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RESONANCE OVERLAP IS RESPONSIBLE FOR EJECTING PLANETS IN BINARY SYSTEMS
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ABSTRACT
A planet orbiting around a star in a binary system can be ejected if it lies too far from its host star. We find that

instability boundaries first obtained in numerical studies can be explained by overlap between sub-resonances
within mean-motion resonances (mostly of the j:1 type). Strong secular forcing from the companion displaces
the centroids of different sub-resonances, producing large regions of resonance overlap. Planets lying within
these overlapping regions experience chaotic diffusion, which in most cases leads to their eventual ejection.
The overlap region extends to shorter-period orbits as either the companion’s mass or its eccentricity increase.
Our analytical calculations reproduce the instability boundaries observed in numerical studies and yield the
following two additional results. Firstly, the instability boundary as a function of eccentricity is jagged; thus,
the widest stable orbit could be reduced from previously quoted values by as much as 20%. Secondly, very
high order resonances (e.g., 50:3) do not significantly modify the instability boundary despite the fact that
these weak resonances can produce slow chaotic diffusion which may be missed by finite-duration numerical
integrations. We present some numerical evidence for the first result. More extensive experiments are called
for to confirm these conclusions. For the special case of circular binaries, we find that the Hill criterion (based
on the critical Jacobi integral) yields an instability boundary that is very similar to that obtained by resonance
overlap arguments, making the former both a necessary and a sufficient condition for planet instability.
Subject headings: binaries:general—gravitation—instabilities—planetary systems

1. INTRODUCTION

The majority of solar-type stars in our neighborhood (∼
60%) are in binary or higher-multiple systems (Duquennoy &
Mayor 1991). Despite this majority, there are still questions as
to how many of these multiple-star systems host planets, and
whether or not the planet formation process inside these sys-
tems differs markedly from that around single stars. Radial-
velocity surveys have shown that ∼ 20% of the extra-solar
planets reside in binaries (Eggenberger et al. 2004), but the
true fraction is likely higher as these surveys select against
observing known binaries.

While it is clear that much theoretical and observational ef-
fort is still needed to fully answer the above questions, much
progress has been made in one sub-area of this issue—the
dynamical stability of planets in binary systems. The body
of literature on this topic is extensive, with most studies us-
ing numerical techniques. Hénon & Guyot (1970) numeri-
cally studied periodic planet orbits in circular binaries (circu-
lar restricted problem) as a function of the binary mass ratio.
Benest (1993) included binary eccentricity in his study but
only focused on a few astronomical systems. Rabl & Dvo-
rak (1988) also considered eccentric binaries but limited their
studies to equal-mass stars. Holman & Wiegert (1999, here-
after HW99) is the most comprehensive and homogeneous
study to date. They numerically integrated (initially circu-
lar) planet orbits for 104 binary periods, and charted out the
stability region as a function of binary separation, eccentric-
ity, and mass ratio, for both the S-type (circum-stellar) and P-
type (circum-binary) planetary orbits. Pilat-Lohinger & Dvo-
rak (2002) have since included the effect of planet eccentricity
but found it to be less important than the binary eccentricity.
With the intention to quantify the confines of habitable zones
around binary stars, Musielak et al. (2005) also investigated
the stability of both S-type and P-type planetary orbits in cir-
cular binaries. To this end, they adopted a criterion for stabil-
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ity that differs slightly from that used in other works. How-
ever, they found results that largely agree with those from pre-
vious works, including those of HW99. Marzari et al. (2005)
examined the stability of multiple planets in binary systems,
including the effects of mutual planetary perturbations. In this
case, interactions among the planets themselves appear to be
the leading cause for instability. David et al. (2003) concen-
trated on studying ejection timescales for planets within the
unstable region. They established an empirical formula for
the ejection timescale that is a steep function of the periastron
distance for the binary companion. Beyond a certain distance,
however, this trend is expected to break down and the ejec-
tion time become infinite (the system becomes stable). The
location of this break is the boundary for which we are in-
terested in searching. Since the afore-mentioned papers have
confirmed the HW99 results, we focus on comparing our an-
alytical results against those of HW99 exclusively.

The numerical results of HW99 and Rabl & Dvorak (1988)
uphold the expectation that the stability space (comprising
the binary’s eccentricity and the ratio of the planet’s semi-
major axis to that of the binary) shrinks with decreasing stel-
lar separation, with increasing orbital eccentricity, and with
increasing companion mass. However, the underlying physi-
cal mechanism for planet ejection has yet to be demonstrated.
Moreover, current computational capabilities limit the inte-
gration time (up to 104 binary orbits in HW99) and permit
only coarse-grid parameter searches. The former limitation
may allow longer-term instabilities to be missed while the lat-
ter blurs the transition from stability to instability, hiding the
existence of possible ‘(in-)stability islands.’

Our current study aims to overcome these limitations. We
expose the instability mechanism, delineate the topology of
transition between stability and instability, and exclude the
possible existence of longer-term instabilities. We accomplish
these aims by studying individual orbital resonances and the
conditions for which they overlap, adopting resonance over-
lap as a necessary and sufficient criterion for chaotic diffu-
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sion, and consequentially, for planet instability. In this work,
we focus our attention on the orbits most relevant for radial-
velocity searches—the so-called S-type orbits (Dvorak 1984),
where the planet orbits around one of the stars. The second
star is considered to be an external perturber. We also limit
our studies, like most numerical works, to coplanar systems.
Non-coplanarity introduces new resonances, which may ren-
der the systems more unstable.

In this paper, we first present analytical arguments that al-
low us to determine the boundaries of stability (§2) and then
compare them against numerical results from HW99 (§3). We
dedicate a special section to the case of circular restricted
problem (§4) and present our conclusions in §5.

2. RESONANCE OVERLAP

Chaotic diffusion associated with resonance overlap has
been shown to be responsible for all known cases of instabil-
ity in the solar system, including the clearing of the Kirkwood
gaps within the asteroid belt and the orbital stability of planets
and short-period comets (Wisdom 1980a; Dermott & Murray
1983). In this context, the most massive perturber, Jupiter, has
a mass ratio to the Sun of ∼ 10−3, and in addition to (fairly
low-order) 2-body mean-motion resonances, both secular res-
onances and 3-body resonances have also been shown to be
relevant (for a review, see Lecar et al. 2001).

The situation in a binary system is different. The compan-
ion star is the lone perturber with a mass ratio of order unity.
The only relevant resonances are the 2-body mean-motion res-
onances (MMRs), but these are not limited only to low-order.

Despite having µ = m′/(mc + m′) ∼ 1 in our case, where m′

is the companion mass and mc the host star mass, we adopt
the formalism of the disturbing function formally derived for
µ � 1. We believe that this formalism includes all relevant
resonant angles and correctly describes the resonance strength
to order unity, which is sufficient for our purpose (more later).
The disturbing function for the planetary orbit has the form
(Murray & Dermott 1999, hereafter MD99)

R =
Gm′

a′

∑

S j cosϕ j, (1)

where a′ is the semi-major axis of the binary companion. We
use primed variables for the orbital elements of the binary
companion, and unprimed variables for those of the planet
(which has mass m). S j is a coefficient that depends on the
eccentricities of the planet and the external companion, and
on the ratio of their semi-major axes, α = a/a′. The mean
motion, n, is expressed as n2 = G(mc +m)/a3. The angle argu-
ment is

ϕ j = j1λ
′ + j2λ+ j3ϖ′ + j4ϖ, (2)

where ϖ is the longitude of pericentre, and λ is the mean lon-
gitude. The mean longitude and mean motion are related by
λ = nt + ε where ε is the mean longitude at epoch. Similar re-
lations exist for the companion. The summation in equation
(1) is formally over all integer combinations ( j1, j2, j3, j4) that
satisfy the d’Alembert relation: j1 + j2 + j3 + j4 = 0. However,
at a given α value, only a few combinations are relevant for
the dynamics—for the other combinations, the angle ϕ j varies
with time too fast to have any sustained long-term effect. Re-
moving these fast oscillating terms by integrating over an ap-
propriately long time and keeping terms to the lowest order in
eccentricities, we obtain the averaged disturbing function,

R=
Gm′

a′

[

fs1(e2 + e′2) + fs2ee′ cos(ϖ′ − ϖ)

+ fre
′| j3|e| j4| cosϕ j

]

. (3)

The first two terms in the brackets arise from the two low-
est order secular interactions, while the last term accounts for
MMRs situated at j1n′ + j2n ≈ 0. In particular, these could
include resonances that share the same j1 and j2 values but
have different j3 (and therefore j4) values. We call these ‘sub-
resonances’ of a given MMR ( j1, j2). Their importance will
become clear later. The coefficients fs1 and fs2 are functions
of α alone. Explicit expressions for them are presented in Ta-
ble B.3 of MD99. The fr coefficient depends on α as well
as the particular resonance under consideration. MD99 cited
two expansion formulas (eqs. [6.36] and [6.113] in MD99) to
calculate the interaction strength for any resonance and listed
explicit expressions for low-order resonances (Appendix B of
MD99). We find that both expansion formulas yield simi-
lar results and agree with the explicit formula at low-order.
These expansions diverge for e′ > 0.6627434 (see MD99), so
we limit our studies to e′ < 0.6.

Variations of the planet’s orbital elements are obtained us-
ing Lagrange’s equations as

ṅ = 3 j2Crne′| j3|e| j4| sinϕ j, (4)

ė = −Cs2e′ sin(∆ϖ) + j4Cre
′| j3|e| j4|−1 sinϕ j, (5)

ϖ̇ = 2Cs1 +Cs2
e′

e
cos(∆ϖ) + | j4|Cre

′| j3|e| j4|−2 cosϕ j, (6)

ε̇=Cs1e2 +
Cs2

2
e′ecos(∆ϖ) +

| j4|
2

Cre
′| j3|e| j4| cosϕ j, (7)

where ∆ϖ is the secular angle argument, ∆ϖ = ϖ′ −ϖ. More-
over, the C-coefficients are related to the f -coefficients in
equation (3) by Cx = [Gm′/(na2a′)] fx ≈ (m′/mc)nα fx(α). The
variation in ε is smaller than that in ϖ by a factor of e2 and
can be neglected. Perturbations of the companion’s orbital
elements due to the planet are also ignored.

Exact resonance occurs when both sinϕ j = 0 and ϕ̇ j = 0,
viz. j1n′ + j2n + j4ϖ̇ = 0. Near this location, ϕ j librates about
the resonant value. Moving away from this location, there
exists a boundary beyond which ϕ j changes from libration
to circulation. This boundary defines the width of the reso-
nance, namely, the range of space over which the resonance
dominates the planet’s dynamics. When the widths of two
resonances become comparable to their separation, the planet
can be affected simultaneously by these overlapping reso-
nances. Mathematically, the overlap of two or more reso-
nances causes neighboring trajectories to diverge exponen-
tially with time (Chirikov 1979; Wisdom 1980a). This occurs
on the Lyapunov timescale (TL), which, as argued by Holman
& Murray (1996), is comparable to the libration timescale for
the resonances in question. Except in the case of ‘bounded
chaos,’ orbital parameters for the planet undergo unbounded
random walks leading to ejection on a timescale called the
event timescale (Te). Though Te fluctuates depending on the
system, studies have shown that it roughly correlates with TL
(see, e.g. Lecar et al. 1992).

In our problem, the large companion mass produces strong
secular forcing, making it different from typical solar-system
dynamics problems. Firstly, even if the planet initially has
zero eccentricity, it is forced to oscillate with an eccentricity
amplitude (eqs. [5] and [6])

esec =
Cs2

2Cs1
e′ , (8)

on the short secular timescale ∆t ∼ 2π/(2Cs1). The magni-
tude of esec decreases with decreasing α but can be as large
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as e′/2 near the 3:1 resonance. We find that esec ∼ αe′. For
equal-mass binaries, the secular timescale ranges from ∼ 20
planet orbital periods at the 3:1 resonance to ∼ 1000 periods
at the 20:1 resonance. While the secular timescale is likely
too long when compared with the mean-motion of the com-
panion to allow for the ‘evection resonance’ (Touma & Wis-
dom 1998),1 it is typically much shorter than the resonant
timescale. Considering also that the resonant strength is at
maximum when the value of e is at its largest, we can assume
that e = esec for the resonant interactions. Planets possessing
a free eccentricity in addition to the forced value can reach
higher overall eccentricity and will therefore be more unsta-
ble.

The second effect of the companion’s strong secular forc-
ing is to displace the centroid of different sub-resonances
away from each other. In Appendix A, we derive expres-
sions for the centroid and the width of a resonance when
secular forcing is important. While the width remains un-
changed from the non-secular case, the centroid of a MMR
is shifted from its nominal position, ( j1n′ + j2n = 0), by an
amount, |δn| ∼ |2( j4/ j2)Cs1|. As a result, the region of reso-
nance overlap is greatly expanded. This effect is illustrated in
Fig. 1 for two groups of MMRs.

Resonance overlap generates chaotic diffusion, but as
pointed out by Murray (1992), under some circumstances
resonance overlap will lead only to ‘bounded chaos’—
unpredictable but limited variations in the orbital elements.
One such example is provided by Gladman (1993). Results
from our numerical experiments (Fig. 2) as well as discus-
sions in §4 suggest that this is not a major concern for deter-
mining the instability boundary. In the remaining discussion
we, therefore, do not distinguish between the concepts of res-
onance overlap and planet instability.

Another question relates to whether the overlap between
sub-resonances is as potent as that between distinct MMRs,
thereby leading to planet instability on an astronomically in-
teresting timescale (see the review by Malhotra 1998). We
present calculations in §3 which suggest that this is indeed so.

3. COMPARISON WITH HW99 AND DISCUSSION

In our determination of regions of resonance overlap, we in-
clude resonances with j1 ≥ 3, −4 ≤ j2 ≤ −1, and −| j1 + j2| ≤
j3 ≤ 0. We restrict the value of j2 since the strength of a
resonance scales as e′| j3| e| j4| ∝ e′| j1+ j2| (eq. [3]). For a given
orbital separation, α, the ratio of j2/ j1 is determined by Ke-
pler’s third law: α3 = ( j2/ j1)2(1 − µ); hence, the strongest
resonances have j2 = −1. In fact, we show that even the
j2 = −4,−3, and −2 resonances do not affect the instability
boundary much. Moreover, while j3 = 0 is the strongest sub-
resonance in solar system dynamics (in light of Jupiter’s small
eccentricity), we find here that all sub-resonances are essen-
tial to determine the overlap region.

Coupling strengths are calculated using the afore-
mentioned series expansion formulas in MD99 (eqs. [6.36]
or [6.113]). The location and width of each resonance are
obtained as described in Appendix A. Planet eccentricity is
taken to be the secularly-forced value (eq. [8]). All coeffi-
cients are evaluated at exact resonance, assuming the reso-
nance width is small. In the (α,e′) phase space, a region is
designated as unstable if more than one resonance (or sub-
resonance) spans it. We further assign a similar status, at the

1 When the companion mass dominates, µ → 1, the evection resonance
may become important. See §4.

FIG. 1.— Location and width of various sub-resonances as a function of e ′,
obtained for a µ = 0.1 binary. The top group are the sub-resonances of the 5:1
MMR (identified by their respective j4 values) and the lower group, of the 6:1
MMR. We take the planet eccentricity to be the secularly-forced value. The
centroids of different sub-resonances within a distinct MMR are displaced
from each other due to both secular and resonant forcing though the secular
effect dominates at low values of e′. Shaded regions are regions of instability,
as defined in the text. Overlap between sub-resonances of the same MMR
covers a much larger region than overlap between distinct MMRs.

same value of e′, to the entire extent in α of the sub-resonance
in which this region is situated (see Fig. 1). Depending on
its orbital phase, a planet situated within a single resonance
(elsewhere spanned by additional resonances), but which is
still outside of the region of overlap proper, may (or may not)
librate into the latter. This definition of unstable regions en-
sures that all potentially unstable orbits are included. Again,
our analytical study is limited to e′ < 0.6 to ensure a converg-
ing disturbing function.

Our full results are shown in Fig. 2 for mass-ratio µ = 0.1,
and in Fig. 3 for µ = 0.5. As has been indicated in Fig. 1,
the instability boundary is jagged, with jutting peninsulas and
narrow inlets. This is different from the smooth lines pre-
sented by HW99. However, their curves largely trace the out-
line of our results. The two sets of results can be considered
consistent since HW99 carried out their investigation over a
crude grid in α − e′ space. To confirm this, we perform sim-
ilar numerical integrations, with a much finer grid in a se-
lected region of α − e′ space. We adopt the Hierarchical Ja-
cobi Symplectic integrator by Beust (2003), an add-on to the
SWIFT package (Duncan et al. 1998) for studying dynamics
in multiple-star stellar systems. Planets are initialized to have
random orbital phases and an eccentricity given by e = esec
(initializing planets with zero eccentricity produces similar
results). We integrate their orbits for 3000 binary periods.
The stability of these orbits is indicated in the inset of Fig. 2.
The detailed topology agrees well with that obtained from our
perturbation analysis, and in many cases, one can even iden-
tify the (sub)-resonances responsible for the instability. This
suggests that resonance overlap and the consequential chaotic
diffusion is the mechanism responsible for the planet instabil-
ity observed in HW99’s numerical investigation. Moreover,
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10:3 Resonance
  7:2 Resonance
11:3 Resonance

  4:1 Resonance

13:3 Resonance
  9:2 Resonance

  5:1 Resonance

FIG. 2.— Stability diagram for planets in a µ = 0.1 binary system. The solid
curve connecting filled circles locates the maximum stable value of α = a/a′

as obtained by HW99 while dots map regions of instability caused by reso-
nance overlap. Resonances included in this calculation are described in the
text. The instability boundary as it exists when considering only the distinct
MMRs (keeping j3 = 0) is denoted by filled triangles. Over the eccentric-
ity range of interest, overlap between sub-resonances is the most significant
source of planet instability. As e′ → 0, widths of most resonances approach
0 except for the 2:1 and 3:1 resonances. The dashed curve shows the lower
confine of a 3:1 resonance—overlap between sub-resonances within the 3:1
MMR can explain instability in circular binaries. Inset: results of numerical
integration over a selected region of α − e′ space. Dashes represent planet
orbits that remain stable for more than 3000 binary periods; filled squares
represent unstable orbits. Horizontal lines indicate centroid locations of cer-
tain MMRs that are responsible for the jutting peninsulas. At each e′ value,
j2 = −1 MMRs yield the shortest-period unstable orbits. Stability for points
near the instability boundary are sensitive to the initial conditions. Regions
of resonance overlap coincide with that for planet instability and there is little
evidence for ‘bounded chaos.’

there is little evidence for ‘bounded chaos’ near the instabil-
ity boundary, so that one can adopt the boundary of resonance
overlap as the boundary for planet instability.

In an effort to delineate the differences between the chaotic
dynamics existing within regions of resonance overlap and the
regular dynamics existing just outside such regions, we nu-
merically integrate two sets of two initially ‘close’ planets.
Both sets of planets are situated near the 5:1 MMR in a binary
system with mass ratio, µ = 0.1, and eccentricity, e′ = 0.2.
The first set of two planets are situated directly within the
region of overlap at α = 0.33, while the second set are sit-
uated just outside the region of overlap at α = 0.32. Fig. 4
presents the results of integrating the first set of two planets
initialized with identical orbital parameters except for a tenth
of a degree difference in their orbital phase positions. The
Lyapunov timescale is defined as the timescale for exponen-
tial divergence between two infinitesimally close orbits. We
roughly estimate this timescale for the trajectories presented
in Fig. 4 and obtain TL ≈ 10 binary orbits. De-correlation in
the semi-major axis and eccentricity becomes apparent to the
eye after approximately 50 binary orbits. The libration time
within this resonance, which one expects to be of the same or-
der as the Lyapunov time, is ∼ 54 binary orbits. The planets

FIG. 3.— Stability diagram for planets in an equal-mass binary system
(µ = 0.5). Symbols are the same as those in Fig. 2. We obtain these results
using a perturbation formula that is strictly valid only for µ � 1—this may
account for some of the discrepancy between our results (dots) and those of
HW99 (solid curve).

are ejected in turn after about 1500 and 3800 binary orbits.
Further integrations at the same location with different initial
orbital phases show a wide spread in the ejection times rang-
ing from 50–4000 binary orbits, corresponding to ∼ 104 – 106

years for a solar-mass binary at 50 AU. Murray & Holman
(1997) and David et al. (2003) presented two different empir-
ical expressions that relate the (widely scattered) ejection time
(Te) to the Lyapunov timescale. The former found a relation-
ship between these two timescales (applicable to overlapping
sub-resonances) given by Te/T ′ = 10a(TL/T ′)b where a = 1.45
and b = 1.68, and where T ′ denotes the binary orbital period.
Applying this formula to our case yields an ejection time of
Te/T ′ ∼ 2000. The expression by David et al. (2003) yields
a comparable value of Te/T ′ ∼ 7400. Within the scatter, both
values agree with our experiments.

Adopting the expression by Murray & Holman (1997), we
obtain ejection times for various resonances. Lower order res-
onances lead to faster ejection, while at the higher end, for
example, the 30:1 resonance, we find Te/T ′ ≤ 106 for a sys-
tem with mass-ratio, µ = 0.1. This resonance (corresponding
to α = 0.10) defines the maximum stable orbit for the most
eccentric binary orbit we consider (e′ = 0.66). The ejection
time corresponds to ∼ 400 Myrs for a 50 AU binary and ∼ 1
Gyrs for a 100 AU binary (all assuming a total system mass
equal to one solar-mass). We conclude that overlap of sub-
resonances leads to planet ejection on astronomically inter-
esting timescales, for the parameters we have considered.

By contrast, the results of the second set of integrations
where we instead situate the two planets just outside the re-
gion of resonance overlap at a location given by α = 0.32, do
not exhibit sensitivity on the initial conditions and no planet
is ejected within our integration time (104T ′). The transition
to instability occurs over a narrow region.

One major discrepancy between our results and those of
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FIG. 4.— Numerical integration of two planets initialized with identical or-
bital parameters except for a tenth of a percent difference in the initial orbital
phase. The resulting semi-major axis and eccentricity are plotted as functions
of time (measured in binary orbital periods, T ′) in solid (or dotted) curves for
each planet. The Lyapunov timescale is estimated to be ∼ 10 binary orbits,
and de-correlation in the semi-major axis and eccentricity becomes apparent
to the eye after approximately 50 binary orbits. The planets are ejected in
turn after about 1500 and 3800 orbits.

HW99 can be observed in Fig. 3 for equal-mass binaries: at
low binary eccentricity, the HW99 curve falls below that ob-
tained from our perturbation analysis. This likely reflects fail-
ure of the expansion formula when µ is large (more below).

A key question of interest asks, what is the longest-period
stable planet orbit, for a given binary (fixed µ and e′)? HW99
provided a fitting formula for the minimum unstable α as a
function of µ and e′. Our results here indicate, however, that
the minimum unstable α should be reduced by up to ∼ 20%
from their values. This is related to the thin instability penin-
sulas evident in our Figs. 2 and 3.

In order to understand how the outline of the instability
boundary depends on various parameters, we propose the
following rough scaling argument. Let neighboring sub-
resonances be spaced by ∆n, where due to secular forcing,
∆n ≈ 2|Cs1/ j2| (eq. [A5]). Resonant interactions also mod-
ify the centroid of a resonance, but they are less important
than the secular effect for small e′. The width of an individ-
ual sub-resonance, k, is expressed in equation (A6), which in
most cases can be simplified as k ≈ [4 j2

4/(3 j2)] |Cr|e′| j3|e| j4|−2.
Adopting e = esec ≈ αe′, and requiring resonance overlap
(∆n < 2k), we find that instability occurs when

α ≥ αcrit =

(

3
4| j4|2e′| j1+ j2|−2

∣

∣

∣

∣

Cs1

Cr

∣

∣

∣

∣

)1/(| j4|−2)

. (9)

Defining f4 = | j4/ j1|, and relating j1 to α by Kepler’s Law,
| j1/ j2|2α3 = 1 −µ, we recast equation (9) as

α ≥ αcrit ≈

(

3
4 f 2

4 | j2|
2(1 −µ)e′| j1+ j2|−2

∣

∣

∣

∣

Cs1

Cr

∣

∣

∣

∣

)1/( f4| j1|−5)

,

(10)

FIG. 5.— Comparison of instability boundaries obtained based on simple
approximations of our analytical arguments (eq. [10]) and numerical results
of HW99. The group of dashed curves represent the approximate overlap
condition for j2 = −1 MMRs, while the dot-dashed ones represent those for
j2 = −2 MMRs, both with | j4| = j1/2. Within each group, from top to bottom,
the value of the mass-ratio is µ = 0.1,0.2 (these two curves almost coincide),
and 0.5, respectively. If we recalculate the bottom-most dashed curve (µ =
0.5) assuming the value of Cs1/Cr is 10 times smaller, we obtain the results
shown in the dotted curve.

where j1 is also a function of α. Numerically, we observe
that, regardless of the mass ratio and the resonance involved,
|Cs1/Cr| rises monotonically with f4 and clusters around 0.02
when f4 ≈ 0.5. For simplicity, we solve for αcrit considering
only f4 ≈ 0.5. The results are plotted in Fig. 5 for three mass
ratios. When only j2 = −1 MMRs are considered, the µ = 0.1
and µ = 0.2 results sit atop each other falling somewhat below
the respective HW99 curves at small values of e′ and above
them at large values. Besides errors resulting from our crude
approximation in taking f4 = 0.5, two other factors may con-
tribute to this discrepancy. The first is that we are searching
for the very minimum value of α at each value of e′ that al-
lows resonance overlap. As is shown in Fig. 2, this may lie up
to 20% below the HW99 numerical result. The second fac-
tor is that we ignore overlap between distinct MMRs, which
may be important at sufficiently large e′. When µ = 0.5, our
curve consistently sits above the HW99 line, resembling the
discrepancy shown in Fig. 3. This, as we argue above, likely
reflects failure of the expansion formula when µ is large (more
below).

Despite these short-comings, this simple analysis yields
some useful insight. Comparing overlap conditions between
those resonances with j2 = −1 and those with j2 = −2, reveals
that the latter resonances always occur at a larger value of
α for a given e′ value. They are therefore not important for
determining the instability boundary and we conclude that
our neglect of | j2| > 4 MMRs is valid. This point is fur-
ther emphasized in the inset of Fig. 2. Based on this con-
clusion, we argue that instability boundaries obtained from
finite-duration numerical integration are reliable, even though
they may not detect long-term instabilities brought about by
very high-order resonances (e.g., 50:3). A second point con-
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FIG. 6.— Instability boundary for circular binaries as a function of mass
ratio µ. The solid curve depicts the result obtained based on the Hill criterion.
Planets situated within shaded regions could potentially be ejected from the
host star, though they will not be unless their orbits are chaotic. Overplotted
are analytical results for the boundary of resonance overlap (and therefore
chaos, but not necessarily ejection): as µ → 0, the overlap condition between
p + 1:p resonances yields αcrit ≥ 1 − 1.307µ

2/7 (Wisdom 1980a); for larger
µ values, overlap between the (3,−1,−1,−1) and (3,−1,0,−2) sub-resonances
occurs for α values above the open squares (this study). Locations of the open
squares are calculated using expansion formula strictly valid only for µ � 1.
Also plotted (in filled circles) are the numerical results by HW99—planets
situated above the filled circles are numerically shown to have unstable orbits.
Left and right lower panels expand the view near µ = 0 and µ = 1, respectively.
For µ → 1, the Hill criterion is well quantified as (1/3)RH = 0.23(1 − µ)1/3

(dashed curve).

cerns the fact that we have ignored terms of order µ2 in the
expansion of the disturbing function, and that our Cs1 and Cr
coefficients are only correct to order-of-magnitude. We argue,
however, that the instability boundary depends only on the ra-
tio of Cs1/Cr (eq. [10]). Moreover, if, for instance, the true
ratio of Cs1/Cr is smaller by a factor of 10 than our adopted
value of 0.02, the instability boundary for µ = 0.5 is moved
downward in α by as much as 10% (Fig. 5).

Our arguments here are based on very crude scaling rela-
tionships. They ought to be checked using more elaborate
numerical experiments.

4. CIRCULAR, RESTRICTED THREE-BODY PROBLEM

We focus on e′ = 0 binaries to study the following two
issues: the applicability of the Hill criterion for predicting
planet instability, and the relevance of ‘bounded chaos’ that
prevents us from using resonance overlap as a synonym for
planet instability.

With the exception of those of first and second-order, the
widths of all other MMRs approach zero in circular binaries
(see Appendix A). The resonance overlap condition in this
limit is particularly easy to analyze. In the case where µ → 0
(the sun-asteroid-planet problem), Wisdom (1980a) derived
the overlap condition between first-order (p + 1:p) resonances
as described by |1−α| = |a′−a|/a′ ≤ 1.307µ2/7 (also see Dun-
can et al. 1989; Malhotra 1998). For larger µ values, we ar-
gue that overlap between the (3,−1,−1,−1) and (3,−1,0,−2)

sub-resonances defines the lowest α value for which chaos
can set in. Note that we calculate the resonance location and
width using expansion formulas that are strictly valid only for
µ � 1. We suspect this approximation may lead to some un-
certainty in the results in Fig. 6. Moreover, we have not con-
sidered the ‘evection resonance’, which becomes important as
µ → 1 (Touma & Wisdom 1998; Nesvorný et al. 2003).

The stability of planets in a circular binary can also be stud-
ied using the concept of Hill stability (e.g. see Murray & Der-
mott 1999). In such systems, there exists an integral of mo-
tion, the Jacobi constant, which defines permitted regions of
planetary movement. For a planet that begins with a circular
orbit around one star (as in HW99), there is a critical value of
α below which the zero-velocity curve with the same Jacobi
constant is ‘closed’ and the planet cannot escape. For val-
ues of α greater than this critical value, the planet is allowed
to escape by the Hill criterion but will not unless its orbit is
chaotic due to overlapping resonances. In other words, the
Hill criterion is a necessary but not a sufficient condition for
planet instability.

To calculate αcrit, one needs to carefully consider the phrase
‘begins with a circular orbit.’ For µ � 1 systems (analogous
to the sun-asteroid-planet problem), it is more appropriate to
actualize this condition by taking the sidereal velocity (ve-
locity in the binary center-of-mass frame) to be Gmc/a; while
for µ→ 1 systems (analogous to the planet-satellite-sun prob-
lem), the more reasonable approach is to set the synodic ve-
locity (in the host star’s rotating frame) to be Gmc/a. For
intermediate µ values, we adopt the approach that yields the
higher value of αcrit. The resultant values of αcrit are plotted
in Fig. 6 as a function of µ. In particular, in the limit where
µ→ 1, we find that αcrit = (1/3)R′

H = [(1−µ)/81]1/3 where R′
H

is the Hill radius of the binary companion (Szebehely 1978),
and in the limit where µ � 1, we find that αcrit = 1 − 2.1µ1/3.

While the Hill criterion gives the energetic condition for
planet instability, resonance overlap provides the dynamical
cause. How do results from the Hill criterion compare with
those from the resonance overlap criterion? Intriguingly, they
seem to closely trace each other over small µ, intermediate µ
and large µ values (Fig. 6). The only exception is when µ→ 0
(visible when µ ≤ 10−4) for which the resonance overlap oc-
curs over a larger range than does the Hill criterion. Glad-
man (1993) has studied this limit and concluded that ‘bounded
chaos,’ producing unpredictable but limited variations in the
orbital elements, reigns in the intervening region. This in-
stance, however, is the only clear sign of bounded chaos in
the circular, restricted problem.

Numerical results by HW99 (filled circles in Fig. 6) and
our own simulations also confirm this seemingly coincidental
agreement between the resonance overlap condition and the
Hill criterion. It appears then, that in practice, the Hill crite-
rion is not only a necessary, but also a sufficient condition for
planet instability.

5. CONCLUSIONS

A planet in a binary system experiences both secular and
resonant perturbations from the binary companion. It may be
dislodged from its host star if it is simultaneously affected by
two resonances. We find that overlap between sub-resonances
of the same MMR accounts for the instability observed by
HW99 and our own numerical integration. There is little evi-
dence for ‘bounded chaos’ and the word ‘resonance overlap’
can be interchanged with the word ‘orbital instability’. Our
instability boundaries largely agree with those obtained by
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HW99, albeit with many fine features. The jutting peninsulas
and deep inlets in the instability boundary correspond to the
instability (or stability) islands first observed by HW99. The
presence of these islands suggests that the longest-period sta-
ble orbit at each e′ value could be reduced by as much as 20%
from the HW99 value. Moreover, our analysis suggests that
overlap between very high-order resonances (e.g., 50:3) do
not substantially modify the instability boundary: these weak
resonances, while producing slow chaotic diffusion, which
may be missed by finite-duration numerical integrations, do
not contribute markedly to planet instability.

In detail, the centroids of different sub-resonances are dis-
placed from each other by the strong secular forcing of the
companion enlarging the phase space of resonance overlap.
Chaotic diffusion caused by sub-resonance overlap is ob-
served to be fast, unlike cases in the solar system. The
longest ejection timescale in our study, corresponding to sub-
resonance overlap within the 30:1 MMR, is ∼ 106 binary or-
bits, or, 1 Gyrs for a 100 AU solar-mass binary. For com-
parison, the 5:1 MMR overlap gives rise to an ejection time
∼ 2000 binary orbits.

Compared with numerical integrations, our perturbation
analysis has the following short-comings: the perturbation
strength is calculated accurate only to first-order in the mass-
ratio between the companion and the host star, and the pertur-
bation formula diverges for e′ > 0.66.

As a final note, we raise the issue of stability in circular bi-
nary systems (e′ = 0). While the Hill criterion (critical Jacobi
constant) gives the energetic condition for planet instability,
resonance overlap provides the dynamical cause. We observe
that over almost the entire range of mass-ratio, the Hill cri-
terion and resonance overlap yield similar critical α values,
making the Hill criterion not only a necessary, but also a suf-
ficient condition for planet instability.
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sions, and an anonymous referee whose comments helped to
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the Natural Sciences and Engineering Research Council of
Canada, as well as the National Science Foundation of the
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APPENDIX

WIDTH OF A MEAN-MOTION RESONANCE UNDER SECULAR FORCING

MD99 have presented a derivation for the width of a MMR when the resonance angle evolves due to a single resonance. In our
situation with a massive third body, secular effects on the resonance angle have to be taken into account. We show here how this
modifies the resonance width and resonant centroid.

The relevant resonance angle as well as its time derivatives are,

ϕ j = j1λ
′ + j2λ+ j3ϖ′ + j4ϖ, (A1)

ϕ̇ j = j1n′ + j2n + j4ϖ̇, (A2)

ϕ̈ j = j2ṅ + j4ϖ̈. (A3)

The time-variations of n′, e′, ϖ′, and ε′ due to the influence of the planet are neglected as the planet can effectively be thought
of as a test mass (m/mc � 1). We also neglect variations in ε as previously mentioned.

We take the time-derivative of equation (6), substitute equations (5) and (6) into the right-hand side, and use the resulting
equations to recast equation (A3) into the form

ϕ̈ j =
[

3 j2
2C̃rne| j4| + | j4|

2C̃re
| j4|−2( j1n′ + j2n) − 2| j4|3Cs1C̃re

| j4|−2
]

sinϕ j − | j4|
3C̃r

2
e2| j4|−4 sin2ϕ j, (A4)

where C̃r = Cre′| j3|. This reduces to equation (8.63) of MD99 when | j4| = 1 and Cs1 = 0. In deriving this equation, we have made
some simplifying assumptions. Firstly, we have ignored the time-dependence of Cs1 and Cr, which are in reality both functions
of α. Secondly, we have neglected the Cs2 terms in equations (5) and (6) as we expect their time-averaged contributions to be
negligible.

We look for a solution of the system that is pendulum-like, as in the case without secular forcing. Following MD99, we write
n = n0 + k cos[ϕ j/2], where n0 is the mean motion associated with the nominal value of the resonance and k is a constant that
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describes the amplitude of the oscillation, or equivalently, the width of the resonance. The choice of the angular form, cos[ϕ j/2],
is determined by the libration amplitude of the resonant angle ϕ j (−π to π) as well as the presumed angle where maximum change
in the mean motion occurs (ϕ j = 0). The latter applies when Cr < 0 and shifts to ϕ j = π when Cr > 0; however, the final result
does not depend on the presumed sign of Cr.

The derivation that follows is analogous to that presented in §8.7 of MD99. We do not repeat the details here but simply outline
the results:

j1n′ + j2n0 = 2| j4|Cs1 + j2
4|C̃r|e

| j4|−2, (A5)

k =
−2
3

j2
4

j2
|C̃r|e

| j4|−2 ±

√

12|C̃r|ne| j4|

(

1 +
j4
4 |C̃r|e| j4|−4

27 j2
2n

)1/2

. (A6)

The secular term is important for shifting the centroid of the resonance, but does not contribute to the width of the resonance. In
fact, the width formula is identical to equation (8.75) of MD99 where secular forcing is ignored.

The simple pendulum approach applies only when the resonant width is small, i.e., δn = nmax − nmin � n. Moreover, assuming
that e is driven by the secular interaction to a value that is proportional to e′ (eq. [8]), most MMRs have widths which approach 0
as e′ → 0. The first-order (e.g., 2:1) and second-order (e.g., 3:1) resonances that satisfy j4 6= 0 are exceptions; the width diverges
for the former and approaches a constant for the latter.


