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ABSTRACT

Five daily, gridded Northern Hemisphere snow water equivalent (SWE) datasets are analyzed over the
1981–2010 period in order to quantify the spatial and temporal consistency of satellite retrievals, land surface
assimilation systems, physical snow models, and reanalyses. While the climatologies of total Northern Hemi-
sphere snow water mass (SWM) vary among the datasets by as much as 50%, their interannual variability and
daily anomalies are comparable, showing moderate to good temporal correlations (between 0.60and 0.85)
on both interannual and intraseasonal time scales. Wintertime trends of total Northern Hemisphere SWM
are consistently negative over the 1981–2010 period among the five datasets but vary in strength by a factor
of two to three. Examining spatial patterns of SWE indicatesthat the datasets are most consistent with one
another over boreal forest regions compared to Arctic and alpine regions. Additionally, the datasets derived
using relatively recent reanalyses are strongly correlated with one another and show better correlations with
the satellite product (GlobSnow) than do those using older reanalyses. Finally, a comparison of eight reanal-
ysis datasets over the 2001–2010 period shows that land surface model differences control the majority of
spread in the climatological value of SWM, while meteorological forcing differences control the majority of
the spread in temporal correlations of SWM anomalies.

1. Introduction

The seasonal cycle of terrestrial snow cover and snow
mass has a notable influence on the Northern Hemi-
sphere energy budget, water balance and geochemical cy-
cles. Snow water equivalent (SWE) is expected to re-
spond in a complex way to projected temperature and
precipitation changes with the magnitude and sign of
the response varying with climate regime and elevation
(Brown and Mote 2009). Verification of such responses in
climate models and the initialization of snow in seasonal
to decadal prediction systems requires a gridded, obser-
vational SWE dataset with well-characterized uncertainty
(De Lannoy et al. 2010). For snow cover extent, intercom-
parison of existing data has led to estimation of uncer-
tainties in SCE anomalies and trends (Brown et al. 2010;
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Derksen and Brown 2012) as well as improved documen-
tation and understanding of systematic differences and in-
homogeneities (Brown and Derksen 2013; Mudryk et al.
2014).

A similar quantitative understanding of uncertainties
in the Northern Hemisphere is lacking for SWE datasets
apart from some more limited comparisons cited below.
To address this gap, we compare an ensemble of daily,
gridded datasets in order to fully characterize inter-dataset
spread and produce a multi-dataset mean. Out intent is to
make available the mean and spread of the SWE datasets
analyzed here on the National Center for Atmospheric Re-
search Climate Data Guide portal. All of the datasets in-
clude observations (e.g. satellite measurements, observed
inputs to reanalysis) as at least a component of the data
generation, but otherwise draw from a variety of sources
including remote sensing, station data, land surface as-
similation systems, and reanalysis-driven snow models
of varying complexity. In particular we use: (1) the
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GlobSnow (version 2) analysis, combining satellite-based
passive microwave retrievals and ground-based weather
station data (Takala et al. 2011); (2) the Global Land
Data Assimilation System Version 2 (GLDAS-2) product
(Rodell et al. 2004); (3) the European Centre for Medium-
Range Forecasts Interim Land Reanalysis (ERA-I-Land)
which uses a simple snow scheme (Balsamo et al. 2013);
(4) the Modern Era Retrospective Analysis for Research
and Applications (MERRA) which uses an intermediate
complexity snow scheme (Rienecker et al. 2011); and, (5)
SWE from the Crocus snow scheme, a detailed physi-
cal snowpack model driven by meteorology from ERA-
Interim (Brun et al. 2013).

Evaluations of the above datasets or of the land surface
models and snow schemes used to produce them have been
conducted at specific locations (e.g.,Wang et al. 2010;
Dutra et al. 2012; Brun et al. 1992; Langlois et al. 2009;
Stieglitz et al. 2001); however, such local validations do
not necessarily represent the datasets’ hemisphere-wide fi-
delity. Indeed, for coarsely gridded datasets such as these,
a meaningful hemisphere-scale evaluation with ground
measurements is not a trivial undertaking. Single point
climate station or snow survey measurements are inappro-
priate for validation of coarse grid cell SWE datasets, and
there are insufficientin situ SWE observations available
at high enough spatial resolution to develop reliable grid-
dedin situSWE estimates for continental-scale validation.
Surface-based validation in alpine areas, whose gradients
in elevation and associated snow properties fall well below
the grid scale for current hemispheric scale products, are
particularly challenging. Efforts to address such scaling
challenges are ongoing, but are outside the scope of this
study.

Instead, the objective of this analysis is to exploit the
use of multiple datasets to robustly characterize the spa-
tial and temporal agreement in SWE climatologies and
interannual anomalies at the hemispheric scale. While
the climate modeling community has long recognized the
strength in using output from a large number of climate
models, such an ensemble-based approach has been less
readily adopted by the observational community. Data
assessments and intercomparisons have typically focused
on identifying the best product. This approach can pro-
duce the potentially misleading impression that a sin-
gle dataset is capable of characterizing the observational
truth for all regions and seasons. In reality, variables
like SWE are particularly challenging to characterize with
coarse resolution gridded datasets due to significant sub-
grid heterogeneity in horizontal (i.e. snow depth) and ver-
tical (i.e. snow stratigraphy) properties. Recent inter-
comparisons limited only to snow models (Rutter et al.
2009) reinforce this perspective, demonstrating that most
models are good at simulating certain aspects of ob-
served snow conditions, but less good at simulating oth-
ers. Therefore, we argue that the analysis of multiple

datasets is necessary to understand uncertainties and in-
consistencies within current SWE datasets. In turn, this
understanding of uncertainty can enhance the use of ob-
servational snow analyses. For instance, dataset spread
can inform the assignment of uncertainty to observations
necessary for land surface data assimilation in numeri-
cal weather prediction and seasonal forecast applications
(Orsolini et al. 2013; De Lannoy et al. 2010; Koster et al.
2010; Jeong et al. 2013; Drewitt et al. 2012). Considera-
tion of spread also reduces the sensitivity of climate model
evaluation to the selection of a single dataset for evalua-
tion. This becomes an important issue when disagreement
among data sets is large enough to affect the significance
of SWE biases depending on the choice of observational
data.

In Section2 we provide details of the SWE datasets and
how they are combined into a multi-dataset mean. Sev-
eral metrics are used to compare individual datasets with
one another as well as the multi-dataset average in Section
3. Section4 contains a summary and discussion of key
results.

2. Data and Methods

a. Datasets

The SWE datasets used in this study are chosen based
on two main criteria: complete Northern Hemisphere spa-
tial coverage (with the exception of an alpine mask ap-
plied to GlobSnow) and continuous availability through
the satellite era (we use 1981–2010 as our analysis pe-
riod). We also require relatively homogenous SWE time
series for the entire analysis period, which we diagnose
from trends in the time series of global snow mass (see
subsec. 2c). The component datasets analyzed in this
study are described below and summarized in Table1.

The GlobSnow (version 2) product (Takala et al. 2011,
www.globsnow.info) is the only satellite-based product in
our analysis; however, it also uses ground-based weather
station data in the SWE retrieval. Estimates of snow grain
size are first derived for grid cells containing weather sta-
tion snow depth measurements by optimizing agreement
between microwave snow model simulations and observed
satellite passive microwave brightness temperatures at 19
and 37 GHz. These local estimates of grain size are inter-
polated via kriging across the Northern Hemisphere, and
used in a second round of emission model simulations for
which grain size is fixed and SWE is optimized. Reso-
lution of the product is 25 km. GlobSnow retrievals over
complex terrain defined in subsection2b) are masked from
the standard product due to well known uncertainties re-
lated to sub-grid heterogeneity in snow properties and mi-
crowave signatures (Tong et al. 2010).

ERA-Interim-Land is a reanalysis product
(Balsamo et al. 2013) that diagnoses SWE using the
Hydrology Tiled ECMWF Scheme for surface Exchanges
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Dataset Abbreviation Snow Scheme Land Model Forcing Data Resolution Reference

GlobSnow GS satellite passive microwave +in situ1 25 km Takala et al.(2011)
ERA-I-Land E simple HTESSEL ERA-Interim 3/4◦× 3/4◦ Balsamo et al.(2013)
MERRA M intermediate Catchment MERRA 1/2◦× 2/3◦ Rienecker et al.(2011)
Crocus C complex ISBA ERA-Interim 1◦×1◦ Brun et al.(2013)
GLDAS-2 G2 simple Noah 3.3 Princeton Met. 1◦×1◦ Rodell et al.(2004)

GLDAS-1∗ G1n simple Noah 2.7 GDAS+CMAP 1◦×1◦ Rodell et al.(2004)
G1m simple Mosaic
G1v intermediate VIC
G1c intermediate CLM

Can. Met. Centre∗ CMC simple +in situ2 GEM 35km Bransnett(1999)
MERRA-Land∗ ML intermediate Catchment MERRA 1◦×1◦ Reichle et al.(2011)

TABLE 1: Summary of products referred to in this study. The first fivedatasets are used in developing the multi-dataset
mean over the 1981–2010 period. The remaining datasets (marked with∗) are established SWE datasets that meet the
NH domain criteria but which contain temporal discontinuities as analyzed in Section2c that compromise their use in
the multi-dataset mean. The four GLDAS-1 datasets are suitable for analysis over the restricted, 2001–2010 period (see
Sec.3c).
1 GlobSnow is based on combined information from satellite passive microwave retrievals andin situobservations from
weather stations. See text for details.
2 CMC computes snow depths based on combined information fromin situ observations and a simple snow scheme,
driven by temperature and precipitation from the Global Environmental Multiscale Model (GEM). Depths are converted
to SWE using climatological snow density information.

over Land (HTESSEL,Balsamo et al. 2009) driven by
meteorological forcing from the ERA-Interim atmo-
spheric reanalysis. The snow scheme used is a simple
single-layer scheme for dry snow (no liquid water con-
tent). Snow density and albedo changes follow closely
the formulation proposed byDouville et al.(1995). The
precipitation values used to force the land model are
corrected using the Global Precipitation Climatology
Product version 2.1. Product resolution is 3/4◦×3/4◦.

MERRA (Rienecker et al. 2011) is a National Aero-
nautics and Space Administration (NASA) atmospheric
reanalysis product generated with version 5.2.0 of the
Goddard Earth Observing System (GEOS-5) Atmospheric
General Circulation Model and Atmospheric Data Assim-
ilation System (ADAS). SWE is diagnosed from a hydro-
logical catchment-based land surface model (called Catch-
ment, Koster et al. 2000). Catchment uses an intermedi-
ate complexity snow scheme with up to three snow lay-
ers describing snow accumulation, melting, refreezing and
compaction in response to surface meteorological condi-
tions (Stieglitz et al. 2001). Product resolution is 1/2◦×
2/3◦. In section2c we also analyze the related prod-
uct MERRA-Land. This second product is produced by
re-running only the land surface component of MERRA
forced by atmospheric data from the standard MERRA
product except for precipitation which is forced by the
gauge-based National Oceanic and Atmospheric Admin-
stration’s (NOAA) Climate Prediction Center “Unified”

(CPCU) precipitation dataset. The canonical reference for
the MERRA-Land product isReichle et al.(2011); how-
ever, the current working product differs in several ways
from the preliminary version described therein, including
in the choice of precipitation forcing whichReichle et al.
(2011) list as the Global Precipitation Climatology Project
(GPCU) dataset. Henceforth, unless explicitly referred to
as MERRA-Land, all references to MERRA data refer to
the standardRienecker et al.(2011) product.

The Crocus SWE dataset is from the Interactions be-
tween Soil Biosphere-Atmosphere (ISBA) land surface
model driven by ERA-Interim meteorology. The Crocus
snow scheme (Brun et al. 2013) is embedded in ISBA in
place of the usual snow scheme. Crocus is a detailed snow-
pack model with multiple historical snow layers possible,
each representing a separate snowfall event. Each layer
is described by the thickness, temperature, dry density,
liquid water content and grain type (dendricity, spericity,
size, and age). Resolution of the data is 1◦×1◦.

GLDAS version 2 (Rodell et al. 2004) is another NASA
product that estimates SWE based on the National Cen-
ters for Environmental Prediction, Oregon State Univer-
sity, Air Force, and Hydrologic Research Lab (Noah) land
surface model version 3.3 (Chen et al. 1996; Koren et al.
1999) constrained by assimilated observations and land
surface parameters. This version is forced using the
Princeton meteorological forcing dataset (Sheffield et al.
2006). We also use four different GLDAS version 1 prod-
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ucts that have been forced using the Global Data Assimila-
tion System (GDAS) with precipitation adjustments from
the Climate Prediction Centers Merged Analysis of Pre-
cipitation (CMAP). Because of changes in the forcing data
in GLDAS version 1 between 1979 to 2001, the products
are unsuitable for analysis over the full 1981–2010 pe-
riod. However there are no changes to the forcing me-
teorology after 2001, and we analyze the products over
the 2001–2010 period in Section3c. The four GLDAS-1
products each use different land surface models to diag-
nose SWE: the Variable Infiltration Capacity (VIC) land
surface model (Liang et al. 1994), the Community Land
Model (CLM) version 2.0 (Bonan et al. 2002), the Mo-
saic land surface model (Koster and Suarez 1994), and the
Noah land surface model version 2.7. The corresponding
snow schemes implemented in these models range from
simple single layer schemes in the Noah and Mosaic mod-
els to intermediate complexity schemes in CLM and VIC.
Resolution of all GLDAS products used is 1◦×1◦.

b. Methods

For each dataset we acquired daily SWE at the native
resolution for the 1981–2010 period. Between 1981 and
1987, GlobSnow is only available approximately every
second day with occasional gaps of longer duration. We
linearly interpolated any temporal gaps in the data using
the two nearest dates with available SWE, assuming SWE
is uniformly zero between June 30 and September 7.

Each dataset was interpolated to a regular 1◦ × 1◦

longitude-latitude grid. Before interpolating we excluded
snow from land ice/glaciers and large lakes based on the
MERRA land fraction mask, which specifies the fractional
area occupied by land ice or lakes in a given grid cell. We
upscaled the MERRA land fraction mask to the native res-
olution of the other datasets and removed snow from any
grid cell containing a nonzero fraction of land ice. Snow
over lakes in MERRA was removed in proportion to the
percentage of the grid cell area occupied by lakes. The
remaining datasets already mask snow over large lakes,
which we considered sufficient for our purposes.

In order to treat alpine and non-alpine regions sepa-
rately, we also upscaled the 25km-resolution binary alpine
mask applied in the GlobSnow data processing chain to
the 1◦ grid. Topographic information for this mask was
derived from ETOPO5 (National Geophysical Data, 1988)
data which contains global elevation information at a res-
olution of 5 arc minutes, an appropriate resolution given
the 25-km scale of the GlobSnow product. Grid cells are
considered mountainous if the standard deviation of the
elevation within is larger than 200m. Once interpolated to
the native resolution of the remaining SWE datasets, the
mask represents the fraction of a given grid cell which is
of non-alpine land type. Multiplying the regridded SWE
data by the fractional alpine mask provides a second SWE

field consisting only of non-alpine SWE; the difference
between the two fields represents alpine only SWE. Sepa-
rating the alpine and non-alpine SWE in this simple man-
ner is equivalent to evenly partitioning SWE based on the
proportion of a given land type over grid cells which are
not 100% alpine or 100% non-alpine. Separating alpine
and non-alpine SWE was necessary firstly because the
alpine mask was applied to GlobSnow, but also in order to
isolate the relative uncertainty/spread in the datasets over
complex terrain (which poses unique challenges due to
topographic variability) compared to non-alpine regions.
Because of the alpine mask applied to GlobSnow, there is
only non-alpine SWE available for this product.

We construct the dataset mean (h̄) from the first five
datasets listed in Table 1 by averaging the datasets avail-
able over a given grid cell accounting for land type as fol-
lows:

h=
1
N ∑

i 6=GS

hi +
1
N

hGS+
1

N(N−1) ∑
i 6=GS

hi f , (1)

wherehi represents the SWE value for a particular prod-
uct at the grid cell,f is the alpine fraction of the grid cell,
N is the total number of data products, andhGS refers to
the GlobSnow product. This procedure reduces to an un-
weighted average of four products (all but GlobSnow) over
strictly alpine grid cells and an unweighted average of all
five products over strictly non-alpine cells.

We also perform a time series analysis over three land
masses: the entire Northern Hemisphere land mass (re-
ferred to as NH), the North American continent (NA), and
the Eurasian continent (EU). We exclude Greenland from
all three definitions. Where possible we further decom-
pose the time series resulting from each of the land masses
into three mutually exclusive land-types: mid-latitudes
(non-alpine land regions below 60N), Arctic (non-alpine
land regions above 60N) and alpine. We determine the to-
tal snow water mass (SWM) by summing the equivalent
volume of snow water per grid cell over the appropriate
spatial domain and converting to mass using the density
of pure water. We use these daily time series to calculate
climatologies, anomalies, standard deviations and linear
trends. Henceforce, we reserve the use of SWM to de-
scribe SWE which has been spatially aggregated over a
given region to form a time series. When discussing the
spatially varying field we will use the term SWE.

c. Diagnosis of temporal discontinuities

For the inclusion of a reanalysis-based dataset in this
comparison over the 1981–2010 period, we require a rel-
atively homogenous time series of NH SWM. An ac-
ceptable level of homogeneity is empirically diagnosed
by comparing the sign and magnitude of trends of NH
SWM. On this basis we reject three established datasets
(MERRA-Land, CMC and GLDAS-1) for which we find
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FIG. 1: Trends in NH SWM for the five principal datasets
over 1981–2010 (colors as marked). The average trend
of the four reanalysis-derived datasets over alpine regions
has been added to the trend of the GlobSnow product in
order to compare trend magnitudes. Also shown are trends
for CMC (1999–2010, dotted), GLDAS(Noah) version 1
(1981–2010, dot-dash), MERRA-Land (1983–1998, long-
dash) and MERRA-Land (1999–2010, short dash).

spurious trends. Figure1 shows how NH SWM trends
from these three datasets compare with those from Glob-
Snow, GLDAS-2, MERRA, ERA-I-Land and Crocus.
While the five latter datasets exhibit a range of negative
SWM trends (solid lines in Fig.1), the trends of the three
remaining datasets are exceedingly different (broken lines
in Fig. 1). To illustrate how trends are indicative of inho-

mogeneities in global SWM, we show a time series of NH
SWM for MERRA-Land in Figure2a. Except for the first
two snow seasons (which have exceedingly large positive
anomalies compared to the rest of the time series), anoma-
lies are almost exclusively negative before 1998 with a
negative trend, and positive after 1999 with a weak, pos-
itive trend. Examining separate time series for EU and
NA (not shown) shows some covariability (12%) but that
Eurasian variability dominates the total (64%) compared
to NA (12%). Figure2b shows a spatial map of the differ-
ence in climatologies between 1983-1998 and 1999-2010.
The latter period has additional SWE over most of Eura-
sia. Comparing the 1981-1982 average to the 1983-2010
climatology also shows additional SWE uniformly across
Eurasia (not shown). Further analysis indicates the ad-
ditional SWE is a result of discontinuities present in the
precipitation data used to force the MERRA-Land model.
Similar evidence of temporal discontinuities can be found
in the other two datasets with spurious trends. In the case
of CMC, changes in spatial resolution of the precipitation
forcing that was used to drive the analysis (specifically,
increased resolution after 2006) result in a noticeable dis-
continuity in SWM anomalies at that time (not shown).
The discontinuity produces the positive trend in SWM
seen in Figure1 because the higher resolution precipita-
tion forcing better resolves deep alpine snow. In GLDAS
version 1 (trend shown in Fig.1 for the Noah LSM only)
a discontinuity occurs at the end of 1998 and results in a
strongly negative winter season trend roughly 3–4 times
larger than that found in any of the other datasets.

Comparing the five principal datasets of our analysis,
Crocus, ERA-I-Land and MERRA have more strongly
negative NH SWM trends than GlobSnow stemming from
more strongly negative trends over Eurasia with compa-
rable or more weakly negative trends over North Amer-
ica (continental breakdown not shown). GLDAS-2 shows
much weaker trends through the entire snow season than
the other four datasets. There is some consensus for de-

FIG. 2: a) Time series of anomalous NH SWM from MERRA-Land. b) Difference in climatological SWE between
1999-2010 and 1983-1998 periods for MERRA-Land.
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FIG. 3: a) Climatological total NH SWM for individual datasets and the multi-dataset mean for the 1981–2010 period.
The average of the NH alpine SWM time series from the four reanalysis datasets is added to the GlobSnow time series
in order to appropriately compare total NH SWM. b) Stacked bar chart of SWM differences between individual datasets
and the multi-dataset mean over pairs of months for various regions. Each individual dataset is colored as in panel a)
and for a given season shows a sequence of three bars corresponding to NA, EU and NH regions. Separate contributions
from the three land-types are stacked vertically using different shades for mid-latitudes, Arctic and alpine regions;total
difference summed over all land types on a given continent isshown by the bar with the black outline. Crocus and
MERRA differences have been multiplied by three; GLDAS-2, ERA-I-Land and GlobSnow differences are unaltered.

creasing NH winter SWE over the 1981–2010 period that
is consistent within situ trends to less snow cover in many
regions of the NH (Vaughan et al. 2013).

3. Results

a. Climatological snow water equivalent

Total NH SWM climatologies are shown in Figure3a
for the five SWE datasets and the multi-dataset mean. A
key finding is the large amount of spread in climatologi-
cal SWM among the products — during the seasonal peak
they vary by as much as 50%. In order to display total NH
SWM for GlobSnow alongside the other datasets we use
the average of the non-Globsnow datasets in alpine regions
so that the additional SWM seen in the GlobSnow clima-
tology stems from differences over non-alpine regions.

To better determine which datasets and regions account
for the spread among the individual climatologies, we de-
compose the differences between the individual datasets
and the multi-dataset mean by continental domain and
land type (Fig.3b). Three seasonal periods are pre-
sented (calculated as two-month averages) corresponding
to before-peak (December, January), near-peak (Febru-
ary, March), and after-peak (April, May) SWM. GLDAS-2
shows the largest difference from the multi-dataset mean
with less SWM over both continents during all month-
pairs and for all land types. The ERA-I-Land product
has the largest positive bias relative to the multi-dataset
mean, stemming primarily from differences with the other
datasets over Eurasia (especially in the Arctic). SWE
in GlobSnow peaks earlier in the season than the other

datasets. The MERRA and Crocus datasets show the
smallest differences from the mean although for Crocus
the similarity is in part because of opposite-signed differ-
ences in Arctic and alpine regions: Crocus has the most
SWM of all the datasets in the alpine regions of both con-
tinents, but it has less SWM in the Eurasian Arctic than
any of the other datasets except for GLDAS-2.

A close examination of Figure3b also shows that alpine
and Arctic regions generally contribute the most to the
differences in climatological SWM, which is consistent
with our a priori assumptions that SWE is most poorly
constrained in these regions. These regions have poor
agreement among precipitation data, sparse observing net-
works, and complex snow processes that occur, including
snow redistribution in the Arctic and complex elevational
gradients in alpine regions, all of which will increase the
uncertainty for the datasets. We show this result more ex-
plicitly in Figure 4 which shows the total spread (range of
dataset climatologies) in NH SWM according to land type.
The spread over Arctic and alpine regions is comparable
to one another but roughly 2–3 times larger than that over
mid-latitude regions.

We also examine the spatial distribution of the multi-
dataset mean and its spread in Figure5. The climatology
compares well with known features of the observed SWE
distribution (Brown and Mote 2009). Examining the ra-
tio of climatological SWE to the spread among the com-
ponent datasets provides a measure of the signal to noise
ratio. Regions with a ratio greater than one coincide ap-
proximately with the boreal forest regions of North Amer-
ica and Eurasia. That we have the best agreement in
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FIG. 4: Spread among climatologies for NH SWM by re-
gion over the 1981–2010 period.

the datasets over these regions is reasonable for several
reasons. These are regions where snow cover has well-
defined start and end points to the season and where mid-
latitude winter cyclones are well-represented in numeri-
cal weather prediction models. Further south of this zone,
differences in air temperature will have increasingly im-

portant impacts on accumulation through differences in
snow-on dates and rain/snow separation. Further north of
this zone uncertainty in the precipitation forcing increases.
Furthermore, because the taiga snowpack is generally spa-
tially homogeneous (Sturm et al. 1995), wind redistribu-
tion and topographic effects are minimal. The relative
consistency of the datasets across the NH boreal forest is
further supported by other measures of agreement among
the datasets (discussed later, see Figs.8 and11).

b. Snow water equivalent variability

We present time series of anomalous total NH non-
alpine SWM in Figure6 (anomalies calculated separately
for each dataset using its own climatology and individ-
ually detrended). Some years show good agreement in
the sign and evolution of SWM anomalies over the win-
ter (e.g. 1986/87, 1990-1992, 2001/02) while other years
show larger spreads in the anomalies (1988/89, 1996/97,
2009/10). Note the datasets evident as an outlier for a
given time period varies among all 5 component datasets
(i.e. GLDAS-2 in 1989; Crocus in 1993; GlobSnow in
1994; MERRA in 1999; ERA-I-Land in 2003).

In order to determine the strength of agreement between
datasets, we present pair-wise correlations between indi-
vidually detrended SWM time series in Figure7. Each
value is determined by correlating the detrended SWM
anomaly time series for a given pair of datasets for all
winter days (NDJFMA) over the entire 1981–2010 pe-
riod (such that each time series for a given pair contains
181× 30 days). Calculated as such, correlations reflect

FIG. 5: a) Climatology of multi-dataset mean SWE for February-March over 1981–2010 period. b) Ratio of climato-
logical SWE to spread among the five component datasets calculated for February-March over 1981–2010 period. The
black contour delineates the 1:1 ratio.
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FIG. 6: a) Anomalous total NH non-alpine SWM for the
five individual datasets (individually detrended). Grey
shading marks the range of anomalies (spread) among the
datasets on a given day.

both intraseasonal and interannual covariance. Slightly
different approaches were also evaluated: (1) determine
the intraseasonal correlation of winter season days (ND-
JFMA) for each year separately and average the thirty re-
sulting correlations; and (2) calculate the interannual cor-
relation for each calendar day and average the correlations
over the winter season (NDJFMA). We find that the results
are largely insensitive to which approach was used (corre-
lations affected at most by 0.05), and the ranking of which
datasets correlate best with one another shifts only slightly
among pairs involving GLDAS-2.

Because correlations involving GlobSnow only con-
sider non-alpine snow, the datasets have been ranked by
their correlations over non-alpine regions only, which dif-
fer slightly from those that consider all land types. Except
for GLDAS-2 with MERRA and GLDAS-2 with Crocus,
the difference in correlation between detrended and non-
detrended time series is less than 0.05, and these differ-
ences in correlation stem from differences over Eurasia
rather than North America (not shown). Examining sepa-
rately the time series for each continent, we note that all
datasets correlate better over NA than over EU. GLDAS-2
shows the weakest correlation with other datasets. Glob-
Snow has slightly higher correlations, and the remaining
three reanalysis-based datasets, i.e. MERRA, Crocus and
ERA-I-Land, are correlated with one another at∼ 0.8.
An increased correlation among these three datasets is ex-
pected since MERRA and Crocus both use the same forc-

FIG. 7: a) Correlations of daily (NDJFMA) SWM time se-
ries (1981–2010) between pairs of datasets. Correlations
are shown for detrended time series of NH (black), NA
(red) and EU (blue) SWM as well as non-detrended NH
(grey) SWM. Also shown are mean values of the SWE
pattern correlation between dataset pairs (green circles),
calculated daily and averaged over the NDJFMA season
and 1981–2010 period.

ing meteorology and the ERA-Interim meteorology is it-
self well correlated with that of MERRA. This point is
made inRienecker et al.(2011) and further investigated in
Section3c. Finally we also show the mean SWE spatial
pattern correlation for each dataset pair in Figure7 (cal-
culated daily and averaged over all wintertime days of the
thirty year period). The mean pattern correlation is lower
than the corresponding temporal correlation of total snow
mass. This result may be due to the presence of opposite-
signed spatial biases that cancel when spatially aggregated
into a SWM time series.

Figure8 presents a spatial map of the temporal corre-
lation. For this figure, rather than spatially aggregating
snow water before correlating, we calculate the temporal
correlation between pairs of SWE datasets for each grid
cell individually. Values plotted are the average among all
possible pairs of datasets (for alpine regions, the correla-
tions shown are the average of the six dataset pairs that
exclude GlobSnow, and for non-alpine regions they are
average of all ten pairs). Interestingly, alpine regions do
not exhibit noticeably weaker correlations than neighbor-
ing regions despite the comparatively large climatological
spread indicated in Figure4. Correlations are lower in
Arctic regions and the marginal snow zones and peak over
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FIG. 8: a) Spatial map of the mean correlation between
pairs of daily (NDJFMA) SWE time series (1981–2010).
Correlations of detrended time series are performed for
a given grid cell location between all available pairs of
datasets and averaged together.

the taiga, consistent with the high signal-to-noise present
in the climatology (Fig.5b).

Despite the reasonable spatial and temporal correla-
tions shown in Figures7 and 8, the inter-dataset spread
of SWM anomalies is comparable to the interannual vari-
ability. This result can be approximately assessed from
an examination of Figure6 but is shown explicitly in
Figure 9a, where for each day over the 1981–2010 pe-
riod, anomaly spread was calculated as the difference be-
tween the datasets with the maximum and minimum SWM
anomaly. This comparability in magnitude means that on
average at least one of the datasets fails to agree on the
sign of the anomaly. When the same analysis is applied to
non-detrended data, it is apparent that differences in trends
among the datasets are not responsible for the majority of
the spread.

We also quantify the relative contribution of each
dataset to the total spread, defined as theattributed spread.
To calculate this quantity for each grid cell on a given day
and year, we partition the total spread between just two
of the five datasets: those with the maximum and mini-
mum anomaly on that day. The magnitude of spread at-
tributed to each is the absolute difference between each
dataset’s anomaly and the multi-dataset mean. This def-
inition allows a particular dataset to accrue more of the
total spread for the given day if it is further from the mean
value. The remaining datasets are attributed no spread for
the given day, but may be attributed spread on other days.
This definition may be extended to a time series compris-

FIG. 9: a) Spread in anomalous SWM among detrended datasets (black, solid), non-detrended datasets (black, dotted)
and interannual variability of multi-dataset mean (grey, solid) over the 1981–2010 period. b) Spread in anomalous
SWM attributed to each of the five component dataset time series (1981–2010). Total spread (black) is measured on left
axis. Spread attributed to individual datasets measured onright axis (2× smaller). A smoothing window of 30 days has
been applied to all curves for clarity. See text for definitions of spread and attributed spread.
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FIG. 10: a) NH interannual variability of SWM for each dataset. b) Attributed spread calculated from standardized
SWM for each dataset. A smoothing window of 30 days has been applied to all curves for clarity.

ing any number of datasets as long as only two component
datasets are attributed the full spread on a given day (as
expected in the case with only two datasets, each would
always receive half of the total spread). By definition, the
sum of attributed spread across the total number of compo-
nent datasets is equal to the total spread. Figure9b shows
the amount of spread attributed to each of the five com-
ponent datasets averaged over the 1981–2010 period. In
order to account for alpine regions in GlobSnow, the mean
of the remaining four datasets was used to fill in alpine
SWM in GlobSnow. This accounting means that spread
is attributed to GlobSnow only when it stems from SWE
differences in non-alpine regions.

Ranked in sequence, MERRA is attributed the least
spread, followed by Crocus, ERA-I-Land and GLDAS-2
while GlobSnow is attributed the most. While the first
three datasets constitute roughly half of the total spread,
GLDAS-2 and GlobSnow together are responsible for the
remaining half, each contributing approximately one quar-
ter of the total. Note that ERA-I-Land’s attributed spread
peaks during the spring and that GlobSnow has relatively
low attributed spread during the spring, but a large amount
during the fall and early winter. We may understand these
two results by considering that attributed spread convolves
the frequency that a given dataset is an outlier with its dis-
tance from the mean anomaly. Figure10a demonstrates
that ERA-I-Land’s standard deviation (which will be re-
lated to its distance from the mean dataset anomaly) peaks
during the spring while that of GlobSnow peaks during the
fall and early winter. Each of these two datasets are also
more frequently outliers during these seasons (as opposed
to Crocus which shows a similar spring peak in interannual

variability but is not a frequent outlier). The combination
of these two traits means each dataset accrues more spread
during the time of year that it shows increased variability.
It is possible to account for these separate effects by stan-
dardizing the time series (i.e. by dividing each dataset’s
time series by its interannual standard deviation for that
calendar day) and examining the spread in the standard-
ized time series (Fig.10b). The spread now attributed to
each dataset is more constant throughout the snow sea-
son (total spread of all datasets is around 2 standard devia-
tions) and more closely reflects the proportion of days and
years that the particular dataset is an outlier. Calculated
as such, GlobSnow, Crocus, MERRA and ERA-I-Land
all contribute approximately equally to the total spread;
by contrast, GLDAS-2 contributes approximately twice as
much to the total spread.

The spatial distribution of signal to noise for SWE
anomalies (defined as the ratio of absolute deviation of the
multi-dataset mean to the spread among the datasets) is
shown in Figure11a. Consistent with the relative magni-
tudes of SWM anoamlies and spread shown in Figure9a,
the signal-to-noise ratio of the local SWE distribution is
less than one nearly everywhere. It is larger in the boreal
forest region than elsewhere, consistent with results for
climatological SWE and for temporal correlations of daily
SWE. The signal-to-noise ratio among only the MERRA,
ERA-I-Land and Crocus datasets is substantially larger
indicating better agreement among these three datasets
(Fig. 11b). These datasets are referred to as ‘Group 1’
datasets in the figure, for reasons described next.
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FIG. 11: a) Ratio of absolute anomaly size for multi-dataset mean to dataset spread, calculated daily and averaged over
February-March and 1981–2010 period. b) Same as a) but only for the MERRA, ERA-I-Land and Crocus datasets
(Group 1, see Sec.3c). The black contour delineates the 1:1 ratio.

c. Relative influence of land model and meteorological
forcing on reanalysis-based datasets

Finally, we examine the relative influence of differences
in the precipitation forcing versus differences in the treat-
ment of snow processes in the land model on the result-
ing correlation and spread of SWM time series. For this
analysis we use two separate groups of reanalysis-based
datasets. The first of these two groups (Group 1) contains
the MERRA, ERA-I-Land and Crocus datasets. We con-
sider these datasets to form a single group because they
use meteorological forcing from either the MERRA or
ERA-Interim reanalyses, which have been shown to be
well-correlated with one another (Rienecker et al. 2011).
The second group (Group 2) contains four GLDAS-1
products. Each of these datasets has been forced using the
same GDAS forcing data, however each one uses a dif-
ferent land model as described in Section 2 and Table 1.
Because the forcing data for GLDAS-1 contains changes
over the 1981–2010 period, we restrict our analysis to the
2001–2010 period over which the forcing data is consis-
tent.

Figure12a shows that the spread in climatologies within
each of the two groups is affected by the particular land
models that are included. The spread shown in the grey
shading (Group 1 plus GLDAS-2) is comparable to that
found among the Group 2 products and remains compa-
rable with the exclusion of the Noah-associated products
from both groupings (but is decreased by about half). Note
that both versions of GLDAS that use the Noah land sur-
face model are outliers with similar (but especially low)

SWM climatologies, despite using different meteorologi-
cal forcing. This shows it is possible to obtain similar cli-
matologies from the same land surface model while using
different meteorological forcing. We also see that using
the same meteorological forcing but different land models
(Group 2) results in a large climatological spread. These
results imply that differences among the land models gen-
erate the majority of the climatological spread. We exam-
ine the effect on the correlation of the SWM time series in
Figure12b. Datasets within each of the two groups cor-
relate very well with one another over all continental do-
mains and over all land types. However the correlations of
SWM time series between the two groups are substantially
lower, especially over alpine and Arctic regions. This re-
sult suggests that differences in the meteorological forcing
exert a larger influence on the resulting SWM correlation
than differences in the details of the land-model used to
produce the data. We also note that agreement with the
GlobSnow product (an independent estimate of SWM) is
higher for Group 1 datasets (circles, right column) than for
Group 2 datasets (diamonds, right column). Since the me-
teorological forcing data for Group 1 is more recent, this
may represent an improvement in the accuracy of the more
recent reanalyses.

4. Conclusion

We have presented a comparison of five daily, grid-
ded Northern Hemisphere SWE datasets over the 1981–
2010 period. Our intent is to make available the
multi-dataset mean and corresponding spread of both
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FIG. 12: a) Spread in total NH SWM for Group 1 (MERRA, Crocus, ERA-I-Land) plus GLDAS-2 (grey shading).
Climatologies for the four GLDAS-1 products (Group 2) are shown in the labeled curves. The single GLDAS-2 product
is also shown for comparison. b) Mean pairwise correlation among different groups of SWM time series (2001–2010).
For each of the three groupings the average correlation is calculated for NA (red), EU (blue) and NH (black) SWM time
series. For each land mass and group, four averages are shownin sequence for SWM summed over all land types, only
mid-latitude, only the Arctic and only alpine regions. Meancorrelations of Group 1 (circles) and Group 2 (diamonds)
total NH SWM time series (all land types) with GlobSnow are also shown. Correlations with GlobSnow over individual
land types are omitted for clarity.

the climatology and anomalies as part of the Na-
tional Center for Atmospheric Research (NCAR) Climate
Data Guide (https://climatedataguide.ucar.edu/climate-
data). Our analysis has shown that the individual datasets
exhibit a large amount of spread in their total snow water
mass (SWM) climatologies (Figs.3 and4) as well as their
anomalies (Fig9a). Despite the large spread, the SWM
time series show moderate to good correlations with one
another, approximately 0.85 for the three datasets using
modern reanalysis meteorological forcings; these corre-
lations are higher over North America than over Eurasia
(Fig. 7). Boreal regions not only have the lowest relative
amount of spread (highest signal-to-noise) for both clima-
tological SWE (Fig.5) and SWE anomalies (Fig.11), but
these regions also have the highest temporal correlation
among the SWE datasets (Fig.8). We have also examined
the relative influence of the particular land surface model
compared to the choice of meteorological forcing using a
suite of reanalysis-derived datasets. The former accounts
for the majority of the spread in the climatologies while
the latter exert a larger influence on the resulting SWM
correlation (Fig.12). More modern reanalysis-derived
datasets also show improved correlation with the satellite
product, GlobSnow, compared to the previous generation
(Fig. 12).

This analysis of gridded SWE data has yielded impor-
tant insights on the amount of spread, and the strength
of spatial and temporal correlation between independent
SWE datasets. At this point, the relatively good agreement
between some groups of datasets (i.e. modern reanalysis-
derived datasets such as MERRA, ERA-I-Land, and Cro-
cus) does not imply lower bias compared to the ground
truth, only that these datasets are generally consistent with
each other. The agreement between these three datasets
is not surprising given the commonalities in how SWE is
derived: modern reanalysis meteorology and high quality
precipitation forcing coupled with state of the art land sur-
face models. A product like GlobSnow adopts an entirely
different approach by blendingin situ snow depth ob-
servations and satellite passive microwave measurements
through the use of a microwave snow emission model.
Going forward the challenge to the community is how to
combine these unique perspectives with their respective
strengths and sources of error.

Given the spread in climatology, these results highlight
the sensitivity of climate analysis to the selection of an
individual SWE dataset for model evaluation from the
available pool of data. For example, evaluation of simu-
lated SWE with ERA-I-Land (highest pre-melt SWE) ver-
sus GLDAS (lowest pre-melt SWE) could lead to entirely
different interpretations of model performance and bias.
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There are also seasonal and regional differences which are
also important for users to consider. For example, ERA-
I-Land has very different biases over NA compared to
EU, Crocus has different biases for Arctic versus alpine
snow, while GlobSnow exhibits different seasonality than
the multi-dataset mean.

For applications like climate model evaluation, it is
straightforward to see the value in using an ensemble of
SWE datasets for evaluation of a multi-model ensemble of
simulations. This approach would illustrate the overlap (or
lack thereof) in simulated climate realizations against the
uncertainties in characterizing our current climate, which
is evident when a single dataset is used to characterize
reality (for instanceDerksen and Brown 2012). For land
surface data assimilation applications, an ensemble ap-
proach could be used to statistically characterize observa-
tional uncertainty, an important requirement for the assim-
ilation of the model first guess with observations.

What remains to be determined is how to select the
SWE datasets for inclusion in an observational ensem-
ble. Thresholds based on attributed spread or detrended
anomaly correlations could be the basis for selecting a
sub-group of datasets, but this must be done with caution.
In the absence of an evaluation with representative ground
measurements, agreement between a subset of datasets
does not necessarily represent better overall accuracy in
representing reality. Comparisons with independent ref-
erence measurements in order to determine the dataset
bias relative to ground truth are ultimately necessary and
currently underway within the European Space Agency’s
Satellite Snow Product Intercomparison and Evaluation
Experiment (SnowPEX). In advance of a comparison with
high quality in situ reference datasets, quantifying the
spread between different available products, as was ac-
complished in this study, is an important step in informing
users of the level of spatial and temporal agreement be-
tween products and the relationship of individual datasets
to the multi-dataset mean.
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