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ABSTRACT

Five daily, gridded Northern Hemisphere snow water eqaiva(SWE) datasets are analyzed over the
1981-2010 period in order to quantify the spatial and temmmnsistency of satellite retrievals, land surface
assimilation systems, physical snow models, and rearaly¥gile the climatologies of total Northern Hemi-
sphere snow water mass (SWM) vary among the datasets by disaw0%, their interannual variability and
daily anomalies are comparable, showing moderate to gaogdeal correlations (between 0.60and 0.85)
on both interannual and intraseasonal time scales. Wimierrends of total Northern Hemisphere SWM
are consistently negative over the 1981-2010 period anfunfie datasets but vary in strength by a factor
of two to three. Examining spatial patterns of SWE indicdled the datasets are most consistent with one
another over boreal forest regions compared to Arctic apitha@lregions. Additionally, the datasets derived
using relatively recent reanalyses are strongly corrélat¢h one another and show better correlations with
the satellite product (GlobSnow) than do those using oleanalyses. Finally, a comparison of eight reanal-
ysis datasets over the 2001-2010 period shows that lanacsunhodel differences control the majority of
spread in the climatological value of SWM, while meteoradadjforcing differences control the majority of
the spread in temporal correlations of SWM anomalies.

1. Introduction Derksen and Brown 20)2s well as improved documen-
The seasonal cycle of terrestrial snow cover and sn t\iavtion and gpderstanding of systematic differences and in-
mass has a notable influence on the Northern He’%ggmogenmuesﬂrown and Derksen 2013Mudryk et al.
sphere energy budget, water balance and geochemical 9-14)', ) L , .
cles. Snow water equivalent (SWE) is expected to r_e-A similar quantlta'qve und_erstanqlmg of uncertainties
spond in a complex way to projected temperature arfd the Northern Hemlspher_e is lacking _for SW_E datasets
precipitation changes with the magnitude and sign gpart from some more limited comparisons cited beIovy.
the response varying with climate regime and elevatiol address this gap, we compare an ensemble of daily,
(Brown and Mote 200}) Verification of such responses |ngr|dded datasets in order to fu”y characterize inter-skita
climate models and the initialization of snow in seasongPread and produce a multi-dataset mean. Out intent is to
to decadal prediction systems requires a gridded, obsBtake available the mean and spread of the SWE datasets
vational SWE dataset with well-characterized uncertaingnalyzed here on the National Center for Atmospheric Re-
(De Lannoy et al. 2010 For snow cover extent, intercom-search Climate Data Guide portal. All of the datasets in-
parison of existing data has led to estimation of unceclude observations (e.g. satellite measurements, oltberve
tainties in SCE anomalies and trendd@wn et al. 2010 inputs to reanalysis) as at least a component of the data
generation, but otherwise draw from a variety of sources
including remote sensing, station data, land surface as-
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GlobSnow (version 2) analysis, combining satellite-basethtasets is necessary to understand uncertainties and in-
passive microwave retrievals and ground-based weatlensistencies within current SWE datasets. In turn, this
station data Takala etal. 2011 (2) the Global Land understanding of uncertainty can enhance the use of ob-
Data Assimilation System Version 2 (GLDAS-2) producservational snow analyses. For instance, dataset spread
(Rodell et al. 200% (3) the European Centre for Medium-can inform the assignment of uncertainty to observations
Range Forecasts Interim Land Reanalysis (ERA-I-Landecessary for land surface data assimilation in numeri-
which uses a simple snow schenBalsamo et al. 2093 cal weather prediction and seasonal forecast applications
(4) the Modern Era Retrospective Analysis for Researdf®rsolini et al. 2013De Lannoy et al. 201;,0Koster et al.
and Applications (MERRA) which uses an intermediat@01Q Jeong et al. 201 Drewitt et al. 2012 Considera-
complexity snow scheméR{enecker et al. 20)1and, (5) tion of spread also reduces the sensitivity of climate model
SWE from the Crocus snow scheme, a detailed physivaluation to the selection of a single dataset for evalua-
cal snowpack model driven by meteorology from ERAtion. This becomes an important issue when disagreement
Interim Brun et al. 2013 among data sets is large enough to affect the significance
Evaluations of the above datasets or of the land surfacESWE biases depending on the choice of observational
models and snow schemes used to produce them have béata.
conducted at specific locations (e.§Vang et al. 2010 In Section2 we provide details of the SWE datasets and
Dutra et al. 2012Brun et al. 1992 Langlois et al. 2009 how they are combined into a multi-dataset mean. Sev-
Stieglitz et al. 200}, however, such local validations doeral metrics are used to compare individual datasets with
not necessarily represent the datasets’ hemisphere-widefie another as well as the multi-dataset average in Section
delity. Indeed, for coarsely gridded datasets such as the8e Section4 contains a summary and discussion of key
a meaningful hemisphere-scale evaluation with grouridsults.
measurements is not a trivial undertaking. Single point
climate station or snow survey measurements are inappg-Data and Methods
priate for validation of coarse grid cell SWE datasets, and
there are insufficienin situ SWE observations available Datasets
at high enough spatial resolution to develop reliable grid- The SWE datasets used in this study are chosen based
dedin situ SWE estimates for continental-scale validatioron two main criteria: complete Northern Hemisphere spa-
Surface-based validation in alpine areas, whose gradietts coverage (with the exception of an alpine mask ap-
in elevation and associated snow properties fall well beloglied to GlobSnow) and continuous availability through
the grid scale for current hemispheric scale products, atee satellite era (we use 1981-2010 as our analysis pe-
particularly challenging. Efforts to address such scalingod). We also require relatively homogenous SWE time
challenges are ongoing, but are outside the scope of tBisries for the entire analysis period, which we diagnose
study. from trends in the time series of global snow mass (see
Instead, the objective of this analysis is to exploit theubsec. 2¢). The component datasets analyzed in this
use of multiple datasets to robustly characterize the spstudy are described below and summarized in Table
tial and temporal agreement in SWE climatologies and The GlobSnow (version 2) productdkala et al. 201,1
interannual anomalies at the hemispheric scale. Whikavw.globsnow.info) is the only satellite-based product in
the climate modeling community has long recognized theur analysis; however, it also uses ground-based weather
strength in using output from a large number of climatstation data in the SWE retrieval. Estimates of snow grain
models, such an ensemble-based approach has beendessare first derived for grid cells containing weather sta-
readily adopted by the observational community. Dat#on snow depth measurements by optimizing agreement
assessments and intercomparisons have typically focussdween microwave snow model simulations and observed
on identifying the best product. This approach can praatellite passive microwave brightness temperatures at 19
duce the potentially misleading impression that a sirand 37 GHz. These local estimates of grain size are inter-
gle dataset is capable of characterizing the observatiopallated via kriging across the Northern Hemisphere, and
truth for all regions and seasons. In reality, variablassed in a second round of emission model simulations for
like SWE are particularly challenging to characterize witkvhich grain size is fixed and SWE is optimized. Reso-
coarse resolution gridded datasets due to significant suibiion of the product is 25 km. GlobSnow retrievals over
grid heterogeneity in horizontal (i.e. snow depth) and vecomplex terrain defined in subsecti®b) are masked from
tical (i.e. snow stratigraphy) properties. Recent intethe standard product due to well known uncertainties re-
comparisons limited only to snow modelRUutter et al. lated to sub-grid heterogeneity in snow properties and mi-
2009 reinforce this perspective, demonstrating that mostowave signatureséng et al. 201
models are good at simulating certain aspects of ob-ERA-Interim-Land is a reanalysis product
served snow conditions, but less good at simulating otfBalsamo et al. 20)3that diagnoses SWE using the
ers. Therefore, we argue that the analysis of multipldydrology Tiled ECMWF Scheme for surface Exchanges
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Dataset Abbreviation ~ Snow Scheme Land Model  Forcing Data Rolution Reference
GlobSnow GS satellite passive microwaven-situ 25 km Takala et al(2011)
ERA-I-Land E simple HTESSEL ERA-Interim  3/4°x 3/4  Balsamo et al(2013
MERRA M intermediate Catchment MERRA 1/22x 2/3  Rienecker et al(2011)
Crocus C complex ISBA ERA-Interim °1x 1° Brun et al.(2013
GLDAS-2 G2 simple Noah 3.3 Princeton Met. °%1° Rodell et al.(2004)
GLDAS-1* Gln simple Noah 2.7 GDAS+CMAP  °k 1° Rodell et al.(2004)

G1im simple Mosaic

Glv intermediate VIC

Glc intermediate CLM
Can. Met. Centre CMC simple +in sitl? GEM 35km Bransneti{(1999
MERRA-Land ML intermediate Catchment MERRA °k1° Reichle et al(2011)

TaBLE 1: Summary of products referred to in this study. The first flatasets are used in developing the multi-dataset
mean over the 1981-2010 period. The remaining dataset&€ohaiith «) are established SWE datasets that meet the
NH domain criteria but which contain temporal discontifestas analyzed in Sectidt that compromise their use in
the multi-dataset mean. The four GLDAS-1 datasets areldaifar analysis over the restricted, 2001-2010 period (see
Sec.30).

1 GlobSnow is based on combined information from satellitespa microwave retrievals armisitu observations from
weather stations. See text for details.

2 CMC computes snow depths based on combined information iincsitu observations and a simple snow scheme,
driven by temperature and precipitation from the GlobaliEmmental Multiscale Model (GEM). Depths are converted
to SWE using climatological snow density information.

over Land (HTESSELBalsamo et al. 20Q9driven by (CPCU) precipitation dataset. The canonical reference for
meteorological forcing from the ERA-Interim atmo-the MERRA-Land product iReichle et al(2011); how-
spheric reanalysis. The snow scheme used is a simpleer, the current working product differs in several ways
single-layer scheme for dry snow (no liquid water corfrom the preliminary version described therein, including
tent). Snow density and albedo changes follow closely the choice of precipitation forcing whidReichle et al.
the formulation proposed bRouville et al.(1995. The (2011 list as the Global Precipitation Climatology Project
precipitation values used to force the land model af&PCU) dataset. Henceforth, unless explicitly referred to
corrected using the Global Precipitation Climatologas MERRA-Land, all references to MERRA data refer to
Product version 2.1. Product resolution j&3x 3/4°. the standar@Rienecker et al(2011) product.

MERRA (Rienecker et al. 2011) is a National Aero- The Crocus SWE dataset is from the Interactions be-
nautics and Space Administration (NASA) atmospherigveen Soil Biosphere-Atmosphere (ISBA) land surface
reanalysis product generated with version 5.2.0 of thmodel driven by ERA-Interim meteorology. The Crocus
Goddard Earth Observing System (GEOS-5) Atmosphesoow schemeRrun et al. 2013is embedded in ISBA in
General Circulation Model and Atmospheric Data Assinplace of the usual snow scheme. Crocus is a detailed snow-
ilation System (ADAS). SWE is diagnosed from a hydropack model with multiple historical snow layers possible,
logical catchment-based land surface model (called Cataach representing a separate snowfall event. Each layer
ment, Koster et al. 2000). Catchment uses an intermedi-described by the thickness, temperature, dry density,
ate complexity snow scheme with up to three snow layiquid water content and grain type (dendricity, spericity
ers describing snow accumulation, melting, refreezing asize, and age). Resolution of the datais<11°.
compaction in response to surface meteorological condi-GLDAS version 2 Rodell et al. 200Jlis another NASA
tions (Stieglitz et al. 2001). Product resolution i21x product that estimates SWE based on the National Cen-
2/3°. In section2c we also analyze the related prodters for Environmental Prediction, Oregon State Univer-
uct MERRA-Land. This second product is produced bgity, Air Force, and Hydrologic Research Lab (Noah) land
re-running only the land surface component of MERRAurface model version 3.fen et al. 1996Koren et al.
forced by atmospheric data from the standard MERRA999 constrained by assimilated observations and land
product except for precipitation which is forced by theurface parameters. This version is forced using the
gauge-based National Oceanic and Atmospheric AdmiRfinceton meteorological forcing datas&hgffield et al.
stration’s (NOAA) Climate Prediction Center “Unified” 2006. We also use four different GLDAS version 1 prod-
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ucts that have been forced using the Global Data Assimiliéeld consisting only of non-alpine SWE; the difference
tion System (GDAS) with precipitation adjustments fronbetween the two fields represents alpine only SWE. Sepa-
the Climate Prediction Centers Merged Analysis of Preating the alpine and non-alpine SWE in this simple man-
cipitation (CMAP). Because of changes in the forcing dataer is equivalent to evenly partitioning SWE based on the
in GLDAS version 1 between 1979 to 2001, the productsroportion of a given land type over grid cells which are
are unsuitable for analysis over the full 1981-2010 pexot 100% alpine or 100% non-alpine. Separating alpine
riod. However there are no changes to the forcing mend non-alpine SWE was necessary firstly because the
teorology after 2001, and we analyze the products ovelpine mask was applied to GlobSnow, but also in order to
the 2001-2010 period in Secti@t. The four GLDAS-1 isolate the relative uncertainty/spread in the dataseds ov
products each use different land surface models to diagpmplex terrain (which poses unique challenges due to
nose SWE: the Variable Infiltration Capacity (VIC) landopographic variability) compared to non-alpine regions.
surface modell(iang et al. 199% the Community Land Because of the alpine mask applied to GlobSnow, there is
Model (CLM) version 2.0 Bonan et al. 2002 the Mo- only non-alpine SWE available for this product.

saic land surface modek¢ster and Suarez 1994ndthe ~ We construct the dataset mean) rom the first five
Noah land surface model version 2.7. The correspondifigtasets listed in Table 1 by averaging the datasets avail-
snow schemes implemented in these models range fr@®ple over a given grid cell accounting for land type as fol-
simple single layer schemes in the Noah and Mosaic md@ws:

els to intermediate complexity schemes in CLM and VIC. 1

. in CL o 1 1 |
Resolution of all GLDAS products used i % 1°. h= Ni GShI + N hes+ N(N—T) i%gh. f, (D
b. Methods whereh; represents the SWE value for a particular prod-

For each dataset we acquired daily SWE at the natiV&,t at the grid cellf is the alpine fraction of the grid cell,
resolution for the 1981-2010 period. Between 1981 afy IS the total number of data products, amgk refers to
1987, GlobSnow is only available approximately evergpe_GlobSnow product. This procedure reduces to an un-
second day with occasional gaps of longer duration. \Weighted average of four products (all but GlobSnow) over
linearly interpolated any temporal gaps in the data usir'?%lcuy alpine grid cells and an unweighted average of all

the two nearest dates with available SWE, assuming SWE Products over strictly non-alpine cells.
is uniformly zero between June 30 and September 7. We also perform a time series analysis over three land
Each dataset was interpolated to a regularxilc Masses: the entire Northern Hemisphere land mass (re-

longitude-latitude grid. Before interpolating we excldde féed to as NH), the North American continent (NA), and

snow from land ice/glaciers and large lakes based on t Eura5|an_ continent (EV). we e_xclude Greenland from
Il three definitions. Where possible we further decom-

MERRA land fraction mask, which specifies the fractiondf . . .
area occupied by land ice or lakes in a given grid cell Weose the time series resulting from each of the land masses
upscaled the MERRA land fraction mask to the native re lto three mutually exclusive land-types: mid-latitudes

olution of the other datasets and removed snow from a on-alp_ine land regions below _60N)’ Arctic (nqn-alpine
grid cell containing a nonzero fraction of land ice. Sno nd regions above 60N) and alpine. We determine the to-

over lakes in MERRA was removed in proportion to théaI snow water mass (SWM) by summing the equivalent

percentage of the grid cell area occupied by lakes. THglume of snow water per grid cell over the appropriate

remaining datasets already mask snow over large Iak% ,atl'ﬁla (\j/\(/);':rmvfllgduggr:xggéngati? T;Sesslésr;gg ttgi::gﬂlig
which we considered sufficient for our purposes. P ' y

In order to treat alpine and non-alpine regions sep limatologies, anomalies, standard deviations and linear

- g - trends. Henceforce, we reserve the use of SWM to de-
rately, we also upscaled the 25km-resolution binary alpi eribe SWE which has been spatially aggregated over a

mask applied in the GlobSnow data processing chain : . ' . .
the I grid. Topographic information for this mask wagd'Ven region _to fqrm a t|m¢ series. When discussing the
derived from ETOPOS5 (National Geophysical Data, 1988<)oat|ally varying field we will use the term SWE.

data which contains global elevation information at a res-
olution of 5 arc minutes, an appropriate resolution give%‘
the 25-km scale of the GlobSnow product. Grid cells are For the inclusion of a reanalysis-based dataset in this
considered mountainous if the standard deviation of tlk®mparison over the 1981-2010 period, we require a rel-
elevation within is larger than 200m. Once interpolated tatively homogenous time series of NH SWM. An ac-
the native resolution of the remaining SWE datasets, tleeptable level of homogeneity is empirically diagnosed
mask represents the fraction of a given grid cell which isy comparing the sign and magnitude of trends of NH
of non-alpine land type. Multiplying the regridded SWESWM. On this basis we reject three established datasets
data by the fractional alpine mask provides a second SWHMERRA-Land, CMC and GLDAS-1) for which we find

Diagnosis of temporal discontinuities
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mogeneities in global SWM, we show a time series of NH
SWM Trends SWM for MERRA-Land in Figure2a. Except for the first
T T T T e T two snow seasons (which have exceedingly large positive
’ ' anomalies compared to the rest of the time series), anoma-
lies are almost exclusively negative before 1998 with a
negative trend, and positive after 1999 with a weak, pos-
itive trend. Examining separate time series for EU and
NA (not shown) shows some covariability (12%) but that
Eurasian variability dominates the total (64%) compared
to NA (12%). Figure2b shows a spatial map of the differ-
ence in climatologies between 1983-1998 and 1999-2010.
The latter period has additional SWE over most of Eura-
sia. Comparing the 1981-1982 average to the 1983-2010
climatology also shows additional SWE uniformly across
Eurasia (not shown). Further analysis indicates the ad-
ditional SWE is a result of discontinuities present in the
precipitation data used to force the MERRA-Land model.
L L Similar evidence of temporal discontinuities can be found
in the other two datasets with spurious trends. In the case
ONDJFMAMJ of CMC, changes in spatial resolution of the precipitation
cing that was used to drive the analysis (specifically,
reased resolution after 2006) result in a noticeable dis
ontinuity in SWM anomalies at that time (not shown).

[x 10"° kg dec™]

'O.G-M 1 1 |\-|" 1 1

FIG. 1: Trends in NH SWM for the five principal datasetgOr
over 1981-2010 (colors as marked). The average tre
of the four reanalysis-derived datasets over alpine rexgyio ; 0 . )

has been added )t/o the trend of the GIobSnovE)/ proci?ct He d_|scqnt|nU|ty produces th_e positive trgnd n SWM
order to compare trend magnitudes. Also shown are trengfSn IN _F|gureL because the higher _resolutlon precipita-
for CMC (1999-2010, dotted), GLDAS(Noah) version fion forcmg better resol\_/es Qeep alpine snow. In GLDAS
(1981-2010, dot-dash), MERRA-Land (1983-1998, lon /ersion 1 (trend shown in Fig. for the Noah LSM only)

dash) and MERRA-Land (19992010, short dash). discontinuity_occu_rs at the end of 1998 and result§ ina
strongly negative winter season trend roughly 3—4 times

larger than that found in any of the other datasets.

Comparing the five principal datasets of our analysis,
spurious trends. Figurgé shows how NH SWM trends Crocus, ERA-I-Land and MERRA have more strongly
from these three datasets compare with those from Glaiegative NH SWM trends than GlobSnow stemming from
Snow, GLDAS-2, MERRA, ERA-I-Land and Crocus.more strongly negative trends over Eurasia with compa-
While the five latter datasets exhibit a range of negativable or more weakly negative trends over North Amer-
SWM trends (solid lines in Figl), the trends of the three ica (continental breakdown not shown). GLDAS-2 shows
remaining datasets are exceedingly different (brokerslinenuch weaker trends through the entire snow season than
in Fig. 1). To illustrate how trends are indicative of inho-the other four datasets. There is some consensus for de-

Anomalous NH SWM, MERRA-Land b  SWE Climatological Discontinuity
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FIG. 2: a) Time series of anomalous NH SWM from MERRA-Land. b)f&iénce in climatological SWE between
1999-2010 and 1983-1998 periods for MERRA-Land.
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a NH Snow Mass b Difference from Multi-dataset Mean

x3 x3 x3
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o
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Alpine
Arctic
N | IMidLatitudes
ONDJFMAMJ G2 EGS C M G2 EGS C M G2 E GS C M
Dec-Jan Feb-Mar Apr-May

Il

FiG. 3: a) Climatological total NH SWM for individual datasetscithe multi-dataset mean for the 1981-2010 period.
The average of the NH alpine SWM time series from the fourabesis datasets is added to the GlobSnow time series
in order to appropriately compare total NH SWM. b) Stackedchart of SWM differences between individual datasets
and the multi-dataset mean over pairs of months for variegens. Each individual dataset is colored as in panel a)
and for a given season shows a sequence of three bars cordéaspto NA, EU and NH regions. Separate contributions
from the three land-types are stacked vertically usingdiffit shades for mid-latitudes, Arctic and alpine regitotsi
difference summed over all land types on a given continesh@vn by the bar with the black outline. Crocus and
MERRA differences have been multiplied by three; GLDAS-RA=I-Land and GlobSnow differences are unaltered.

creasing NH winter SWE over the 1981-2010 period thaatasets. The MERRA and Crocus datasets show the
is consistent within situtrends to less snow cover in manysmallest differences from the mean although for Crocus

regions of the NHYaughan et al. 2013 the similarity is in part because of opposite-signed differ
ences in Arctic and alpine regions: Crocus has the most
3. Results SWM of all the datasets in the alpine regions of both con-

tinents, but it has less SWM in the Eurasian Arctic than
any of the other datasets except for GLDAS-2.

Total NH SWM climatologies are shown in Figuga A close examination of Figurgb also shows that alpine
for the five SWE datasets and the multi-dataset mean. ald Arctic regions generally contribute the most to the
key finding is the large amount of spread in climatologidifferences in climatological SWM, which is consistent
cal SWM among the products — during the seasonal pewlth our a priori assumptions that SWE is most poorly
they vary by as much as 50%. In order to display total Nionstrained in these regions. These regions have poor
SWM for GlobSnow alongside the other datasets we uagreement among precipitation data, sparse observing net-
the average of the non-Globsnow datasets in alpine regiomsrks, and complex snow processes that occur, including
so that the additional SWM seen in the GlobSnow climanow redistribution in the Arctic and complex elevational
tology stems from differences over non-alpine regions. gradients in alpine regions, all of which will increase the

To better determine which datasets and regions accowmnicertainty for the datasets. We show this result more ex-
for the spread among the individual climatologies, we dglicitly in Figure 4 which shows the total spread (range of
compose the differences between the individual datasestaset climatologies) in NH SWM according to land type.
and the multi-dataset mean by continental domain afdhe spread over Arctic and alpine regions is comparable
land type (Fig.3b). Three seasonal periods are preto one another but roughly 2—3 times larger than that over
sented (calculated as two-month averages) correspondmgl-latitude regions.
to before-peak (December, January), near-peak (FebruWe also examine the spatial distribution of the multi-
ary, March), and after-peak (April, May) SWM. GLDAS-2dataset mean and its spread in Figbrérhe climatology
shows the largest difference from the multi-dataset meanmpares well with known features of the observed SWE
with less SWM over both continents during all monthdistribution Brown and Mote 200Q Examining the ra-
pairs and for all land types. The ERA-I-Land productio of climatological SWE to the spread among the com-
has the largest positive bias relative to the multi-datagednent datasets provides a measure of the signal to noise
mean, stemming primarily from differences with the otheratio. Regions with a ratio greater than one coincide ap-
datasets over Eurasia (especially in the Arctic). SWfgroximately with the boreal forest regions of North Amer-
in GlobSnow peaks earlier in the season than the othiea and Eurasia. That we have the best agreement in

a. Climatological snow water equivalent
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NH Snow Mass Uncertainty
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portant impacts on accumulation through differences in
snow-on dates and rain/snow separation. Further north of
this zone uncertainty in the precipitation forcing incress
Furthermore, because the taiga snowpack is generally spa-
tially homogeneousSturm et al. 1995 wind redistribu-

tion and topographic effects are minimal. The relative
consistency of the datasets across the NH boreal forest is
further supported by other measures of agreement among
the datasets (discussed later, see FBgsd1l).

b. Snow water equivalent variability

We present time series of anomalous total NH non-
alpine SWM in Figures (anomalies calculated separately
for each dataset using its own climatology and individ-
ually detrended). Some years show good agreement in
the sign and evolution of SWM anomalies over the win-
ter (e.g. 1986/87, 1990-1992, 2001/02) while other years
show larger spreads in the anomalies (1988/89, 1996/97,
2009/10). Note the datasets evident as an outlier for a

FIG. 4: Spread among climatologies for NH SWM by regiven time period varies among all 5 component datasets

gion over the 1981-2010 period.

(i.,e. GLDAS-2 in 1989; Crocus in 1993; GlobSnow in
1994; MERRA in 1999; ERA-I-Land in 2003).

In order to determine the strength of agreement between
datasets, we present pair-wise correlations between indi-

the datasets over these regions is reasonable for seveidlally detrended SWM time series in Figure Each

reasons. These are regions where snow cover has wedilue is determined by correlating the detrended SWM
defined start and end points to the season and where maglomaly time series for a given pair of datasets for all
latitude winter cyclones are well-represented in numenwinter days (NDJFMA) over the entire 1981-2010 pe-
cal weather prediction models. Further south of this zongod (such that each time series for a given pair contains
differences in air temperature will have increasingly imi81x 30 days). Calculated as such, correlations reflect

a Multi-Dataset Mean SWE

b Mean SWE / Spread

5/1
3/1
2/1
5/4
11
4/5
1/2
1/3
1/5

FIG. 5: a) Climatology of multi-dataset mean SWE for Februargrsh over 1981-2010 period. b) Ratio of climato-
logical SWE to spread among the five component datasetslatddfor February-March over 1981-2010 period. The

black contour delineates the 1:1 ratio.



8 JOURNAL OF CLIMATE

Anomalous NH Snow Mass (non-alpine) Pairwise Correlation
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FIG. 6: a) Anomalous total NH non-alpine SWM for theFiG. 7: a) Correlations of daily (NDJFMA) SWM time se-
five individual datasets (individually detrended). Greyies (1981-2010) between pairs of datasets. Correlations
shading marks the range of anomalies (spread) among #re shown for detrended time series of NH (black), NA
datasets on a given day. (red) and EU (blue) SWM as well as non-detrended NH
(grey) SWM. Also shown are mean values of the SWE
pattern correlation between dataset pairs (green circles)

both intraseasonal and interannual covariance. Slight glculated daily and averaged over the NDJFMA season

different approaches were also evaluated: (1) determined 1981-2010 period.

the intraseasonal correlation of winter season days (ND-
JFMA) for each year separately and average the thirty re-
sulting correlations; and (2) calculate the interannual cang meteorology and the ERA-Interim meteorology is it-
relation for each calendar day and average the correlatisadf well correlated with that of MERRA. This point is
over the winter season (NDJFMA). We find that the result®ade inRienecker et a2011) and further investigated in
are largely insensitive to which approach was used (cor®ection3c. Finally we also show the mean SWE spatial
lations affected at most by 0.05), and the ranking of whigbattern correlation for each dataset pair in Figargal-
datasets correlate best with one another shifts only §lightulated daily and averaged over all wintertime days of the
among pairs involving GLDAS-2. thirty year period). The mean pattern correlation is lower
Because correlations involving GlobSnow only conthan the corresponding temporal correlation of total snow
sider non-alpine snow, the datasets have been rankedrbgss. This result may be due to the presence of opposite-
their correlations over non-alpine regions only, which difsigned spatial biases that cancel when spatially aggrgate
fer slightly from those that consider all land types. Excepito a SWM time series.
for GLDAS-2 with MERRA and GLDAS-2 with Crocus, Figure8 presents a spatial map of the temporal corre-
the difference in correlation between detrended and ndation. For this figure, rather than spatially aggregating
detrended time series is less than 0.05, and these diffenow water before correlating, we calculate the temporal
ences in correlation stem from differences over Eurastarrelation between pairs of SWE datasets for each grid
rather than North America (not shown). Examining sep&ell individually. Values plotted are the average among alll
rately the time series for each continent, we note that glbssible pairs of datasets (for alpine regions, the correla
datasets correlate better over NA than over EU. GLDAS#bns shown are the average of the six dataset pairs that
shows the weakest correlation with other datasets. Gloéxclude GlobSnow, and for non-alpine regions they are
Snow has slightly higher correlations, and the remainirayerage of all ten pairs). Interestingly, alpine regions do
three reanalysis-based datasets, i.e. MERRA, Crocus arat exhibit noticeably weaker correlations than neighbor-
ERA-I-Land, are correlated with one another~at0.8. ing regions despite the comparatively large climatologica
An increased correlation among these three datasets is gpread indicated in Figuré. Correlations are lower in
pected since MERRA and Crocus both use the same foksrctic regions and the marginal snow zones and peak over
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Inter-dataset Time Series Correlation
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the taiga, consistent with the high signal-to-noise presen
in the climatology (Fig5b).

Despite the reasonable spatial and temporal correla-
tions shown in Figure§ and8, the inter-dataset spread
of SWM anomalies is comparable to the interannual vari-
ability. This result can be approximately assessed from
an examination of Figuré but is shown explicitly in
Figure 9a, where for each day over the 1981-2010 pe-
riod, anomaly spread was calculated as the difference be-
tween the datasets with the maximum and minimum SWM
anomaly. This comparability in magnitude means that on
average at least one of the datasets fails to agree on the
sign of the anomaly. When the same analysis is applied to
non-detrended data, itis apparent that differences inlgren
among the datasets are not responsible for the majority of
the spread.

We also quantify the relative contribution of each
dataset to the total spread, defined asatitrbuted spread
To calculate this quantity for each grid cell on a given day
and year, we partition the total spread between just two

FiG. 8: a) Spatial map of the mean correlation betweé?f the five datasets: those with the maximum and mini-

pairs of daily (NDJFMA) SWE time series (1981-2010)mum anomaly on that day. The magnitude of spread at-
Correlations of detrended time series are performed fifbuted to each is the absolute difference between each
a given grid cell location between all available pairs oflataset’s anomaly and the multi-dataset mean. This def-

datasets and averaged together.

a NH Interdataset Spread
0.3 T T T T T T T T

0.0

ONDJFMAMJ

inition allows a particular dataset to accrue more of the
total spread for the given day if it is further from the mean
value. The remaining datasets are attributed no spread for
the given day, but may be attributed spread on other days.
This definition may be extended to a time series compris-

b NH Attributable Spread

03[t s |05
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0.0 0.00

ONDJFMAMLJ

FiG. 9: a) Spread in anomalous SWM among detrended dataset&,(btdid), non-detrended datasets (black, dotted)
and interannual variability of multi-dataset mean (greylidy over the 1981-2010 period. b) Spread in anomalous
SWAM attributed to each of the five component dataset times€ti981-2010). Total spread (black) is measured on left
axis. Spread attributed to individual datasets measureibhaxis (2<x smaller). A smoothing window of 30 days has
been applied to all curves for clarity. See text for defimi@f spread and attributed spread.
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NH Attributable Spread
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FiG. 10: a) NH interannual variability of SWM for each datasej. Attributed spread calculated from standardized
SWM for each dataset. A smoothing window of 30 days has beplegto all curves for clarity.

ing any number of datasets as long as only two componesriability but is not a frequent outlier). The combination
datasets are attributed the full spread on a given day @fthese two traits means each dataset accrues more spread
expected in the case with only two datasets, each wouddring the time of year that it shows increased variability.
always receive half of the total spread). By definition, thg js possible to account for these separate effects by stan-
sum of attributed spread across the total number of cOMR@ydizing the time series (i.e. by dividing each dataset’s
nent datasets is equal to the total spread. Fighrehows ime series by its interannual standard deviation for that

the amount of spread attributed to each of the five CorEEf\rl]endar day) and examining the spread in the standard-

ponent datasets averaged over th? 1981-2010 IoerIOd'ized time series (FiglOb). The spread now attributed to
order to account for alpine regions in GlobSnow, the mean

of the remaining four datasets was used to fill in alpin%ach dataset is more constant_throughout the snow sea-
SWM in GlobSnow. This accounting means that spreeﬁ?” (total spread of all datasets is around 2_standard devia-
is attributed to GlobSnow only when it stems from swiions) and more closely reflects the proportion of days and
differences in non-alpine regions. years that the particular dataset is an outlier. Calculated
Ranked in sequence, MERRA is attributed the leags such, GlobSnow, Crocus, MERRA and ERA-I-Land
spread, followed by Crocus, ERA-I-Land and GLDAS-2ll contribute approximately equally to the total spread;
while GlobSnow is attributed the most. While the firsby contrast, GLDAS-2 contributes approximately twice as
three datasets constitute roughly half of the total spreagiuch to the total spread.
GLDAS-2 and GlobSnow together are responsible for the The spatial distribution of signal to noise for SWE
remaining half, each contributing approximately one quagnomalies (defined as the ratio of absolute deviation of the
ter of the total. Note that ERA-I-Land’s attributed spreagh|ti-dataset mean to the spread among the datasets) is
peaks during the spring and that GlobSnow has relativelyown in Figurel1a. Consistent with the relative magni-
low attributed spread during the spring, but a large amoUllyes of SWM anoamlies and spread shown in Figare

during the fall and early winter. We may understand the?ﬁe signal-to-noise ratio of the local SWE distribution is

two results by considering that attributed spread Con\ml\{Fess than one nearly everywhere. It is larger in the boreal

the frequency that a given dataset is an outlier with its dl?érest region than elsewhere, consistent with results for

tance from the mean anomaly. Figut8a demonstrates ) ) _
that ERA-I-Land’s standard deviation (which will be reClimatological SWE and for temporal correlations of daily

lated to its distance from the mean dataset anomaly) peak&/E. The signal-to-noise ratio among only the MERRA,
during the spring while that of GlobSnow peaks during thERA-I-Land and Crocus datasets is substantially larger
fall and early winter. Each of these two datasets are aliftglicating better agreement among these three datasets
more frequently outliers during these seasons (as oppo$Eiy). 11b). These datasets are referred to as ‘Group 1’
to Crocus which shows a similar spring peak in interannuehtasets in the figure, for reasons described next.
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a  Anomaly Size / Spread b Anomaly Size / Spread
(Group 1 Only)
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FiG. 11: a) Ratio of absolute anomaly size for multi-datasetmiealataset spread, calculated daily and averaged over
February-March and 1981-2010 period. b) Same as a) but onithé MERRA, ERA-I-Land and Crocus datasets
(Group 1, see Se@&c). The black contour delineates the 1:1 ratio.

c. Relative influence of land model and meteorologic&8WM climatologies, despite using different meteorologi-
forcing on reanalysis-based datasets cal forcing. This shows it is possible to obtain similar cli-
matologies from the same land surface model while using
different meteorological forcing. We also see that using
: he same meteorological forcing but different land models
ment of SNOW processes in the land _model on the res _&!I’OUD 2) results in a large climatological spread. These
'ng cor.relatlon and spread of SWM time series. Fpr thiBsults imply that differences among the land models gen-
analysis we use two separate groups of reanalysis-bagegie the majority of the climatological spread. We exam-
datasets. The first of these two groups (Group 1) contaifs, the effect on the correlation of the SWM time series in
the MERRA, ERA-I-Land and Crocus datasets. We COlijgre 12h, Datasets within each of the two groups cor-
sider these datasets to form a single group because the¥e very well with one another over all continental do-
use meteorological forcing from either the MERRA Ofy3ins and over all land types. However the correlations of
ERA-Interim reanalyses, which have been shown to k@M time series between the two groups are substantially
well-correlated with one anotheRi{enecker etal. 2001  |qper, especially over alpine and Arctic regions. This re-

The second group (Group 2) contains four GLDAS-%yt suggests that differences in the meteorological figyci
products. Each of these datasets has been forced usingdfgrt a larger influence on the resulting SWM correlation
same GDAS forcing data, however each one uses a difan differences in the details of the land-model used to
ferent land model as described in Section 2 and Table groduce the data. We also note that agreement with the
Because the forcing data for GLDAS-1 contains changesobSnow product (an independent estimate of SWM) is
over the 1981-2010 period, we restrict our analysis to tiggher for Group 1 datasets (circles, right column) than for
2001-2010 period over which the forcing data is consigroup 2 datasets (diamonds, right column). Since the me-
tent. teorological forcing data for Group 1 is more recent, this
Figurel2a shows that the spread in climatologies withimay represent an improvement in the accuracy of the more
each of the two groups is affected by the particular lan@écent reanalyses.
models that are included. The spread shown in the grey
shading (Group 1 plus GLDAS-2) is comparable to tha]
found among the Group 2 products and remains comp
rable with the exclusion of the Noah-associated productsWe have presented a comparison of five daily, grid-
from both groupings (but is decreased by about half). Notked Northern Hemisphere SWE datasets over the 1981—
that both versions of GLDAS that use the Noah land sup010 period. Our intent is to make available the
face model are outliers with similar (but especially lownulti-dataset mean and corresponding spread of both

Finally, we examine the relative influence of difference
in the precipitation forcing versus differences in the tre

. Conclusion
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Temporal Correlation with
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FIG. 12: a) Spread in total NH SWM for Group 1 (MERRA, Crocus, ERKRand) plus GLDAS-2 (grey shading).
Climatologies for the four GLDAS-1 products (Group 2) arewh in the labeled curves. The single GLDAS-2 product
is also shown for comparison. b) Mean pairwise correlatimorRg different groups of SWM time series (2001-2010).
For each of the three groupings the average correlatioridaleged for NA (red), EU (blue) and NH (black) SWM time
series. For each land mass and group, four averages are gheequence for SWM summed over all land types, only
mid-latitude, only the Arctic and only alpine regions. Mearrelations of Group 1 (circles) and Group 2 (diamonds)
total NH SWM time series (all land types) with GlobSnow arsoahown. Correlations with GlobSnow over individual
land types are omitted for clarity.

the climatology and anomalies as part of the Na- This analysis of gridded SWE data has yielded impor-
tional Center for Atmospheric Research (NCAR) Climattant insights on the amount of spread, and the strength
Data Guide (https://climatedataguide.ucar.edu/climatef spatial and temporal correlation between independent
data). Our analysis has shown that the individual datas&@4VE datasets. At this point, the relatively good agreement
exhibit a large amount of spread in their total snow watdt€tween some groups of datasets (i.e. modern reanalysis-
mass (SWM) climatologies (Fig8.and4) as well as their derived datasets such as MERRA, ERA-I-Land, and Cro-
anomalies (Fig9a). Despite the large spread, the SWMUS) does not imply lower bias compared to the ground
time series show moderate to good correlations with offé!th, only that these datasets are generally consistént wi

another, approximately 0.85 for the three datasets usifigch other. The agreement between these three datasets
modern reanalysis meteorological forcings; these cor _not surprising given the commonalities in how SWE is

lations are higher over North America than over Euras eri\{eq: r_nodern.reanalysis mgteorology and high quality
(Fig. 7). Boreal regions not only have the lowest relativ recipitation forcing coupled with state of the art land-sur

amount of spread (highest signal-to-noise) for both clim ace models. A product like GlobSnow adopts an entirely

: . ; : Bifrerent approach by blendinm situ snow depth ob-
tological SWE (Fig5) and SWE anomalies (Fid.1), but servations and satellite passive microwave measurements

these regions also have the highest temporal Cor@at'fmough the use of a microwave snow emission model.
among the SWE datasets (F8). We have also examined Going forward the challenge to the community is how to
the relative influence of the particular land surface modghhine these unique perspectives with their respective
compared to the choice of meteorological forcing using &rengths and sources of error.

suite of reanalysis-derived datasets. The former accountsgjyen the spread in climatology, these results highlight
for the majority of the spread in the climatologies whilghe sensitivity of climate analysis to the selection of an
the latter exert a larger influence on the resulting SWhdividual SWE dataset for model evaluation from the
correlation (Fig.12). More modern reanalysis-derivedavailable pool of data. For example, evaluation of simu-
datasets also show improved correlation with the satellitg&ted SWE with ERA-I-Land (highest pre-melt SWE) ver-
product, GlobSnow, compared to the previous generatisns GLDAS (lowest pre-melt SWE) could lead to entirely
(Fig. 12). different interpretations of model performance and bias.
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There are also seasonal and regional differences which apgan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng,
also important for users to consider. For example, ERA- ]j( Da(i:'I_R- Ei DiCki?Sﬁn'Cand Z-L. Yangé 200§1| (T:he 'Tagd Sl:]f-
_ ; ; ace Climatology of the Community Land Model Coupled to the
I-Land has \;]ery g.lgerem é)_lasesfover N.A compareld_to NCAR Community Climate ModelJ. Climate 15, 3123-3149,
EU, Crocus has different biases for Arctic versus alpine 4410 1175/1520-0442(2002)028123:TLSCOT2.0.CO;2
snow, while GlobSnow exhibits different seasonality than
the multi-dataset mean. Bransnett, B., 1999: A global analysis of snow depth for nu-
P - . - .. - merical weather predictionJ. Appl. Meteorol. 38, 726-740,
Fpr applications like climate r_node] evaluation, it is doi:10.1175/1520-0450(1999)03®726:AGAOSD>2.0.CO;2
straightforward to see the value in using an ensemble of
SWE datasets for evaluation of a multi-model ensemble Bfown, R., C. Derksen, and L. Wang, 2010: A multi-data
simulations. This approach would illustrate the overlap (o St analysis of variability and change in Arctic spring snow
s . i . cover extent, 1967-2008l. Geophys. Res115 (D14) D16111,
lack thgrepf) in S|mulated_c]|mate reahzanon;; against Fh d0i-10.1029/2010JD013975
uncertainties in characterizing our current climate, \whic
is evident when a single dataset is used to characterfiewn, R. D., and C. Derksen, 2013: |Is Eurasian October
reality (for instanceDerksen and Brown 2012 For land snow cover extent increasingZEnviron. Res. Lett.8, 024006,
A L doi:10.1088/1748-9326/8/2/024006
surface data assimilation applications, an ensemble ap-
proach could be used to statistically characterize obsen&own, R. D., and P. W. Mote, 2009: The Response of NorthemmiHe
tional uncertainty, an important requirement for the assim sphere Snow Cover to a Changing Climale Climate 22, 2124,
ilation of the model first guess with observations. doi:10.1175/2008JCLI2665.1
What remains to be determined is how to select thgun, ., P. David, M. SUDUL, and G. Brunot, 1992: A numerical
SWE datasets for inclusion in an observational ensem-model to simulate snow-cover stratigraphy for operati@valanche
ble. Thresholds based on attributed spread or detrendedprecastingJ. Glaciol, 38, 13-22.
anomaly correlations could _be the basis for sfelectmngun' E., V. Vionnet, A. Boone, B. Decharme, Y. Peings, R.etial
sub-group of datasets, but this must be done with caution.r. Karbou, and S. Morin, 2013: Simulation of Northern Euaasi
In the absence of an evaluation with representative ground.ocal Snow Depth, Mass, and Density Using a Detailed Snolpac
measurements, agreement between a subset of datase9de! and Meteorological Reanalysek. Hydrometeor. 14, 203-
does not necessarily represent better overall accuracy jrf 19, doil0.1175/9HM-D-12-012.1
representing reality. Comparisons with independent reghen, F., and Coauthors, 1996: Modeling of land surfaceaatipn
erence measurements in order to determine the datasdty four schemes and comparison with fife observatidn&eophys.
bias relative to ground truth are ultimately necessary andRes. 101 (D3) 72517268, dol0.1029/95JD02165
currently underway within the European Space Agency Lannoy, G. J. M., R. H. Reichle, P. R. Houser, A. K. R., N. Bi-V
Satellite Snow Product Intercomparison and Evaluation hoest, and R. N. Pauwels, 2010: Satellite-scale snow watgv-e
Experiment (SnowPEX). In advance of a comparison with alent assimilation into a high-resolution land surface klod. Hy-
high quality in situ reference datasets, quantifying the drometeor11, 352-369, dolt0.1175/2009JHM1192.1
spreat_j betV\_/een. d"’feren.t ava!lable prOdUCtS., as was @erksen, C., and R. Brown, 2012: Spring snow cover extentatazhs
complished in this study, is an important step in informing in the 2008-2012 period exceeding climate model projestiGeo-
users of the level of spatial and temporal agreement be-Phys. Res. Left39, L19504, doi10.1029/2012GL053387
tween products and the relationship of individual datasqg%uvi”e, H., J.-F. Royer, and J.-F. Mahfouf, 1995: A newsrmaram-
to the multi-dataset mean. eterization for the météo-france climate modglimate Dyn, 12,
21-35, doi10.1007/BF00208760
Acknowledgments.We acknowledge funding from the
N | Sci 9 d Enai . gR % C i Drewitt, G., A. A. Berg, W. J. Merryfield, and W. Lee, 2012:
atura C'e_nces an ngineering esea_'rc ounci 0 Effect of realistic soil moisture initialization on the Gadian
Canada’s Climate Change and Atmosphel’lc Research ini-cancM3 seasona forecast mod@éitmos.—Ocean 50, 466—474,
tiative via the Canadian Sea Ice and Snow Evolution Net- doi:10.1080/07055900.2012.722910
work. We also thank Eric Brun for providing data from

. . Dutra, E., P. Viterbo, M. A. M. Pedro, and G. Balsamo, 2012:
the Crocus snowpack model for this analysis.

Complexity of snow schemes in a climate model and its impact
on surface energy and hydrology. Hydrometeor. 13, 521-538,

doi:10.1175/JHM-D-11-072.1
References

Jeong, J., H. W. Linderholm, S. Woo, C. Folland, B. Kim, S. Kand
D. Chen, 2013: Impacts of snow initialization on subseakfara-
casts of surface air temperature for the cold sea%o@limate 26,
1956-1972, dot0.1175/JCLI-D-12-00159.1

Balsamo, G., A. Beljaars, and K. Scipal, 2009: A revised bialyy for
the ECMWF Model: Verification from field site to terrestriabter
storage and impact in the integrated forecast systerhlydrome-
teor, 10, 623-643, doit0.1175/2008JHM1068.1

Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and/J
Balsamo, G., and Coauthors, 2013: ERA-Interim/Land: a @lob Baker, 1999: A parameterization of snowpack and frozen mgtou
land water resources datasktydrol. Earth Syst. Sci. Discussl0, intended for ncep weather and climate mod&l§&eophys. Resl04,
14 705-14 745, dal0.5194/hessd-10-14705-2Q13 19569-19 585, dal0.1029/1999JD900232


http://dx.doi.org/10.1175/2008JHM1068.1
http://dx.doi.org/10.5194/hessd-10-14705-2013
http://dx.doi.org/10.1175/1520-0442(2002)015%3C3123:TLSCOT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1999)038%3C0726:AGAOSD%3E2.0.CO;2
http://dx.doi.org/10.1029/2010JD013975
http://dx.doi.org/10.1088/1748-9326/8/2/024006
http://dx.doi.org/10.1175/2008JCLI2665.1
http://dx.doi.org/10.1175/JHM-D-12-012.1
http://dx.doi.org/10.1029/95JD02165
http://dx.doi.org/10.1175/2009JHM1192.1
http://dx.doi.org/10.1029/2012GL053387
http://dx.doi.org/10.1007/BF00208760
http://dx.doi.org/10.1080/07055900.2012.722910
http://dx.doi.org/10.1175/JHM-D-11-072.1
http://dx.doi.org/10.1175/JCLI-D-12-00159.1
http://dx.doi.org/10.1029/1999JD900232

14 JOURNAL OF

Koster, R. D., and M. J. Suarez, 1994: The components of aTSVA
scheme and their effects on a GCM'’s hydrological cyaldv. in Wa-
ter Resour.17, 61-78, doil0.1016/0309-1708(94)90024-8

CLIMATE

sensing in an alpine watershed of western Can@da. J. Remote
Sens.36, S74-S86, doi:0.5589/m10-009

Vaughan, D. G., and Coauthors, 2013: Observations: CryrspBup-

Koster, R. D., and Coauthors, 2010: Contribution of land- sur
face initialization to subseasonal forecast skill: Firssuits from
a multi-model experiment.Geophys. Res. Lett.37, L02402,
doi:10.1029/2009GL041677

Langlois, A., and Coauthors, 2009: Simulation of snow watguiva-
lent (swe) using thermodynamic snow models in québec,dzada
Hydrometeor. 10, 1447-1463, dol:0.1175/2009JHM1154.1

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges419%9
simple hydrologically based model of land surface water end
ergy fluxes for general circulation models Geophys. Re99 (D7),
14 415-14 428, dal0.1029/94JD00483

Mudryk, L. R., P. J. Kushner, and C. Derksen, 2014: Interpret
ing observed northern hemisphere snow trends with large en-
sembles of climate simulationsClimate Dyn, 43, 345-359,
doi:10.1007/s00382-013-1954-y

Orsolini, Y. J., R. Senan, G. Balsamo, F. J. Doblas-Reye¥/itétt,
A. Weisheimer, A. Carrasco, and R. E. Benestad, 2013: Impact
of snow initialization on sub-seasonal forecagiimate Dyn, 41,
1969-1982, doi:0.1007/s00382-013-1782-0

Reichle, R. H., R. D. Koster, G. J. M. de Lannay, B. A. Formanl.ig,
S. P. P. Mahanama, and A. Touré, 2011: Assessment and Enhanc
ment of MERRA Land Surface Hydrology EstimatdsClimate 24,
6322—-6338, doi0.1175/JCLI-D-10-05033.1

Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern
Era Retrospective Analysis for Research and ApplicatidnCli-
mate 24, 3624-3648, dol0.1175/JCLI-D-11-00015.1

Rodell,
similation System. Bull. Amer.
doi:10.1175/BAMS-85-3-381

M., and Coauthors, 2004: The Global Land Data As-
Meteor. Sog. 85 381-394,

Rutter, N., and Coauthors, 2009: Evaluation of forest snaer p
cesses models (snowmip2). Geophys. Res114 (D6) n/a—-n/a,
doi:10.1029/2008JD01106806111.

Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development
of a 50-Year High-Resolution Global Dataset of Meteorologi
cal Forcings for Land Surface Modeling. Climate 19, 3088,
doi:10.1175/JCLI3790.1

Stieglitz, M., A. Ducharne, K. Koster, and M. Suarez, 200hie Tm-
pact of detailed snow physics on the simulation of snow cewet
subsurface thermodynamics at continental scaleslydrometeor.
2,228-242.

Sturm, M., J. Holmgren, and G. E. Liston, 1995: A
seasonal snow cover classification system for lo-
cal to global applications.J. Climate 8, 1261-1283,

doi:10.1175/1520-0442(1995)068.261:ASSCCS-2.0.CO;2

Takala, M., K. Luojus, J. Pulliainen, C. Derksen, L. Lemniegy, J.-
P. Karna, and J. Koskinen, 2011: Estimating northern bphgre
snow water equivalent for climate research through asafioi of
space-borne radiometer data and ground-based measusefRent
mote Sens. Environl15 35173529, doi0.1016/j.rse.2011.08.014

Tong, J., S. J. Déry, P. L. Jackson, and C. Derksen, 201@ngesow
water equivalent retrieval algorithms for passive micregveemote

Wang, Z., X. Zeng, and M. Decker, 2010:

plementary MaterialClimate Change 2013: The Physical Science
Basis. Contribution of Working Group | to the Fifth AssessniRe-
port of the Intergovernmental Panel on Climate Chan§éocker,
T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boseig,

A. Nauels, Y. Xia, V. Bex and P.M. Midgley, Ed., Available fro
www.climatechange2013.org and www.ipcc.ch.

Improving snow pro-
cesses in the noah land modédl. Geophys. Res.115 (D20)
d0i:10.1029/2009JD013761


http://dx.doi.org/10.1016/0309-1708(94)90024-8
http://dx.doi.org/10.1029/2009GL041677
http://dx.doi.org/10.1175/2009JHM1154.1
http://dx.doi.org/10.1029/94JD00483
http://dx.doi.org/10.1007/s00382-013-1954-y
http://dx.doi.org/10.1007/s00382-013-1782-0
http://dx.doi.org/10.1175/JCLI-D-10-05033.1
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.1175/BAMS-85-3-381
http://dx.doi.org/10.1029/2008JD011063
http://dx.doi.org/10.1175/JCLI3790.1
http://dx.doi.org/10.1175/1520-0442(1995)008%3C1261:ASSCCS%3E2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2011.08.014
http://dx.doi.org/10.5589/m10-009
http://dx.doi.org/10.1029/2009JD013761

