 10* Pa s (an
isoviscous mantle), 102 Pa s, and 10® Pa s, respectively. It is
clear that even for the extreme range of Earth models considered
in Plate 2 the glacial isostatic adjustment process induces a
present-day fall in sea level over most of the surface of the
equatorial oceans.

The peak amplitude of the computed bathymetry fall in the far
field is largest for intermediate values of v, (consider, for
example, Plates 1a and 2b), and it diminishes appreciably when the
lower mantle viscosity of the Earth model is either reduced to the
upper mantle value (Plate 2a) or increased to very large values
(Plate 2c¢). The cause for this wend will be described below,
however it reflects a model dependent variation in the difference
between the rates of subsidence of the geoid and solid surface in
the far field. Indeed, in the case of Plates 2a and 2¢, the rate of
subsidence of the geoid is sufficiently slow in the far field that it
is, in fact, smaller than the rate of solid surface subsidence at the
perimeter of the continents. The result is a region of sea level rise
encircling these continents, a charactenistic evident in the solutions
of Peltier [1988] and Peltier and Tushingham [1989] (for models
with a lower mantle viscosity of 2 x 10*' Pa s).

The nature and variation of the present-day sea level change in
the far field is clearly intimately related to the adjustment of the
geoid in that region. As described in section 2, the geoid anomaly
is comprised of two terms. The first is the time and space
dependent position of the original sea level equipotential of the
unperturbed Earth, and the second is a term, independent of
geography, which ensures that mass is conserved (®(8, y, t)/g and
Ad(t)/g, respectively; see equation (2)). In the context of Plate 1¢
we have found that the present-day rate of change of the latter is
approximately -0.5 mm/yr, which is sufficient to account for the
sign of the sea level change over almost the entire equatorial ocean
(the only exception is the bathymetry change near the equatorial
Pacific ocean which has a computed value slightly higher than -0.5
mm/yr). The term AD(t)/g may therefore provide evidence as to
the physical cause of the computed present-day sea level fall in
this region, and it is shown, together with the contributions defined
in equation (11), in Figure 3.

The dashed curve in Figure 3a represents the eustatic sea level
variation (equation (11)) for the ICE-3G deglaciation chronology
during the last 18 kyr. The curve increases monotonically during
the deglaciation period (18 to 4 kyr B.P.); however, the most rapid
melting takes place between 14 and 8 kyrs B.P. In the last 4 kyr
(a period of no further melting) in the model the total eustatic sea
level change remains constant at approximately 110 m.

The three additional terms contributing to A®(t)/g (see equation
(11)) are shown in Figure 3b. As discussed in section 2,
perturbations in the position of the original sea level equipotential
surface are produced by the direct attraction of the (time
dependent) surface loads and by mass redistributions. The
dashed-dotted curve in Figure 3b represents an integrated (over the
ocean function) measure of the former (A®"(t)/g in equation (11)),
while the dashed curve is a similar measure of the latter
(A®"*(1)/g in equation (11)). Similarly, the dotted curve in Figure
3b represents the (negative of the) variation in the mean value of
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the solid surface displacement over the oceans (AD'(t)/g in
equation (11)). Not surprisingly, the general form of A®“(t)/g is
similar to the eustatic sea level variation. In contrast, the terms
AD*(1)/g and AD'(1)/g exhibit some important differences. In
particular, both show variations which persist beyond the
deglaciation phase: Indeed, the present-day variations in AG™®(t)/g
and A®"(t)/g in Figure 3 are approximately -0.1 mm/yr and -0.56
mm/yr, respectively. The difference between the two (0.46 mm/yr)
accounts for the present-day variation in A®(t)/g evident in Figure
3a and discussed above.

As defined in equation (11), the conservation of mass component
AD(t)/g (solid curve Figure 3a) is generated by combining the four
remaining curves in the figure. During the deglaciation episode, the
dominant contributor is the eustatic sea level variation; however,
in the last 4 kyr it is the terms A®"(t)/g and A®"*(1)/g, and in
particular the former. Recall, we have concluded that the present-
day variation in AD(t)/g is sufficient to account for the computed
fall in sea level in the far-field oceans. On the basis of Fig. 3 we
may further conclude that this fall is a consequence, primarily, of
changes in the shape of the planet’s solid surface in oceanic
regions.

The question still arises as o why the present-day isostatic
adjustment of the planet should cause water to migrate from the
far field oceans (as in Plates la and 2). Using the results of
Figure 3 we propose the following simple explanation. The onset
of the late Pleistocene deglaciation event marked the beginning of
the subsidence phase for the forebulge regions at the periphery of
the deglaciation centers (note the dark blue shades in Plate 1b). It
is clear from the color plates that the subsidence persists to the
present day and that a large percentage of the glacial forebulges
exist within oceanic regions. As a consequence, as the present-day
subsidence proceeds, water must inflow into such regions (from
both the far field, and the deglaciation centers now undergoing
uplift) in order to maintain hydrostatic equilibrium (essentially the
ocean mass adjusts to fill the region vacated by the forebulge).
This ocean mass redistribution acts to lower the ocean surface
or geoid and, once again, the result is a net present-day bathymetry
fall in the far field. We have chosen to term the phenomena (of
ocean mass flow away from the far field and toward the
forebulges) "equatorial ocean syphoning."

The rate of glacial isostatic adjustment over time is a function of
the viscoelastic structure of the Earth model, and thus so too must
be the strength, as a function of time, of the equatorial ocean
syphoning (notice that equatorial ocean syphoning will be presently
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active on any Earth model). To investigate this we have computed
A®"(t)/g for each of the Earth models used to generate Plates 1
and 2, and the results are shown in Figure 4a. Not surprisingly, the
curves indicate that the integrated subsidence of the solid surface
under the oceans since 18 kyr B.P. decreases monotonically as the
lower mantle viscosity of the Earth model is increased.

In the discussion below we will be concerned primarily with the
response during the last 4 kyr B.P., after the completion of the
ICE-3G deglaciation phase. In that way we avoid consideration of
the direct gravitational effect on the ocean system of the massive
redistribution of the surface load. In addition, the transfer of mass
(from ice sheets to ocean) produces a nonnegligible deformation
of the solid surface even in the far field, and hence within this
time period the variation in A®'(t)/g cannot, even approximately,
be equated with the strength of any equatorial ocean syphoning
which will be acting on the system. Within the last 4 kyr,
however, an approximate measure of the strength of the syphoning
process is given by the time derivative of A®"(1)/g ("approximate"
primarily because, even in this time period, some deformation of
the solid surface will be occurring in the far field). We have
computed this time derivative, and the results are shown in Figure
4b.

The form of the curves in the figure is extremely significant. The
characteristic relaxation time of the Earth model increases as the
lower mantle viscosity is increased. As a consequence, while the
strength of the syphoning at 4 kyr B.P. is relatively high for the
Earth model with v, = 10* Pa s (solid curve), the same model
will exhibit a weak present-day syphoning since it will have
experienced substantial recovery since the end of deglaciation and
will be comparatively close to isostatic equilibrium. At the
opposite extreme, models with very high lower-mantle viscosities
are characterized, by virtue of their very slow adjustment, by
relatively weak equatorial ocean syphoning at all stages during the
last 4 kyr. As a consequence, peak present day rates of equatorial
ocean syphoning are obtained for models with intermediate values
of v (see Figure 4b).

These considerations explain why, as described above, the
present day far field sea level fall is larger in Plates 1a and 2b
than it is in Plates 2a or 2¢ (and why the latter have regions of sea
level rise encircling the continents in the far field, while the former
do not). To investigate this further, we have computed the mean
rate of present-day sea level fall on the equator and the present-day
rate of change of A®"(t)/g (the right intercept of Figure 4b), as a
function of the lower mantle viscosity of the Earth model. The
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Fig. 3. (a) A®(1)/g (solid curve), as defined in equation (6), as a function of time (kiloyears before present) for the Earth model
described in section 4 (v;,, = 4.5 x 10? Pa s). Also shown are the four contributing terms, E(1), A® (t)/g, AG()/g and ADT(t)/g,

defined in equation (11) (see text).
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Plate 1. Global maps generated using the Earth model described in section 4, with v, = 4.5 x 10" Pa s, and the ICE-3G
deglaciation chronology of Tushingham and Peltier [1991a). The maps represent the present-day rates of change in the following
fields: (a) The sea level (not projected onto the ocean function), the position of the Earth’s (b) solid surface and (c) geoid.
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Plate 2. Global maps generated using the Earth model described in section 4 and the ICE-3G deglaciation chronology. The maps
represent the present-day rates of change in sea level for models with the following lower mantle viscosities (vy,): (@) 10* Pa

s, (b) 107 Pa s, and (c) 10” Pa s.
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0 L
4

TIME (kyrs B.P.)

Fig. 4. (a) AD"(1)/g, as defined in equation (11), as a function of time (kiloyears before present) for four different Earth models
distinguished by their lower mantle viscosity: v;,, = 10* Pa s (solid curve), 4.5 x 10” Pa s (dotted curve; as in Figure 3b), 102
Pa s (dashed curve), and 10% Pa s (dashed-dotted curve). All other features of the Earth model are described in section 4. (b) The
time derivative (denoted by a superscript dot) of the curves in Figure 4a, that is, A®T(1)/g, during the last 4 kyr (that is, subsequent
to the end of the ICE-3G model deglaciation phase; note that in this time period E(1)=0; sce Figure 3a).

results, shown in Figure 5, exhibit the predicted correlation. Of
course, while the present-day far field sea level fall is comparable
for models with vy = 10*' or 10” Pa s, the results in Figure 4
indicate that the response of such models will diverge drastically
at earlier times. This divergence will be apparent when we
compute RSL curves over the last 5 kyr for the various Earth
models (Figure 7).

The identification of the equatorial ocean syphoning mechanism
is of significance because, in the context of the glacial isostatic
adjustment process, it is the dominant cause of sea level variations
in ocean regions beyond the peripheral bulge of the Pleistocene ice
sheets during the last 4 kyr. The ecustatic sea level increase
between 18 and 4 kyr B.P. (Figure 3a) is, however, sufficient to
overwhelm any other effects (including syphening) which may be
active in this time interval. To illustrate this transition (for sea
level variations prior to and after 4 kyr B.P.) we have plotted, in
Figure 6, the computed RSL curve (solid curve) during the last 10
kyr at Malden Island in the equatorial Pacific Ocean. The curve
was generated using the pseudospectral formulation up to degree
128 (a truncation level of 64 produced the same results), and
therefore it represents the output of a gravitationally self-consistent
solution of the sea level equation. The Earth model used in the
calculation had a lower mantle viscosity of 4.5 x 10*' Pa s (as in
Plate 1 and Figure 3). Notice the monotonic rise in sea level prior
to 4 kyr B.P., followed by a steady fall in the postdeglaciation
phase which is able to reconcile the observational data set.

The age and elevation data shown in Figure 6 are taken from
an extensive global data base of RSL histories compiled by A.M.
Tushingham and W.R. Peltier (submitted manuscript, 1991). If
the observed fall in sea level at Malden Island during the last
3000 years is due to ocean syphoning, then other far-field sites
should exhibit similar trends over the same time interval. To
investigate this, we have culled from the A.M. Tushingham and
W.R. Peltier (submitted manuscript, 1991) data base all sites
which include data from the last 4000 years and which meet the
following criteria. First, they must be located in the equatorial
region bounded by the 30°N and 30°S lines of latitude. This will
ensure that the sites are situated outside the peripheral bulge of
the ice sheets regardless of the Earth model (see Plates 1 and 2).
Second, the sites must be well removed from the continental
margins in order to avoid the effects of continental flexure
described earlier. Of the 392 sites collected by A.M.

Tushingham and W.R. Peltier (submitted manuscript, 1991) only
18 (including Malden Island) satisfy these constraints, and the
data from each, over the last 5000 years, are shown (with error
bars) in Figurcs 84-8r. A map illustrating the location of the
sites, which are all in the Pacific Ocean, is provided in Figure
7.

The data from 14 of the 18 sites in Figure 8 reflect a net sea
level fall in the last 3000 years. Only three sites, E. Caroline
Islands, Western Samoa, and Oahu (Figures 84, 8j, and 8g,
respectively, which are denoted by the plus symbol in Figure 7),
have experienced a sea level rise over the same time period, while
the bathymetry change at a final site, Cook Island (Figure 8k), is
indeterminate. The sea level rise at Oahu is probably due to the
cooling and contraction (that is, subsidence) of the li thosphere as
it migrates from the hot spot now positioned under Hawaii.
Furthermore, the E. Caroline Islands are located on the arc side of
the Mariana trench, while Western Samoa is at the northernmost
tip of the Tonga trench. One would therefore expect a contribution
to the observed sea level variation, at these sites, from the vertical
deflection of the lithosphere associated with any recent transient
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Fig. 5. The present-day (1=t) value of A®'(1)/g (dashed curve; as in the
right intercept of the curves in Figure 4b), and the mean (denoted by an
overbar) present-day rate of sea level change in ocean regions on the
equator (dotied curve), § (8 = 90°, y, ), as a function of the lower
mantle viscosity (vy,,) of the Earth model used in the solution of the sea
level equation.



MITROVICA AND PELTIER: POSTGLACIAL GEOID SUBSIDENCE

RELATIVE SEA LEVEL (m)

1
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AGE (kyrs)

Fig. 6. The predicted RSL variation (solid curve) during the last 10 kyr at
Malden Island in the equatorial Pacific Ocean (site o on Figure 7),
computed using the pseudospectral approach outlined in section 3.2. The
two remaining curves (dotted, dashed) represent solutions to the sea level
variation computed using the eustatic approximation (equation (54)), and
they are described in detail in the text. All calculations were performed
using the Earth model described in Figure 3. The observational data set (5
beaches up to age 2.9 kyr), with error bars (the error in the ages is about
+200 years), is also shown in the figure (see also Figure 80).

-60
10

dynamics of the adjacent subduction zones [Mitrovica et al., 1989].

Many of the sites in Figure 7 are part of, or adjacent to,
seamount chains and hot spot traces. As a consequence they may
be susceptible to thermal isostatic or tectonic effects associated
with these regions. Nevertheless, the results of Figure 8 indicate
that the sea level fall at Malden Island, described in the context of
Figure 6 (see also Figure 80), is part of a much larger trend in the
far field of the Pleistocene ice sheets during the last few thousand
years. It is clear that ocean syphoning is playing a significant role
in the bathymetry variations in this region during this time period,
and it is logical to ask whether the observed sea level fall might
be useful in constraining mantle theology. To this end, we have

20.067

predicted the RSL variations at all 18 sites (using the
pseudo-spectral technique up to degree 128; once again
convergence was established by degree 64) for four different Earth
models distinguished on the basis of their lower mantle viscosity
(ranging from the isoviscous mantle case, v,y = 10% Pas, to vy
=10® Pa s). The results are shown superimposed on the
observations in Figure 8.

The predicted RSL curves in Figure 8 illustrate the time
dependent nature of the ocean syphoning mechanism described
above. As discussed, the present-day strength of the syphoning is
largest for Earth models with intermediate lower mantle viscosity
(see Figure 5; notice the present-day slope of the dashed and
dotted curve in Figure 8). The Earth model with a very stiff lower
mantle viscosity (v, = 10” Pa s, dashed-dotted curve) exhibits a
relatively weak syphoning throughout the 4000- year
postdeglaciation period. Again, this is a reflection of the slow
isostatic adjustment which characterizes the model (see Figure 4b).
The Earth model with an isoviscous (10 Pa s) mantle also
exhibits a weak present-day syphoning because it will have more
nearly reached (by today) a state of isostatic equilibrium. At the
beginning of the postdeglaciation phase, however, the predicted fall
in sea level for this model is much more rapid (notice, in accord
with Figure 4b, the large slope in the solid curves of Figure 8
between 4 and 2 kyrs B.P.) since the isostatic adjustment of the
peripheral bulges (which drives the syphoning) would not yet have

slowed.
As a consequence of wave and tidal action, the elevation error

in the observed data set has a strict minimum value of +1m
[A.M. Tushingham and W.R. Peltier (submitted manuscript,
1991)]. It is clear from Figure 8 that the sensitivity of the
predictions, to the value of vy, while explicable in terms of the
theory of ocean syphoning described above, is not large
compared to this error, even with a 4 order of magnitude change
in vy,. This suggests that data from these far-field sites may not
yield particularly reliable estimates of mantle viscosity.
Inferences of mantle rheology based upon these far-field data are
also complicated by the fact that the space-time geometry of the
Antarctic ice sheet is not particularly well constrained [Denton and
Hughes, 1981]. Indeed, it is conceivable that there may have been
nonnegligible changes in the last 4000 years [Adamson and

Site Location Map
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Fig. 7. A map showing the location of the 18 sites included in TFigure 8. The labels a through r refer to the site in the analogous

frame of Figure 8. The plus symbol distinguishes the three sites (
level rise in the last 3000 years (see text). The map is bounde
130"W lines of longitude.

d, j, and q) where the observational data set indicates a net sea
d by the 30'N and 30°S lines of latitude, and the 120°E and
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Fig. 8. The observed and predicted RSL variation, during the last 5000 years, at the 18 small Pacific Ocean sites shown
on Figure 7. The age and elevation data, together with the error bars, are taken from the data base compiled by A.M.
Tushingham and W.R. Peltier (submitted manuscript, 1991) (the number on each frame, beginning at 664 for Palau
Island, is the reference number within that data base). The four predicted RSL curves in each frame have been computed
using the pseudospectral formalism with a spherical harmonic truncation level of 128, and an Earth model with a lower
mantle viscosity of 10*' Pa s (solid curve), 4.5 x 10" Pa s (dashed curve), 107 Pa s (dotted curve), and 10® Pa s (dashed
dotted curve). All other features of the Earth model are described in section 4.

Pickard, 1986]. In the ICE-3G deglaciation chronology used to
compute the RSL curves in Figure 8, the last 4000 years have been
modelled as an interglacial period. A small amount of meltwater
from the Antarctic ice sheet during this time interval would act to
reduce the sea level fall (due to syphoning) in all the computed
curves in Figure 8. Given the weak sensitivity of the predicted
curves 1o v, this uncertainty in the recent ice-ocean mass transfer
is potentially an important source of error in the inference of
rtheology.

The sea level fall during the last 3000 years evident in the
observational data set does, in any case, place an upper bound on
any recent melting of the Antarctic ice sheet. A eustatic sea level
rise of more than 1 to 2 m over this time interval would alter the
predicted RSL curves (that is, reduce the dominance of ocean
syphoning) in a manner such that isostatic adjustment predictions
would be incompatible with the observational data set. Nakada and
Lambeck [1988, 1989] have argued for minor Late Holocene
Antarctic melting on the basis of their analysis of far-field RSL
data (primarily from Australian and New Zealand coastal sites, but
also from a few small Pacific island sites). Peltier [1986] has

demonstrated, however, that such melting has a RSL signature
which is identical to that of an increase in lithospheric thickness
so that it is not possible to disentangle these effects
unambiguously.

In section 3.3 we outlined two spectral formalisms based upon
certain approximations to the sea level equation. To complete this
section we will consider the accuracy of the formalisms in
predicting the far-field sea level variations described above. As an
example, the dashed curve in Figure 6 represents the sea level
variation computed using the "eustatic approximation” (equations
(54)-(55)) described by Wu and Peltier [1983]. Similarly, the
dotted curve was generated using the pscudospectral formalism up
to 4 kyr B.P. and the eustatic approximation in the subsequent time
interval. Recall, the approximate solution assumes that changes in
sea level are only produced by the radial displacement of the solid
surface and variations in the eustatic ocean bathymetry produced
by the deglaciation. Clearly, error has been introduced at all stages
in the response. In particular, in the last 4 kyr B.P. the "eustatic
approximation" predicts a slightly rising sea level since the ocean
basins are weakly subsiding under the weight of the meltwater (as
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in Plate 1b). The term A®'(t)/g in equation (55), since it does not
include even an approximation to A®™(t)/g (equation (11)), cannot,
as a consequence, predict the effects of equatorial ocean
syphoning. In fact Wu and Peltier did not advocate use of this
approximation except in the near field of the ice sheets where it is
in fact adequate for some purposes.

In Figure 9 we present RSL curves computed for a subset of far-
field sites included in Figures 7 and 8. The solid curve in the
figure was generated using the pseudospectral approach and the
same Earth model used in Plate 1 (v = 4.5 x 10? Pa s). The
dashed curve in Figure 9 shows the results computed using the
formulation based on the approximation of Nakiboglu et al. [1983]
and Nakada and Lambeck [1987] (equations (51) to (53)), in which
the glacial meltwater is assumed to load the ocean eustatically.
Clearly, the latter is a more accurate approach than the "eustatic
approximation" when considering far-field RSL variations.
Nevertheless, the results in Figure 9 suggest that the error incurred
using the Nakiboglu et al. [1983] approximation, while dependent
on the geographic location of the site, can reach an order of 20%
of the true value (which we assume is essentially the same as the
pseudospectral solution). Significantly, this error is not small
compared to the sensitivity of the computations to even large
variations in Earth rheology (Figure 8).

This approximate formalism can nevertheless be modified in
order to achieve an accuracy comparable to that obtained using the
full pseudospectral approach. To see this consider equation (51),
where the coefficients S, (on the left-hand side) represent the

Time (kyrs B.P)

+ + -5 + + + +

(continued)

spherical harmonic coefficients of the sea level variation for the
approximation of a eustatic ocean loading. In a manner entirely
analogous to the derivation of the pseudospectral approach, the
coefficients can be "corrected” by solving equation (51) a second
time with the following substitutions:

Se.(t) replaced by S', (t)

{88, }: replaced by (S', (1) -S',.(t,_)}. (57
The result is an improved prediction of the true sea level variation.
In practice, as in the pseudospectral approach, the procedure can
be iteratively repeated to achieve any desired accuracy. As an
example, the dash-dotted curve in Figure 9 represents the results
for the case of a single correction (equation (57)). In this case the
relative error has been reduced to less than 5% with respect to the
fully converged pseudospectral solution (§ < 10™ in equation (50);
errors of less than 1% are achieved by applying a second
correction).’

5. CONCLUSIONS

As discussed in the introduction, RSL changes during the last 18
kyr have, as a manifestation of glacial isostatic adjustment, played
a significant role in a variety of geophysical phenomena. In this
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Fig. 9. The predicted RSL variation, during the last 5000 years, at four Pacific Ocean island sites. The solid curve is computed
using the pseudospectral approach. The dashed curve is computed using the Nakiboglu et al. [1983] approximation which assumes
that meltwater loads the ocean eustatically (equations (51)-(53)). The dash-dotted curve is computed by "correcting” the dashed
curve in the manner described with respect to equation (57). All calculations used an Earth model with the features deseribed in
section 4 with v, = 4.5 x 10% Pa s and a spherical harmonic truncation level of 128.

respect, the results of the last section indicate that an accurate
solution to the equation which governs RSL variations is important
in accurately modelling all of the essential features of ocean
adjustment evident in the observational data set.

We have, in this context, presented two new techniques for
obtaining a gravitationally self-consistent solution of the sea level
equation. The "full spectral" formalism (section 3.1) has been
shown to be capable of very accurately determining the low degree
(2 < 10) signal in ocean water redistribution. As a consequence,
it will prove especially useful in the gravitationally self-consistent
analysis of present-day secular variations in the low degree zonal
harmonics of the Earth’s geoid (Peltier, 1983, 1985; Mitrovica and
Peltier, 1989]. An accurate prediction of RSL variations at all
points on the Earth’s surface requires a much higher truncation
level, and this is possible using the pseudospectral formalism
outlined in section 3.2. Indeed, while the global maps shown in
Plates 1 and 2 were computed using a truncation level of 128, an
extension of the degree range to 256 (or higher) is feasible.

Using the pseudospectral formalism we have been able to outline
a physical theory which explains in detail the present-day global
pattern of sea level variations due to glacial isostatic adjustment.
In particular, we have identified a mechanism, which we term
"equatorial ocean syphoning,” that acts to draw water away from
the equatorial regions in the far field of the Pleistocene ice sheets.
The mechanism is driven by the subsidence of those portions of
the glacial forebulges which exist over oceanic regions. As
subsidence proceeds, water is forced to inflow into the peripheral
regions (from the far field, and near-field regions undergoing
uplift) in order that the oceans maintain hydrostatic equilibrium.
The net effect is a lowering of the geoid, or ocean surface. The

mechanism dominates the RSL variation in ocean regions in the far
field of the ice sheets (that is, beyond the peripheral bulge) during
periods, such as the last 4 kyr, when the volume of the ice sheets
does not change significantly.

It is important to note that equatorial ocean syphoning has been
active over the entire far field of the ice sheets, both in the ocean
regions away from the continental margins and along such
margins. The recent (that is, over the last 3 to 4 kyr) RSL fall
evident at small Pacific island sites, such as those shown in Figure
7, and discussed (without explanation) by various authors [e.g.,
Clark et al. 1978; Peltier, 1986, Peltier and Tushingham 1989;
Nakada and Lambeck, 1989], is due solely to the syphoning
process (with some contamination possible from tectonic processes
or minor Late Holocene melting of polar ice sheets or small
glaciers). Over the same time period the RSL variation at
continental margin sites in the far field is due both to the
syphoning mechanism and the continental "levering" process
discussed in section 4.2. The contribution of the latter, both in
terms of amplitude and sign, will be dependent on the location of
the site with respect to the local tilt axis (see Plate 15).

Tide gauge records over the last century indicate the action of an
ongoing globally averaged rate of sea level rise of 1 to 2 mm/yr
[Peltier and Tushingham, 1989], which has been partly attributed
to the melting of land-based ice sheets and small glaciers [Meier,
1984]. Apparently, this melting is sufficient to have overcome the
far-field sea level fall due to syphoning in the same time period
(though not on the longer time scale of the last 4000 years; see
Figure 8). Nevertheless, it is clear that the ocean syphoning
phenomenon cannot be ignored (we have computed present-day
rates up to -0.70 mm/yr of sea level change in the far field) when
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considering the contributions to the present-day change of global
sea level, and, ultimately, their physical origin. Indeed, in the
analyses of the lide gauge data presented by Peltier and
Tushingham [1989, 1991], correction of these data for this and
other characteristic features of the global process of postglacial
rebound has been shown to significantly reduce the scatter in the
secular rates of change that these data reveal.
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